File: main.cc

package info (click to toggle)
purify 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 182,264 kB
  • sloc: cpp: 16,485; python: 449; xml: 182; makefile: 7; sh: 6
file content (578 lines) | stat: -rw-r--r-- 30,455 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#include "purify/config.h"

#include "purify/types.h"
#include <array>
#include <cstddef>
#include <ctime>
#include <random>
#include "purify/algorithm_factory.h"
#include "purify/cimg.h"
#include "purify/logging.h"
#include "purify/measurement_operator_factory.h"
#include "purify/pfitsio.h"
#include "purify/read_measurements.h"
#include "purify/update_factory.h"
#include "purify/wavelet_operator_factory.h"
#include "purify/wide_field_utilities.h"
#include "purify/yaml-parser.h"
#include <sopt/imaging_padmm.h>
#include <sopt/positive_quadrant.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/reweighted.h>
using namespace purify;

int main(int argc, const char **argv) {
  std::srand(static_cast<t_uint>(std::time(0)));
  std::mt19937 mersnne(std::time(0));

  // Read config file path from command line
  if (argc == 1) {
    PURIFY_HIGH_LOG("Specify the config file full path. Aborting.");
    return 1;
  }

  std::string file_path = argv[1];
  YamlParser params = YamlParser(file_path);
  if (params.version() != purify::version())
    throw std::runtime_error(
        "Using purify version " + purify::version() +
        " but the configuration file expects version " + params.version() +
        ". Please updated the config version manually to be compatable with the new version.");

  factory::distributed_measurement_operator mop_algo =
      (not params.gpu()) ? factory::distributed_measurement_operator::serial
                         : factory::distributed_measurement_operator::gpu_serial;
  factory::distributed_wavelet_operator wop_algo = factory::distributed_wavelet_operator::serial;
  bool using_mpi = false;
  std::vector<t_int> image_index = std::vector<t_int>();
  std::vector<t_real> w_stacks = std::vector<t_real>();

#ifdef PURIFY_MPI
  auto const session = sopt::mpi::init(argc, argv);
#endif

  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
    mop_algo = (not params.gpu())
                   ? factory::distributed_measurement_operator::mpi_distribute_image
                   : factory::distributed_measurement_operator::gpu_mpi_distribute_image;
    if (params.mpi_all_to_all())
      mop_algo = (not params.gpu())
                     ? factory::distributed_measurement_operator::mpi_distribute_all_to_all
                     : factory::distributed_measurement_operator::gpu_mpi_distribute_all_to_all;
    wop_algo = factory::distributed_wavelet_operator::mpi_sara;
    if (params.mpiAlgorithm() == factory::algo_distribution::mpi_random_updates) {
      mop_algo = (not params.gpu()) ? factory::distributed_measurement_operator::serial
                                    : factory::distributed_measurement_operator::serial;
      wop_algo = factory::distributed_wavelet_operator::serial;
    }
    using_mpi = true;
  }

  sopt::logging::set_level(params.logging());
  purify::logging::set_level(params.logging());

