File: padmm_real_data.cc

package info (click to toggle)
purify 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 182,264 kB
  • sloc: cpp: 16,485; python: 449; xml: 182; makefile: 7; sh: 6
file content (165 lines) | stat: -rw-r--r-- 7,578 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <array>
#include <memory>
#include <random>
#include <boost/math/special_functions/erf.hpp>
#include "purify/directories.h"
#include "purify/logging.h"
#include "purify/operators.h"
#include <sopt/credible_region.h>
#include <sopt/imaging_padmm.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#ifdef PURIFY_GPU
#include "purify/operators_gpu.h"
#endif
#include "purify/types.h"
#include "purify/cimg.h"
#include "purify/pfitsio.h"
#include "purify/utilities.h"
#include "purify/uvfits.h"
#include "purify/wproj_utilities.h"
using namespace purify;
using namespace purify::notinstalled;

void padmm(const std::string &name, const t_uint &imsizex, const t_uint &imsizey,
           const std::string &kernel, const t_int J, const utilities::vis_params &uv_data,
           const t_real sigma, const std::tuple<bool, t_real> &w_term) {
  std::string const outfile_fits = output_filename(name + "_solution.fits");
  std::string const residual_fits = output_filename(name + "_residual.fits");
  std::string const dirty_image_fits = output_filename(name + "_dirty.fits");
  std::string const psf_image_fits = output_filename(name + "_psf.fits");

  t_real const over_sample = 2;
  std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> measurements_transform =
      measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
          uv_data, imsizey, imsizex, std::get<1>(w_term), std::get<1>(w_term), over_sample,
          kernels::kernel_from_string.at(kernel), J, J, std::get<0>(w_term));
  t_uint const M = uv_data.size();
  t_uint const N = imsizex * imsizey;
  sopt::wavelets::SARA const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  auto const Psi = sopt::linear_transform<t_complex>(sara, imsizey, imsizex);
  const Vector<> dimage = (measurements_transform->adjoint() * uv_data.vis).real();
  Matrix<t_complex> point = Matrix<t_complex>::Zero(imsizey, imsizex);
  point(std::floor(imsizey / 2), std::floor(imsizex / 2)) = 1.;
  const Vector<> psf =
      (measurements_transform->adjoint() *
       (*measurements_transform * Vector<t_complex>::Map(point.data(), point.size())).eval())
          .real();
  Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
  pfitsio::write2d(Image<t_real>::Map(dimage.data(), imsizey, imsizex), dirty_image_fits);
  pfitsio::write2d(Image<t_real>::Map(psf.data(), imsizey, imsizex), psf_image_fits);
  auto const epsilon = 3 * std::sqrt(2 * uv_data.size()) * sigma;
  auto const gamma = (measurements_transform->adjoint() * uv_data.vis).real().maxCoeff() * 1e-3;
  PURIFY_HIGH_LOG("Using epsilon of {}", epsilon);
#ifdef PURIFY_CImg
  auto const canvas = std::make_shared<CDisplay>(
      cimg::make_display(Vector<t_real>::Zero(2 * imsizex * imsizey), 2 * imsizex, imsizey));
  canvas->resize(true);
  auto const show_image = [&, measurements_transform](const Vector<t_complex> &x) -> bool {
    if (!canvas->is_closed()) {
      const Vector<t_complex> res =
          (measurements_transform->adjoint() * (uv_data.vis - (*measurements_transform * x)));
      const auto img1 = cimg::make_image(x.real().eval(), imsizey, imsizex)
                            .get_normalize(0, 1)
                            .get_resize(512, 512);
      const auto img2 = cimg::make_image(res.real().eval(), imsizey, imsizex)
                            .get_normalize(0, 1)
                            .get_resize(512, 512);
      const auto results = CImageList<t_real>(img1, img2);
      canvas->display(results);
      canvas->resize(true);
    }
    return true;
  };
#endif
  auto padmm = std::make_shared<sopt::algorithm::ImagingProximalADMM<t_complex>>(uv_data.vis);
  padmm->itermax(500)
      .gamma(gamma)
      .relative_variation(1e-3)
      .l2ball_proximal_epsilon(epsilon)
      .tight_frame(false)
      .l1_proximal_tolerance(1e-2)
      .l1_proximal_nu(1.)
      .l1_proximal_itermax(50)
      .l1_proximal_positivity_constraint(true)
      .l1_proximal_real_constraint(true)
      .residual_convergence(epsilon)
      .lagrange_update_scale(0.9)
      .nu(1e0)
      .Psi(Psi)
      .Phi(*measurements_transform);

