File: algo_factory.cc

package info (click to toggle)
purify 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 186,836 kB
  • sloc: cpp: 17,731; python: 510; xml: 182; makefile: 7; sh: 6
file content (487 lines) | stat: -rw-r--r-- 23,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

#include "catch2/catch_all.hpp"

#include "purify/config.h"
#include "purify/logging.h"

#include "purify/types.h"
#include "purify/directories.h"
#include "purify/pfitsio.h"
#include "purify/utilities.h"

#include "purify/algorithm_factory.h"
#include "purify/measurement_operator_factory.h"
#include "purify/wavelet_operator_factory.h"

#ifdef PURIFY_ONNXRT
#include <sopt/onnx_differentiable_func.h>
#endif

#ifdef PURIFY_H5
#include "purify/h5reader.h"
#endif

#include <sopt/gradient_utils.h>
#include <sopt/power_method.h>

#include "purify/test_data.h"

using namespace purify;

TEST_CASE("padmm_factory") {
  const std::string &test_dir = "expected/padmm/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;
  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
      kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  auto const padmm = factory::padmm_factory<sopt::algorithm::ImagingProximalADMM<t_complex>>(
      factory::algo_distribution::serial, measurements_transform, wavelets, uv_data, sigma, imsizey,
      imsizex, sara.size(), 300, true, true, false, 1e-2, 1e-3, 50, 1);

  auto const diagnostic = (*padmm)();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // pfitsio::write2d(image.real(), expected_solution_path);
  CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
  CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
  CAPTURE(Vector<t_complex>::Map((image / solution).eval().data(), image.size()).real().head(10));
  CHECK(image.isApprox(solution, 1e-4));

  const Vector<t_complex> residuals = measurements_transform->adjoint() *
                                      (uv_data.vis - ((*measurements_transform) * diagnostic.x));
  const Image<t_complex> residual_image = Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
  // pfitsio::write2d(residual_image.real(), expected_residual_path);
  CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
  CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
  CHECK(residual_image.real().isApprox(residual.real(), 1e-4));
}

TEST_CASE("primal_dual_factory") {
  const std::string &test_dir = "expected/primal_dual/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");
  const std::string &result_path = data_filename(test_dir + "pd_result.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
      kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  auto const primaldual =
      factory::primaldual_factory<sopt::algorithm::ImagingPrimalDual<t_complex>>(
          factory::algo_distribution::serial, measurements_transform, wavelets, uv_data, sigma,
          imsizey, imsizex, sara.size(), 1000, true, true, 1e-3, 1);

  auto const diagnostic = (*primaldual)();

  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // pfitsio::write2d(image.real(), result_path);

  double brightness = solution.real().cwiseAbs().maxCoeff();
  double mse = (Vector<t_complex>::Map(solution.data(), solution.size()) - diagnostic.x)
                   .real()
                   .squaredNorm() /
               solution.size();
  double rms = sqrt(mse);
  CHECK(rms <= brightness * 5e-2);
}

TEST_CASE("fb_factory") {
  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");
  const std::string &result_path = data_filename(test_dir + "fb_result.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
      kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);

  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;

  auto const fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::serial, measurements_transform, wavelets, uv_data, sigma, beta,
      gamma, imsizey, imsizex, sara.size(), 1000, true, true, false, 1e-2, 1e-3, 50);

  auto const diagnostic = (*fb)();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  pfitsio::write2d(image.real(), result_path);
  // pfitsio::write2d(residual_image.real(), expected_residual_path);

  double brightness = solution.real().cwiseAbs().maxCoeff();
  double mse = (Vector<t_complex>::Map(solution.data(), solution.size()) - diagnostic.x)
                   .real()
                   .squaredNorm() /
               solution.size();
  double rms = sqrt(mse);
  CHECK(rms <= brightness * 5e-2);
}