  // Read or generate input data
  utilities::vis_params uv_data;
  t_real sigma;
  Vector<t_complex> measurement_op_eigen_vector =
      Vector<t_complex>::Ones(params.width() * params.height());
  // read eigen vector for power method
  if (params.eigenvector_real() != "" and params.eigenvector_imag() != "") {
    t_int rows;
    t_int cols;
    t_int pols;
    t_int chans;
    Vector<t_real> temp_real;
    Vector<t_real> temp_imag;
    pfitsio::read3d(params.eigenvector_real(), temp_real, rows, cols, chans, pols);
    if (rows != params.height() or cols != params.width() or chans != 1 or pols != 1)
      throw std::runtime_error("Image of measurement operator eigenvector is wrong size.");
    pfitsio::read3d(params.eigenvector_imag(), temp_imag, rows, cols, chans, pols);
    if (rows != params.height() or cols != params.width() or chans != 1 or pols != 1)
      throw std::runtime_error("Image of measurement operator eigenvector is wrong size.");
    measurement_op_eigen_vector.real() = temp_real;
    measurement_op_eigen_vector.imag() = temp_imag;
  }
  if (params.source() == purify::utilities::vis_source::measurements) {
    PURIFY_HIGH_LOG("Input visibilities are from files:");
    for (size_t i = 0; i < params.measurements().size(); i++)
      PURIFY_HIGH_LOG("{}", params.measurements()[i]);
    sigma = params.measurements_sigma();
#ifdef PURIFY_MPI
    if (using_mpi) {
      auto const world = sopt::mpi::Communicator::World();
      uv_data = read_measurements::read_measurements(params.measurements(), world,
                                                     distribute::plan::radial, true, stokes::I,
                                                     params.measurements_units());
      const t_real norm =
          std::sqrt(world.all_sum_all(
                        (uv_data.weights.real().array() * uv_data.weights.real().array()).sum()) /
                    world.all_sum_all(uv_data.size()));
      // normalise weights
      uv_data.weights = uv_data.weights / norm;
      // using no weights for now
      // uv_data.weights = Vector<t_complex>::Ones(uv_data.size());
    } else
#endif
    {
      uv_data = read_measurements::read_measurements(params.measurements(), true, stokes::I,
                                                     params.measurements_units());
      const t_real norm = std::sqrt(
          (uv_data.weights.real().array() * uv_data.weights.real().array()).sum() / uv_data.size());
      // normalising weights
      uv_data.weights = uv_data.weights / norm;
      // using no weights for now
      // uv_data.weights = Vector<t_complex>::Ones(uv_data.size());
    }
    if (params.conjugate_w()) uv_data = utilities::conjugate_w(uv_data);
#ifdef PURIFY_MPI
    if (params.mpi_wstacking() and
        (mop_algo == factory::distributed_measurement_operator::mpi_distribute_all_to_all or
         mop_algo == factory::distributed_measurement_operator::gpu_mpi_distribute_all_to_all)) {
      auto const world = sopt::mpi::Communicator::World();
      const auto cost = [](t_real x) -> t_real { return std::abs(x * x); };
      const t_real du =
          widefield::pixel_to_lambda(params.cellsizex(), params.width(), params.oversampling());
      std::tie(uv_data, image_index, w_stacks) = utilities::w_stacking_with_all_to_all(
          uv_data, du, params.Jx(), params.Jw(), world, params.kmeans_iters(), 0, cost);
    } else if (params.mpi_wstacking()) {
      auto const world = sopt::mpi::Communicator::World();
      const auto cost = [](t_real x) -> t_real { return std::abs(x * x); };
      uv_data = utilities::w_stacking(uv_data, world, params.kmeans_iters(), cost);
    }
#endif
  } else if (params.source() == purify::utilities::vis_source::simulation) {
    PURIFY_HIGH_LOG("Input visibilities will be generated for random coverage.");
    // TODO: move this to function (in utilities.h?)
    auto image = pfitsio::read2d(params.skymodel());
    if (params.height() != image.rows() || params.width() != image.cols())
      throw std::runtime_error("Input image size (" + std::to_string(image.cols()) + "x" +
                               std::to_string(image.rows()) + ") is not equal to the input one (" +
                               std::to_string(params.width()) + "x" +
                               std::to_string(params.height()) + ").");
    t_int const number_of_pixels = image.size();
    t_int const number_of_vis = params.number_of_measurements();
    t_real const sigma_m = constant::pi / 4;
    const t_real rms_w = params.w_rms();  // lambda
    if (params.measurements().at(0) == "") {
      uv_data = utilities::random_sample_density(number_of_vis, 0, sigma_m, rms_w);
      uv_data.units = utilities::vis_units::radians;
      uv_data.weights = Vector<t_complex>::Ones(uv_data.size());
    } else {
#ifdef PURIFY_MPI
      if (using_mpi) {
        auto const world = sopt::mpi::Communicator::World();
        uv_data = read_measurements::read_measurements(params.measurements(), world,
                                                       distribute::plan::radial, true, stokes::I,
                                                       params.measurements_units());
      } else
#endif
        uv_data = read_measurements::read_measurements(params.measurements(), true, stokes::I,
                                                       params.measurements_units());
      uv_data.weights = Vector<t_complex>::Ones(uv_data.weights.size());
    }
    if (params.conjugate_w()) uv_data = utilities::conjugate_w(uv_data);
#ifdef PURIFY_MPI
    if (params.mpi_wstacking() and
        (mop_algo == factory::distributed_measurement_operator::mpi_distribute_all_to_all or
         mop_algo == factory::distributed_measurement_operator::gpu_mpi_distribute_all_to_all)) {
      auto const world = sopt::mpi::Communicator::World();
      const auto cost = [](t_real x) -> t_real { return std::abs(x * x); };
      const t_real du =
          widefield::pixel_to_lambda(params.cellsizex(), params.width(), params.oversampling());
      std::tie(uv_data, image_index, w_stacks) = utilities::w_stacking_with_all_to_all(
          uv_data, du, params.Jx(), params.Jw(), world, params.kmeans_iters(), 0, cost);
    } else if (params.mpi_wstacking()) {
      auto const world = sopt::mpi::Communicator::World();
      const auto cost = [](t_real x) -> t_real { return std::abs(x * x); };
      uv_data = utilities::w_stacking(uv_data, world, params.kmeans_iters(), cost);
    }
#endif
    std::shared_ptr<sopt::LinearTransform<Vector<t_complex>>> sky_measurements;
    if (mop_algo != factory::distributed_measurement_operator::mpi_distribute_all_to_all and
        mop_algo != factory::distributed_measurement_operator::gpu_mpi_distribute_all_to_all)
      sky_measurements =
          (not params.wprojection())
