1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#include "purify/config.h"
#include "purify/types.h"
#include <array>
#include <random>
#include <benchmark/benchmark.h>
#include "benchmarks/utilities.h"
#include "purify/algorithm_factory.h"
#include "purify/directories.h"
#include "purify/measurement_operator_factory.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/utilities.h"
#include "purify/uvw_utilities.h"
#include "purify/wavelet_operator_factory.h"
#include <sopt/imaging_padmm.h>
#include <sopt/mpi/communicator.h>
#include <sopt/mpi/session.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#ifdef PURIFY_H5
#include "purify/h5reader.h"
#endif
using namespace purify;
class StochasticAlgoFixture : public ::benchmark::Fixture {
public:
void SetUp(const ::benchmark::State &state) {
m_imsizex = state.range(0);
m_imsizey = state.range(0);
m_sigma = 0.016820222945913496 * std::sqrt(2);
m_beta = m_sigma * m_sigma;
m_gamma = 0.0001;
m_N = state.range(1);
m_input_data_path = data_filename("expected/fb/input_data.h5");
m_world = sopt::mpi::Communicator::World();
}
void TearDown(const ::benchmark::State &state) {}
sopt::mpi::Communicator m_world;
std::string m_input_data_path;
t_uint m_imsizey;
t_uint m_imsizex;
t_real m_sigma;
t_real m_beta;
t_real m_gamma;
size_t m_N;
std::vector<std::tuple<std::string, t_uint>> const m_sara{
std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
};
BENCHMARK_DEFINE_F(StochasticAlgoFixture, ForwardBackward)(benchmark::State &state) {
// This functor would be defined in Purify
std::function<std::shared_ptr<sopt::IterationState<Vector<t_complex>>>()> random_updater =
[this]() {
H5::H5Handler h5file(m_input_data_path, m_world);
utilities::vis_params uv_data = H5::stochread_visibility(h5file, m_N, false);
uv_data.units = utilities::vis_units::radians;
auto phi = factory::measurement_operator_factory<Vector<t_complex>>(
factory::distributed_measurement_operator::mpi_distribute_image, uv_data, m_imsizex,
m_imsizey, 1, 1, 2, kernels::kernel_from_string.at("kb"), 4, 4);
auto const power_method_stuff = sopt::algorithm::power_method<Vector<t_complex>>(
*phi, 1000, 1e-5,
m_world.broadcast(Vector<t_complex>::Ones(m_imsizex * m_imsizey).eval()));
const t_real op_norm = std::get<0>(power_method_stuff);
phi->set_norm(op_norm);
return std::make_shared<sopt::IterationState<Vector<t_complex>>>(uv_data.vis, phi);
};
// wavelets
auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
factory::distributed_wavelet_operator::serial, m_sara, m_imsizey, m_imsizex);
// algorithm
sopt::algorithm::ImagingForwardBackward<t_complex> fb(random_updater);
fb.itermax(state.range(2))
.step_size(m_beta * sqrt(2))
.sigma(m_sigma * sqrt(2))
.regulariser_strength(m_gamma)
.relative_variation(1e-3)
.residual_tolerance(0)
.tight_frame(true)
.obj_comm(m_world);
auto gp = std::make_shared<sopt::algorithm::L1GProximal<t_complex>>(false);
gp->l1_proximal_tolerance(1e-4)
.l1_proximal_nu(1)
.l1_proximal_itermax(50)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.Psi(*wavelets);
fb.g_function(gp);
PURIFY_INFO("Start iteration loop");
while (state.KeepRunning()) {
auto start = std::chrono::high_resolution_clock::now();
fb();
auto end = std::chrono::high_resolution_clock::now();
state.SetIterationTime(b_utilities::duration(start, end, m_world));
}
}
BENCHMARK_DEFINE_F(StochasticAlgoFixture, ForwardBackwardApproxNorm)(benchmark::State &state) {
// This functor would be defined in Purify
std::function<std::shared_ptr<sopt::IterationState<Vector<t_complex>>>()> random_updater =
[this]() {
H5::H5Handler h5file(m_input_data_path, m_world);
utilities::vis_params uv_data = H5::stochread_visibility(h5file, m_N, false);
uv_data.units = utilities::vis_units::radians;
auto phi = factory::measurement_operator_factory<Vector<t_complex>>(
factory::distributed_measurement_operator::mpi_distribute_image, uv_data, m_imsizex,
m_imsizey, 1, 1, 2, kernels::kernel_from_string.at("kb"), 4, 4);
// declaration of static variables to avoid recalculating the normalisation
static auto const power_method_stuff = sopt::algorithm::power_method<Vector<t_complex>>(
*phi, 1000, 1e-5,
m_world.broadcast(Vector<t_complex>::Ones(m_imsizex * m_imsizey).eval()));
static const t_real op_norm = std::get<0>(power_method_stuff);
// set the normalisation of the new phi
phi->set_norm(op_norm);
return std::make_shared<sopt::IterationState<Vector<t_complex>>>(uv_data.vis, phi);
};
// wavelets
auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
factory::distributed_wavelet_operator::serial, m_sara, m_imsizey, m_imsizex);
// algorithm
sopt::algorithm::ImagingForwardBackward<t_complex> fb(random_updater);
fb.itermax(state.range(2))
.step_size(m_beta * sqrt(2))
.sigma(m_sigma * sqrt(2))
.regulariser_strength(m_gamma)
.relative_variation(1e-3)
.residual_tolerance(0)
.tight_frame(true)
.obj_comm(m_world);
auto gp = std::make_shared<sopt::algorithm::L1GProximal<t_complex>>(false);
gp->l1_proximal_tolerance(1e-4)
.l1_proximal_nu(1)
.l1_proximal_itermax(50)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.Psi(*wavelets);
fb.g_function(gp);
PURIFY_INFO("Start iteration loop");
while (state.KeepRunning()) {
auto start = std::chrono::high_resolution_clock::now();
fb();
auto end = std::chrono::high_resolution_clock::now();
state.SetIterationTime(b_utilities::duration(start, end, m_world));
}
}
BENCHMARK_REGISTER_F(StochasticAlgoFixture, ForwardBackward)
->Args({128, 10000, 10})
->UseManualTime()
->MinTime(60.0)
->MinWarmUpTime(5.0)
->Repetitions(3) //->ReportAggregatesOnly(true)
->Unit(benchmark::kMillisecond);
BENCHMARK_REGISTER_F(StochasticAlgoFixture, ForwardBackwardApproxNorm)
->Args({128, 10000, 10})
->UseManualTime()
->MinTime(60.0)
->MinWarmUpTime(5.0)
->Repetitions(3) //->ReportAggregatesOnly(true)
->Unit(benchmark::kMillisecond);
|