  auto convergence_function = [](const Vector<t_complex> &x) { return true; };
  const std::shared_ptr<t_uint> iter = std::make_shared<t_uint>(0);

  std::weak_ptr<decltype(padmm)::element_type> const padmm_weak(padmm);
  const auto algo_update = [uv_data, imsizex, imsizey, padmm_weak,
                            iter](const Vector<t_complex> &x) -> bool {
    auto padmm = padmm_weak.lock();
    PURIFY_MEDIUM_LOG("Step size γ {}", padmm->gamma());
    *iter = *iter + 1;
    Vector<t_complex> const alpha = padmm->Psi().adjoint() * x;
    // updating parameter
    const t_real new_gamma = alpha.real().cwiseAbs().maxCoeff() * 1e-3;
    PURIFY_MEDIUM_LOG("Step size γ update {}", new_gamma);
    padmm->gamma(((std::abs(padmm->gamma() - new_gamma) > 0.2) and *iter < 200) ? new_gamma
                                                                                : padmm->gamma());

    Vector<t_complex> const residual = padmm->Phi().adjoint() * (uv_data.vis - padmm->Phi() * x);

    pfitsio::write2d(x, imsizey, imsizex, "solution_update.fits");
    pfitsio::write2d(residual, imsizey, imsizex, "residual_update.fits");
    return true;
  };
  auto lambda = [=](Vector<t_complex> const &x) {
    return convergence_function(x)
#ifdef PURIFY_CImg
           and show_image(x)
#endif
           and algo_update(x);
  };
  padmm->is_converged(lambda);
  auto const diagnostic = (*padmm)();
  Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  pfitsio::write2d(image.real(), outfile_fits);
  Vector<t_complex> residuals = measurements_transform->adjoint() *
                                (uv_data.vis - ((*measurements_transform) * diagnostic.x));
  Image<t_complex> residual_image = Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
  pfitsio::write2d(residual_image.real(), residual_fits);
#ifdef PURIFY_CImg
  const auto results = CImageList<t_real>(
      cimg::make_image(diagnostic.x.real().eval(), imsizey, imsizex).get_resize(512, 512),
      cimg::make_image(residuals.real().eval(), imsizey, imsizex).get_resize(512, 512));
  canvas->display(results);
  cimg::make_image(residuals.real().eval(), imsizey, imsizex)
      .histogram(256)
      .display_graph("Residual Histogram", 2);
  while (!canvas->is_closed()) canvas->wait();
#endif
}

int main(int, char **) {
  sopt::logging::set_level("debug");
  purify::logging::set_level("debug");
  const std::string &name = "real_data";
  const bool w_term = false;
  const t_real cellsize = 20;
  const t_uint imsizex = 1024;
  const t_uint imsizey = 1024;
  const std::string kernel = "kb";
  const std::vector<std::string> inputfiles = {vla_filename("../mwa/uvdump_01.uvfits"),
                                               vla_filename("../mwa/uvdump_02.uvfits")};

  auto uv_data = pfitsio::read_uvfits(inputfiles);
  t_real const sigma = uv_data.weights.norm() / std::sqrt(uv_data.weights.size()) * 0.05;
  uv_data.vis =
      uv_data.vis.array() * uv_data.weights.array() / uv_data.weights.array().cwiseAbs().maxCoeff();
  padmm(name, imsizex, imsizey, kernel, 4, uv_data, sigma, std::make_tuple(w_term, cellsize));
  return 0;
}