              ? factory::measurement_operator_factory<Vector<t_complex>>(
                    mop_algo, uv_data, params.height(), params.width(), params.cellsizey(),
                    params.cellsizex(), params.oversampling(),
                    kernels::kernel_from_string.at(params.kernel()), params.sim_J(), params.sim_J(),
                    params.mpi_wstacking())
              : factory::measurement_operator_factory<Vector<t_complex>>(
                    mop_algo, uv_data, params.height(), params.width(), params.cellsizey(),
                    params.cellsizex(), params.oversampling(),
                    kernels::kernel_from_string.at(params.kernel()), params.sim_J(), params.Jw(),
                    params.mpi_wstacking(), 1e-6, 1e-6, dde_type::wkernel_radial);
    else
      sky_measurements =
          (not params.wprojection())
              ? factory::all_to_all_measurement_operator_factory<Vector<t_complex>>(
                    mop_algo, image_index, w_stacks, uv_data, params.height(), params.width(),
                    params.cellsizey(), params.cellsizex(), params.oversampling(),
                    kernels::kernel_from_string.at(params.kernel()), params.sim_J(), params.sim_J(),
                    params.mpi_wstacking())
              : factory::all_to_all_measurement_operator_factory<Vector<t_complex>>(
                    mop_algo, image_index, w_stacks, uv_data, params.height(), params.width(),
                    params.cellsizey(), params.cellsizex(), params.oversampling(),
                    kernels::kernel_from_string.at(params.kernel()), params.sim_J(), params.Jw(),
                    params.mpi_wstacking(), 1e-6, 1e-6, dde_type::wkernel_radial);
    uv_data.vis =
        ((*sky_measurements) * Vector<t_complex>::Map(image.data(), image.size())).eval().array();
    sigma = utilities::SNR_to_standard_deviation(uv_data.vis, params.signal_to_noise());
    uv_data.vis = utilities::add_noise(uv_data.vis, 0., sigma);
  }
  t_real ideal_cell_x = widefield::estimate_cell_size(uv_data.u.cwiseAbs().maxCoeff(),
                                                      params.width(), params.oversampling());
  t_real ideal_cell_y = widefield::estimate_cell_size(uv_data.v.cwiseAbs().maxCoeff(),
                                                      params.height(), params.oversampling());
#ifdef PURIFY_MPI
  if (using_mpi) {
    auto const comm = sopt::mpi::Communicator::World();
    ideal_cell_x = widefield::estimate_cell_size(
        comm.all_reduce<t_real>(uv_data.u.cwiseAbs().maxCoeff(), MPI_MAX), params.width(),
        params.oversampling());
    ideal_cell_y = widefield::estimate_cell_size(
        comm.all_reduce<t_real>(uv_data.v.cwiseAbs().maxCoeff(), MPI_MAX), params.height(),
        params.oversampling());
  }
#endif
  PURIFY_HIGH_LOG(
      "Using cell size {}\" x {}\", recommended from the uv coverage and field of view is "
      "{}\"x{}\".",
      params.cellsizey(), params.cellsizex(), ideal_cell_y, ideal_cell_x);
  PURIFY_HIGH_LOG("The equivalent miriad cell size is: {}\" x {}\"",
                  widefield::equivalent_miriad_cell_size(params.cellsizex(), params.width(),
                                                         params.oversampling()),
                  widefield::equivalent_miriad_cell_size(params.cellsizey(), params.height(),
                                                         params.oversampling()));
  // create measurement operator
  std::shared_ptr<sopt::LinearTransform<Vector<t_complex>>> measurements_transform;
  if (mop_algo != factory::distributed_measurement_operator::mpi_distribute_all_to_all and
      mop_algo != factory::distributed_measurement_operator::gpu_mpi_distribute_all_to_all)
    measurements_transform =
        (not params.wprojection())
            ? factory::measurement_operator_factory<Vector<t_complex>>(
                  mop_algo, uv_data, params.height(), params.width(), params.cellsizey(),
                  params.cellsizex(), params.oversampling(),
                  kernels::kernel_from_string.at(params.kernel()), params.Jy(), params.Jx(),
                  params.mpi_wstacking())
            : factory::measurement_operator_factory<Vector<t_complex>>(
                  mop_algo, uv_data, params.height(), params.width(), params.cellsizey(),
                  params.cellsizex(), params.oversampling(),
                  kernels::kernel_from_string.at(params.kernel()), params.Jy(), params.Jw(),
                  params.mpi_wstacking(), 1e-6, 1e-6, dde_type::wkernel_radial);
  else
    measurements_transform =
        (not params.wprojection())
            ? factory::all_to_all_measurement_operator_factory<Vector<t_complex>>(
                  mop_algo, image_index, w_stacks, uv_data, params.height(), params.width(),
                  params.cellsizey(), params.cellsizex(), params.oversampling(),
                  kernels::kernel_from_string.at(params.kernel()), params.Jy(), params.Jx(),
                  params.mpi_wstacking())
            : factory::all_to_all_measurement_operator_factory<Vector<t_complex>>(
                  mop_algo, image_index, w_stacks, uv_data, params.height(), params.width(),
                  params.cellsizey(), params.cellsizex(), params.oversampling(),
                  kernels::kernel_from_string.at(params.kernel()), params.Jy(), params.Jw(),
                  params.mpi_wstacking(), 1e-6, 1e-6, dde_type::wkernel_radial);
  t_real operator_norm = 1.;
#ifdef PURIFY_MPI
  if (using_mpi) {
    auto const comm = sopt::mpi::Communicator::World();
    auto power_method_result =
        (params.mpiAlgorithm() != factory::algo_distribution::mpi_random_updates)
            ? sopt::algorithm::power_method<Vector<t_complex>>(
                  *measurements_transform, params.powMethod_iter(), params.powMethod_tolerance(),
                  comm.broadcast(measurement_op_eigen_vector).eval())
            : sopt::algorithm::all_sum_all_power_method<Vector<t_complex>>(
                  comm, *measurements_transform, params.powMethod_iter(),
                  params.powMethod_tolerance(), comm.broadcast(measurement_op_eigen_vector).eval());
    measurement_op_eigen_vector = std::get<1>(power_method_result);
    operator_norm = std::get<0>(power_method_result);
  } else
#endif
  {
    auto power_method_result = sopt::algorithm::power_method<Vector<t_complex>>(
        *measurements_transform, params.powMethod_iter(), params.powMethod_tolerance(),
        measurement_op_eigen_vector);
    measurement_op_eigen_vector = std::get<1>(power_method_result);
    operator_norm = std::get<0>(power_method_result);
  }
  PURIFY_LOW_LOG("Value of operator norm is {}", operator_norm);
  t_real const flux_scale = 1.;
  uv_data.vis = uv_data.vis.array() * uv_data.weights.array() / flux_scale;