#ifdef PURIFY_H5
TEST_CASE("fb_factory_stochastic") {
  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");
  const std::string &result_path = data_filename(test_dir + "fb_result_stochastic.fits");

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  // This functor would be defined in Purify
  std::mt19937 rng(0);
  const size_t N = 1000;
  std::function<std::shared_ptr<sopt::IterationState<Vector<t_complex>>>()> random_updater =
      [&input_data_path, imsizex, imsizey, &rng, &N]() {
        utilities::vis_params uv_data = utilities::read_visibility(input_data_path, false);
        uv_data.units = utilities::vis_units::radians;

        // Get random subset
        std::vector<size_t> indices(uv_data.size());
        size_t i = 0;
        for (auto &x : indices) {
          x = i++;
        }

        std::shuffle(indices.begin(), indices.end(), rng);
        Vector<t_real> u_fragment(N);
        Vector<t_real> v_fragment(N);
        Vector<t_real> w_fragment(N);
        Vector<t_complex> vis_fragment(N);
        Vector<t_complex> weights_fragment(N);
        for (i = 0; i < N; i++) {
          size_t j = indices[i];
          u_fragment[i] = uv_data.u[j];
          v_fragment[i] = uv_data.v[j];
          w_fragment[i] = uv_data.w[j];
          vis_fragment[i] = uv_data.vis[j];
          weights_fragment[i] = uv_data.weights[j];
        }
        utilities::vis_params uv_data_fragment(u_fragment, v_fragment, w_fragment, vis_fragment,
                                               weights_fragment, uv_data.units, uv_data.ra,
                                               uv_data.dec, uv_data.average_frequency);

        auto phi = factory::measurement_operator_factory<Vector<t_complex>>(
            factory::distributed_measurement_operator::serial, uv_data_fragment, imsizey, imsizex,
            1, 1, 2, kernels::kernel_from_string.at("kb"), 4, 4);

        Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
        auto const power_method_stuff =
            sopt::algorithm::power_method<Vector<t_complex>>(*phi, 1000, 1e-5, init);
        const t_real op_norm = std::get<0>(power_method_stuff);
        phi->set_norm(op_norm);

        return std::make_shared<sopt::IterationState<Vector<t_complex>>>(uv_data_fragment.vis, phi);
      };

  const auto solution = pfitsio::read2d(expected_solution_path);

  // wavelets
  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);

  // algorithm
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;

  sopt::algorithm::ImagingForwardBackward<t_complex> fb(random_updater);
  fb.itermax(1000)
      .step_size(beta * sqrt(2))
      .sigma(sigma * sqrt(2))
      .regulariser_strength(gamma)
      .relative_variation(1e-3)
      .residual_tolerance(0)
      .tight_frame(true);

  auto gp = std::make_shared<sopt::algorithm::L1GProximal<t_complex>>(false);
  gp->l1_proximal_tolerance(1e-4)
      .l1_proximal_nu(1)
      .l1_proximal_itermax(50)
      .l1_proximal_positivity_constraint(true)
      .l1_proximal_real_constraint(true)
      .Psi(*wavelets);
  fb.g_function(gp);

  auto const diagnostic = fb();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // pfitsio::write2d(image.real(), result_path);
  // pfitsio::write2d(residual_image.real(), expected_residual_path);

  auto soln_flat = Vector<t_complex>::Map(solution.data(), solution.size());
  double brightness = soln_flat.real().cwiseAbs().maxCoeff();
  double mse = (soln_flat - diagnostic.x).real().squaredNorm() / solution.size();
  SOPT_HIGH_LOG("MSE = {}", mse);
  CHECK(mse <= brightness * 5e-2);
}
#endif

