File: algorithms.cc

package info (click to toggle)
purify 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 186,836 kB
  • sloc: cpp: 17,731; python: 510; xml: 182; makefile: 7; sh: 6
file content (155 lines) | stat: -rw-r--r-- 5,998 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include "purify/config.h"
#include "purify/types.h"
#include <array>
#include <benchmark/benchmark.h>
#include "benchmarks/utilities.h"
#include "purify/algorithm_factory.h"
#include "purify/directories.h"
#include "purify/measurement_operator_factory.h"
#include "purify/operators.h"
#include "purify/utilities.h"
#include "purify/wavelet_operator_factory.h"
#include <sopt/imaging_padmm.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>

using namespace purify;

class AlgoFixture : public ::benchmark::Fixture {
 public:
  void SetUp(const ::benchmark::State &state) {
    // Reading image from file and update related quantities
    bool newImage = b_utilities::updateImage(state.range(0), m_image, m_imsizex, m_imsizey);

    // Generating random uv(w) coverage
    bool newMeasurements =
        b_utilities::updateMeasurements(state.range(1), m_uv_data, m_epsilon, newImage, m_image);

    bool newKernel = m_kernel != state.range(2);

    m_kernel = state.range(2);
    // creating the measurement operator
    const t_real FoV = 1;  // deg
    const t_real cellsize = FoV / m_imsizex * 60. * 60.;
    const bool w_term = false;
    m_measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
        factory::distributed_measurement_operator::serial, m_uv_data, m_imsizey, m_imsizex,
        cellsize, cellsize, 2, kernels::kernel::kb, m_kernel, m_kernel, w_term);

    t_real const m_sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  }

  void TearDown(const ::benchmark::State &state) {}

  t_real m_epsilon;
  t_uint m_counter;
  t_real m_sigma;
  std::vector<std::tuple<std::string, t_uint>> const m_sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  Image<t_complex> m_image;
  t_uint m_imsizex;
  t_uint m_imsizey;

  utilities::vis_params m_uv_data;

  t_uint m_kernel;
  std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> m_measurements_transform;
  std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> m_padmm;
  std::shared_ptr<sopt::algorithm::ImagingForwardBackward<t_complex>> m_fb;
};

BENCHMARK_DEFINE_F(AlgoFixture, Padmm)(benchmark::State &state) {
  // Benchmark the application of the algorithm
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, m_sara, m_imsizey, m_imsizex);

  m_padmm = factory::padmm_factory<sopt::algorithm::ImagingProximalADMM<t_complex>>(
      factory::algo_distribution::serial, m_measurements_transform, wavelets, m_uv_data, m_sigma,
      m_imsizey, m_imsizex, m_sara.size(), state.range(3) + 1, true, true, false, 1e-3, 1e-2, 50);

  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    (*m_padmm)();
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }
}

BENCHMARK_DEFINE_F(AlgoFixture, ForwardBackward)(benchmark::State &state) {
  // Benchmark the application of the algorithm
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, m_sara, m_imsizey, m_imsizex);

  t_real const beta = m_sigma * m_sigma;
  t_real const gamma = 0.0001;

  m_fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::serial, m_measurements_transform, wavelets, m_uv_data, m_sigma,
      beta, gamma, m_imsizey, m_imsizex, m_sara.size(), state.range(3) + 1, true, true, false, 1e-3,
      1e-2, 50);

  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    (*m_fb)();
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }
}

#ifdef PURIFY_ONNXRT
BENCHMARK_DEFINE_F(AlgoFixture, ForwardBackwardOnnx)(benchmark::State &state) {
  // Benchmark the application of the algorithm
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, m_sara, m_imsizey, m_imsizex);

  t_real const beta = m_sigma * m_sigma;
  t_real const gamma = 0.0001;
  std::string tf_model_path = purify::models_directory() + "/snr_15_model_dynamic.onnx";

  m_fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::serial, m_measurements_transform, wavelets, m_uv_data, m_sigma,
      beta, gamma, m_imsizey, m_imsizex, m_sara.size(), state.range(3) + 1, true, true, false, 1e-3,
      1e-2, 50, tf_model_path, nondiff_func_type::Denoiser);

  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    (*m_fb)();
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }
}

BENCHMARK_REGISTER_F(AlgoFixture, ForwardBackwardOnnx)
    //->Apply(b_utilities::Arguments)
    ->Args({128, 10000, 4, 10})
    ->UseManualTime()
    ->MinTime(10.0)
    ->MinWarmUpTime(5.0)
    ->Repetitions(3)  //->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);
#endif

BENCHMARK_REGISTER_F(AlgoFixture, Padmm)
    //->Apply(b_utilities::Arguments)
    ->Args({128, 10000, 4, 10})
    ->UseManualTime()
    ->MinTime(10.0)
    ->MinWarmUpTime(5.0)
    ->Repetitions(3)  //->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

BENCHMARK_REGISTER_F(AlgoFixture, ForwardBackward)
    //->Apply(b_utilities::Arguments)
    ->Args({128, 10000, 4, 10})
    ->UseManualTime()
    ->MinTime(10.0)
    ->MinWarmUpTime(5.0)
    ->Repetitions(3)  //->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

BENCHMARK_MAIN();