  // Save some things before applying the algorithm
  // the config yaml file - this also generates the output directory and the timestamp
  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
    if (world.is_root())
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
      params.writeOutput();
  } else {
    params.writeOutput();
  }
  const std::string out_dir = params.output_prefix() + "/output_" + params.timestamp();
  // Creating header for saving output images during iterations
  const pfitsio::header_params update_header_sol =
      pfitsio::header_params(out_dir + "/sol_update.fits", "Jy/Pixel", 1, uv_data.ra, uv_data.dec,
                             params.measurements_polarization(), params.cellsizex(),
                             params.cellsizey(), uv_data.average_frequency, 0, 0, false, 0, 0, 0);
  const pfitsio::header_params update_header_res =
      pfitsio::header_params(out_dir + "/res_update.fits", "Jy/Beam", 1, uv_data.ra, uv_data.dec,
                             params.measurements_polarization(), params.cellsizex(),
                             params.cellsizey(), uv_data.average_frequency, 0, 0, false, 0, 0, 0);
  const pfitsio::header_params def_header = pfitsio::header_params(
      "", "Jy/Pixel", 1, uv_data.ra, uv_data.dec, params.measurements_polarization(),
      params.cellsizex(), params.cellsizey(), uv_data.average_frequency, 0, 0, false, 0, 0, 0);
  // the eigenvector
  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
    if (world.is_root())
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
    {
      pfitsio::write2d(measurement_op_eigen_vector.real(), params.height(), params.width(),
                       out_dir + "/eigenvector_real.fits", "pix", true);
      pfitsio::write2d(measurement_op_eigen_vector.imag(), params.height(), params.width(),
                       out_dir + "/eigenvector_imag.fits", "pix", true);
    }
  } else {
    pfitsio::write2d(measurement_op_eigen_vector.real(), params.height(), params.width(),
                     out_dir + "/eigenvector_real.fits", "pix", true);
    pfitsio::write2d(measurement_op_eigen_vector.imag(), params.height(), params.width(),
                     out_dir + "/eigenvector_imag.fits", "pix", true);
  }
  // the psf
  pfitsio::header_params psf_header = def_header;
  psf_header.fits_name = out_dir + "/psf.fits";
  psf_header.pix_units = "Jy/Pixel";
  const Vector<t_complex> psf = measurements_transform->adjoint() * (uv_data.weights / flux_scale);
  const Image<t_real> psf_image =
      Image<t_complex>::Map(psf.data(), params.height(), params.width()).real();
  PURIFY_HIGH_LOG(
      "Peak of PSF: {} (used to convert between Jy/Pixel and Jy/BEAM)",
      psf_image(static_cast<t_int>(params.width() * 0.5 + params.height() * 0.5 * params.width())));
  t_real beam_units = 1.;
  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
    beam_units = world.all_sum_all(uv_data.size()) / flux_scale / flux_scale;
    PURIFY_LOW_LOG(
        "Expected image domain residual RMS is {} jy/beam",
        sigma * params.epsilonScaling() * operator_norm /
            (std::sqrt(params.width() * params.height()) * world.all_sum_all(uv_data.size())));
    if (world.is_root())
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
      pfitsio::write2d(psf_image, psf_header, true);
  } else {
    beam_units = uv_data.size() / flux_scale / flux_scale;
    PURIFY_LOW_LOG("Expected image domain residual RMS is {} jy/beam",
                   sigma * params.epsilonScaling() * operator_norm /
                       (std::sqrt(params.width() * params.height()) * uv_data.size()));
    pfitsio::write2d(psf_image, psf_header, true);
  }
  PURIFY_HIGH_LOG(
      "Theoretical calculation for peak PSF: {} (used to convert between Jy/Pixel and Jy/BEAM)",
      beam_units);
  PURIFY_HIGH_LOG("Effective sigma is {} Jy", sigma * params.epsilonScaling());
  // the dirty image
  pfitsio::header_params dirty_header = def_header;
  dirty_header.fits_name = out_dir + "/dirty.fits";
  dirty_header.pix_units = "Jy/Beam";
  const Vector<t_complex> dimage = measurements_transform->adjoint() * uv_data.vis;
  const Image<t_real> dirty_image =
      Image<t_complex>::Map(dimage.data(), params.height(), params.width()).real();
  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
    if (world.is_root())
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
      pfitsio::write2d(dirty_image / beam_units, dirty_header, true);
  } else {
    pfitsio::write2d(dirty_image / beam_units, dirty_header, true);
  }
  // create wavelet operator
  std::vector<std::tuple<std::string, t_uint>> sara;
  for (size_t i = 0; i < params.wavelet_basis().size(); i++)
    sara.push_back(std::make_tuple(params.wavelet_basis().at(i), params.wavelet_levels()));
  t_uint sara_size = 0;
#ifdef PURIFY_MPI
  {
    auto const world = sopt::mpi::Communicator::World();
    if (params.mpiAlgorithm() == factory::algo_distribution::mpi_random_updates)
      sara = sopt::wavelets::distribute_sara(sara, world);
  }
#endif
  auto const wavelets_transform = factory::wavelet_operator_factory<Vector<t_complex>>(
      wop_algo, sara, params.height(), params.width(), sara_size);