#ifdef PURIFY_ONNXRT
TEST_CASE("tf_fb_factory") {
  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");
  const std::string &result_path = data_filename(test_dir + "tf_result.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
      kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;

  std::string tf_model_path = purify::models_directory() + "/snr_15_model_dynamic.onnx";

  auto const fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::serial, measurements_transform, wavelets, uv_data, sigma, beta,
      gamma, imsizey, imsizex, sara.size(), 1000, true, true, false, 1e-2, 1e-3, 50, tf_model_path,
      nondiff_func_type::Denoiser);

  auto const diagnostic = (*fb)();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // pfitsio::write2d(image.real(), result_path);
  // pfitsio::write2d(residual_image.real(), expected_residual_path);

  double brightness = solution.real().cwiseAbs().maxCoeff();
  double mse = (Vector<t_complex>::Map(solution.data(), solution.size()) - diagnostic.x)
                   .real()
                   .squaredNorm() /
               solution.size();
  double rms = sqrt(mse);
  CHECK(rms <= brightness * 5e-2);
}

TEST_CASE("onnx_fb_factory") {
  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");
  const std::string &result_path = data_filename(test_dir + "onnx_result.fits");
  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
      kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;

  std::string const prior_path =
      purify::models_directory() + "/example_cost_dynamic_CRR_sigma_5_t_5.onnx";
  std::string const prior_gradient_path =
      purify::models_directory() + "/example_grad_dynamic_CRR_sigma_5_t_5.onnx";
  std::shared_ptr<sopt::ONNXDifferentiableFunc<t_complex>> diff_function =
      std::make_shared<sopt::ONNXDifferentiableFunc<t_complex>>(
          prior_path, prior_gradient_path, sigma, 20, 5e4, *measurements_transform);

  auto const fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::serial, measurements_transform, wavelets, uv_data, sigma, beta,
      gamma, imsizey, imsizex, sara.size(), 1000, true, true, false, 1e-3, 1e-3, 50, "",
      nondiff_func_type::RealIndicator, diff_function);

  auto const diagnostic = (*fb)();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // pfitsio::write2d(image.real(), result_path);
  // pfitsio::write2d(residual_image.real(), expected_residual_path);

  double brightness = solution.real().cwiseAbs().maxCoeff();
  double mse = (Vector<t_complex>::Map(solution.data(), solution.size()) - diagnostic.x)
                   .real()
                   .squaredNorm() /
               solution.size();
  double rms = sqrt(mse);
  CHECK(rms <= brightness * 5e-2);
}
#endif

TEST_CASE("joint_map_factory") {
  const std::string &test_dir = "expected/joint_map/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  auto uv_data = utilities::read_visibility(input_data_path, false);
  uv_data.units = utilities::vis_units::radians;
  CAPTURE(uv_data.vis.head(5));
  REQUIRE(uv_data.size() == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey);
  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
      kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 1;
  auto const fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::serial, measurements_transform, wavelets, uv_data, sigma, beta,
      gamma, imsizey, imsizex, sara.size(), 1000, true, true, false, 1e-2, 1e-3, 50);
  auto const l1_norm = [wavelets](const Vector<t_complex> &x) {
    auto val = sopt::l1_norm(wavelets->adjoint() * x);
    return val;
  };
  auto const joint_map =
      sopt::algorithm::JointMAP<sopt::algorithm::ImagingForwardBackward<t_complex>>(
          fb, l1_norm, imsizex * imsizey * sara.size())
          .relative_variation(1e-3)
          .objective_variation(1e-3)
          .beta(1.)
          .alpha(1.);
  auto const diagnostic = joint_map();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  //  CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
  //  CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
  //  CAPTURE(Vector<t_complex>::Map((image / solution).eval().data(),
  //  image.size()).real().head(10));
  // CHECK(image.isApprox(solution, 1e-6));

  const Vector<t_complex> residuals = measurements_transform->adjoint() *
                                      (uv_data.vis - ((*measurements_transform) * diagnostic.x));
  const Image<t_complex> residual_image = Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
  //  CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
  //  CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
  // CHECK(residual_image.real().isApprox(residual.real(), 1e-6));
}