1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
#include "purify/config.h"
#include "purify/types.h"
#include <array>
#include <memory>
#include <random>
#include <boost/math/special_functions/erf.hpp>
#include "purify/directories.h"
#include "purify/operators.h"
#include "purify/pfitsio.h"
#include "purify/utilities.h"
#include <sopt/imaging_padmm.h>
#include <sopt/positive_quadrant.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/reweighted.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
int main(int, char **) {
using namespace purify;
using namespace purify::notinstalled;
sopt::logging::set_level("info");
std::string const fitsfile = image_filename("M31.fits");
std::string const inputfile = output_filename("M31_input.fits");
std::string const outfile = output_filename("M31.tiff");
std::string const outfile_fits = output_filename("M31_solution.fits");
std::string const residual_fits = output_filename("M31_residual.fits");
std::string const dirty_image = output_filename("M31_dirty.tiff");
std::string const dirty_image_fits = output_filename("M31_dirty.fits");
std::string const output_vis_file = output_filename("M31_Random_coverage.vis");
t_real const over_sample = 2;
auto beta = 1e-3;
auto M31 = pfitsio::read2d(fitsfile);
t_real const max = M31.array().abs().maxCoeff();
M31 = M31 * 1. / max;
pfitsio::write2d(M31.real(), inputfile);
// Following same formula in matlab example
t_real const sigma_m = constant::pi / 3;
// t_int const number_of_vis = std::floor(p * rho * M31.size());
t_int const number_of_vis = 1e4;
// Generating random uv(w) coverage
auto uv_data = utilities::random_sample_density(number_of_vis, 0, sigma_m);
uv_data.units = utilities::vis_units::radians;
utilities::write_visibility(uv_data, output_vis_file);
SOPT_NOTICE("Number of measurements / number of pixels: {}", uv_data.u.size() * 1. / M31.size());
auto measurements_transform = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
*measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
uv_data.u, uv_data.v, uv_data.w, uv_data.weights, M31.cols(), M31.rows(), over_sample,
kernels::kernel_from_string.at("kb"), 4, 4),
100, 1e-4, Vector<t_complex>::Random(M31.size())));
sopt::wavelets::SARA const sara{
std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
auto const Psi = sopt::linear_transform<t_complex>(sara, M31.rows(), M31.cols());
std::mt19937_64 mersenne;
Vector<t_complex> const y0 =
(measurements_transform * Vector<t_complex>::Map(M31.data(), M31.size()));
// working out value of signal given SNR of 30
t_real sigma = utilities::SNR_to_standard_deviation(y0, 30.);
// adding noise to visibilities
uv_data.vis = utilities::add_noise(y0, 0., sigma);
Vector<> dimage = (measurements_transform.adjoint() * uv_data.vis).real();
t_real const max_val = dimage.array().abs().maxCoeff();
dimage = dimage / max_val;
Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
sopt::utilities::write_tiff(Image<t_real>::Map(dimage.data(), M31.rows(), M31.cols()),
dirty_image);
pfitsio::write2d(Image<t_real>::Map(dimage.data(), M31.rows(), M31.cols()), dirty_image_fits);
auto const epsilon = utilities::calculate_l2_radius(uv_data.vis.size(), sigma);
auto const purify_gamma =
(Psi.adjoint() * (measurements_transform.adjoint() * uv_data.vis).eval())
.cwiseAbs()
.maxCoeff() *
beta;
// auto purify_gamma = 3 * utilities::median((Psi.adjoint() * (measurements_transform.adjoint() *
// (uv_data.vis - y0))).real().cwiseAbs())/0.6745;
SOPT_INFO("Using epsilon of {} \n", epsilon);
auto const padmm = sopt::algorithm::ImagingProximalADMM<t_complex>(uv_data.vis)
.itermax(1000)
.gamma(purify_gamma)
.relative_variation(1e-6)
.l2ball_proximal_epsilon(epsilon)
.tight_frame(false)
.l1_proximal_tolerance(1e-4)
.l1_proximal_nu(1)
.l1_proximal_itermax(50)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.residual_convergence(epsilon * 1.001)
.lagrange_update_scale(0.9)
.nu(1e0)
.Psi(Psi)
.Phi(measurements_transform);
auto const posq = sopt::algorithm::positive_quadrant(padmm);
auto const min_delta = sigma * std::sqrt(y0.size()) / std::sqrt(9 * M31.size());
// Sets weight after each padmm iteration.
// In practice, this means replacing the proximal of the l1 objective function.
auto const reweighted =
sopt::algorithm::reweighted(padmm).itermax(10).min_delta(min_delta).is_converged(
sopt::RelativeVariation<std::complex<t_real>>(1e-3));
auto const diagnostic = reweighted();
assert(diagnostic.algo.x.size() == M31.size());
Image<t_complex> image = Image<t_complex>::Map(diagnostic.algo.x.data(), M31.rows(), M31.cols());
sopt::utilities::write_tiff(image.real(), outfile);
pfitsio::write2d(image.real(), outfile_fits);
Image<t_complex> residual = Image<t_complex>::Map(
(measurements_transform.adjoint() *
(y0 - measurements_transform * Vector<t_complex>::Map(image.data(), image.size())))
.eval()
.data(),
M31.rows(), M31.cols());
pfitsio::write2d(residual.real(), residual_fits);
return 0;
}
|