  // Create algorithm
  std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> padmm;
  std::shared_ptr<sopt::algorithm::ImagingForwardBackward<t_complex>> fb;
  std::shared_ptr<sopt::algorithm::ImagingPrimalDual<t_complex>> primaldual;
  if (params.algorithm() == "padmm")
    padmm = factory::padmm_factory<sopt::algorithm::ImagingProximalADMM<t_complex>>(
        params.mpiAlgorithm(), measurements_transform, wavelets_transform, uv_data,
        sigma * params.epsilonScaling() / flux_scale, params.height(), params.width(), sara_size,
        params.iterations(), params.realValueConstraint(), params.positiveValueConstraint(),
        (params.wavelet_basis().size() < 2) and (not params.realValueConstraint()) and
            (not params.positiveValueConstraint()),
        params.relVarianceConvergence(), params.dualFBVarianceConvergence(), 50,
        params.epsilonConvergenceScaling(), operator_norm);
  if (params.algorithm() == "fb")
    fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
        params.mpiAlgorithm(), measurements_transform, wavelets_transform, uv_data,
        sigma * params.epsilonScaling() / flux_scale,
        params.stepsize() * std::pow(sigma * params.epsilonScaling() / flux_scale, 2),
        params.regularisation_parameter(), params.height(), params.width(), sara_size,
        params.iterations(), params.realValueConstraint(), params.positiveValueConstraint(),
        (params.wavelet_basis().size() < 2) and (not params.realValueConstraint()) and
            (not params.positiveValueConstraint()),
        params.relVarianceConvergence(), params.dualFBVarianceConvergence(), 50, operator_norm,
        params.model_path(), params.gProximalType());
  if (params.algorithm() == "primaldual")
    primaldual = factory::primaldual_factory<sopt::algorithm::ImagingPrimalDual<t_complex>>(
        params.mpiAlgorithm(), measurements_transform, wavelets_transform, uv_data,
        sigma * params.epsilonScaling() / flux_scale, params.height(), params.width(), sara_size,
        params.iterations(), params.realValueConstraint(), params.positiveValueConstraint(),
        params.relVarianceConvergence(), params.epsilonConvergenceScaling(), operator_norm);
  // Add primal dual preconditioning
  if (params.algorithm() == "primaldual" and params.precondition_iters() > 0) {
    PURIFY_HIGH_LOG(
        "Using visibility sampling density to precondtion primal dual with {} "
        "subiterations",
        params.precondition_iters());
    primaldual->precondition_iters(params.precondition_iters());
#ifdef PURIFY_MPI
    if (using_mpi) {
      const auto world = sopt::mpi::Communicator::World();
      primaldual->precondition_weights(widefield::sample_density_weights(
          uv_data.u, uv_data.v, params.cellsizex(), params.cellsizey(), params.width(),
          params.height(), params.oversampling(), 0.5, world));
    } else
#endif
      primaldual->precondition_weights(widefield::sample_density_weights(
          uv_data.u, uv_data.v, params.cellsizex(), params.cellsizey(), params.width(),
          params.height(), params.oversampling(), 0.5));
  }

  if (params.algorithm() == "padmm") {
    const std::weak_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> algo_weak(padmm);
    // Adding step size update to algorithm
    factory::add_updater<t_complex, sopt::algorithm::ImagingProximalADMM<t_complex>>(
        algo_weak, 1e-3, params.update_tolerance(), params.update_iters(), update_header_sol,
        update_header_res, params.height(), params.width(), sara_size, using_mpi, beam_units);
  }
  if (params.algorithm() == "primaldual") {
    const std::weak_ptr<sopt::algorithm::ImagingPrimalDual<t_complex>> algo_weak(primaldual);
    // Adding step size update to algorithm
    factory::add_updater<t_complex, sopt::algorithm::ImagingPrimalDual<t_complex>>(
        algo_weak, 1e-3, params.update_tolerance(), params.update_iters(), update_header_sol,
        update_header_res, params.height(), params.width(), sara_size, using_mpi, beam_units);
  }
  if (params.algorithm() == "fb") {
    const std::weak_ptr<sopt::algorithm::ImagingForwardBackward<t_complex>> algo_weak(fb);
    // Adding step size update to algorithm
    factory::add_updater<t_complex, sopt::algorithm::ImagingForwardBackward<t_complex>>(
        algo_weak, 0, params.update_tolerance(), 0, update_header_sol, update_header_res,
        params.height(), params.width(), sara_size, using_mpi, beam_units);
  }

  PURIFY_HIGH_LOG("Starting sopt!");
  Image<t_real> image;
  Image<t_real> residual_image;
  pfitsio::header_params purified_header = def_header;
  purified_header.fits_name = out_dir + "/purified.fits";
  const Vector<t_complex> estimate_image =
      (params.warm_start() != "")
          ? Vector<t_complex>::Map(pfitsio::read2d(params.warm_start()).data(),
                                   params.height() * params.width())
                .eval()
          : Vector<t_complex>::Zero(params.height() * params.width()).eval();
  const Vector<t_complex> estimate_res =
      (*measurements_transform * estimate_image).eval() - uv_data.vis;
  if (params.algorithm() == "padmm") {
    // Apply algorithm
    auto const diagnostic = (*padmm)(std::make_tuple(estimate_image.eval(), estimate_res.eval()));

    // Save the rest of the output
    image = Image<t_complex>::Map(diagnostic.x.data(), params.height(), params.width()).real();
    const Vector<t_complex> residuals =
        measurements_transform->adjoint() * (diagnostic.residual / beam_units);
    residual_image =
        Image<t_complex>::Map(residuals.data(), params.height(), params.width()).real();
    purified_header.hasconverged = diagnostic.good;
    purified_header.niters = diagnostic.niters;
  }
  if (params.algorithm() == "fb") {
    // Apply algorithm
    auto const diagnostic = (*fb)(std::make_tuple(estimate_image.eval(), estimate_res.eval()));

    // Save the rest of the output
    // the clean image
    image = Image<t_complex>::Map(diagnostic.x.data(), params.height(), params.width()).real();
    const Vector<t_complex> residuals =
        measurements_transform->adjoint() * (diagnostic.residual / beam_units);
    residual_image =
        Image<t_complex>::Map(residuals.data(), params.height(), params.width()).real();
    purified_header.hasconverged = diagnostic.good;
    purified_header.niters = diagnostic.niters;
  }
  if (params.algorithm() == "primaldual") {
    // Apply algorithm
    auto const diagnostic =
        (*primaldual)(std::make_tuple(estimate_image.eval(), estimate_res.eval()));

    // Save the rest of the output
    image = Image<t_complex>::Map(diagnostic.x.data(), params.height(), params.width()).real();
    const Vector<t_complex> residuals =
        measurements_transform->adjoint() * (diagnostic.residual / beam_units);
    residual_image =
        Image<t_complex>::Map(residuals.data(), params.height(), params.width()).real();
    purified_header.hasconverged = diagnostic.good;
    purified_header.niters = diagnostic.niters;
  }
  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
    if (world.is_root())
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
      pfitsio::write2d(image, purified_header, true);
  } else {
    pfitsio::write2d(image, purified_header, true);
  }
  // the residuals
  pfitsio::header_params residuals_header = purified_header;
  residuals_header.fits_name = out_dir + "/residuals.fits";
  residuals_header.pix_units = "Jy/Beam";
  if (params.mpiAlgorithm() != factory::algo_distribution::serial) {
#ifdef PURIFY_MPI
    auto const world = sopt::mpi::Communicator::World();
    if (world.is_root())
#else
    throw std::runtime_error("Compile with MPI if you want to use MPI algorithm");
#endif
      pfitsio::write2d(residual_image, residuals_header, true);
  } else {
    pfitsio::write2d(residual_image, residuals_header, true);
  }

  return 0;
}