1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#include "purify/config.h"
#include "purify/types.h"
#include <iostream>
#include "catch2/catch_all.hpp"
#include "purify/directories.h"
#include "purify/logging.h"
#include "purify/convolution.h"
using namespace purify;
TEST_CASE("1d_zeropad") {
const Vector<t_int> signal = Vector<t_int>::Random(3);
for (int i = 1; i < 5; i++) {
const Vector<t_int> output = convol::zero_pad(signal, i);
CHECK(output.size() == signal.size() + 2 * i);
for (int j = 0; j < output.size(); j++) {
if (j < i) CHECK(output(j) == 0);
if (j > (i + signal.size())) CHECK(output(j) == 0);
}
}
}
TEST_CASE("1d_convolution") {
Vector<t_int> tri = Vector<t_int>::Zero(3);
tri << 1, 2, 1;
Vector<t_int> signal = convol::zero_pad<t_int>(Vector<t_int>::Random(4), tri.size());
const Vector<t_int> output = convol::linear_convol_1d(tri, signal);
CHECK(output.size() == signal.size() - tri.size() + 1);
for (int i = 0; i < signal.size() - tri.size() - 1; i++)
CHECK(output(i) == tri(0) * signal(output.size() - i - 1) +
tri(1) * signal(output.size() - i - 1 + 1) +
tri(2) * signal(output.size() - i - 1 + 2));
}
TEST_CASE("2d_convolution") {
const Vector<t_real> kernelu = Vector<t_real>::Random(3);
const Vector<t_real> kernelv = Vector<t_real>::Random(2);
const Matrix<t_real> signal = Matrix<t_real>::Random(2, 2);
const Matrix<t_real> output = convol::linear_convol_2d(kernelu, kernelv, signal);
CHECK(output.cols() == signal.cols() + kernelu.size() - 1);
CHECK(output.rows() == signal.rows() + kernelv.size() - 1);
const Matrix<t_real> test_buff =
convol::zero_pad<t_real>(signal, kernelv.size() - 1, kernelu.size() - 1);
// checking for signs that there is a boundary of zero, suggesting an offset
CHECK(output(0, 0) != output(1, 0));
CHECK(output(output.rows() - 1, output.cols() - 1) !=
output(output.rows() - 1, output.cols() - 2));
for (int i = 0; i < output.cols(); i++) {
for (int j = 0; j < output.rows(); j++) {
CHECK(std::abs(
output(j, i) -
kernelv(0) *
(kernelu(0) * test_buff(output.rows() - j - 1, output.cols() - i - 1) +
kernelu(1) * test_buff(output.rows() - j - 1, output.cols() - i + 1 - 1) +
kernelu(2) * test_buff(output.rows() - j - 1, output.cols() - i - 1 + 2)) -
kernelv(1) *
(kernelu(0) * test_buff(output.rows() - 1 - j + 1, output.cols() - i - 1) +
kernelu(1) * test_buff(output.rows() - 1 - j + 1, output.cols() - i - 1 + 1) +
kernelu(2) *
test_buff(output.rows() - 1 - j + 1, output.cols() - i - 1 + 2))) < 1e-7);
}
}
}
TEST_CASE("2d_convolution_functions") {
const t_int Ju = 3;
const t_int Jv = 4;
SECTION("box and delta") {
const t_int Jw = 5;
auto convol_kernelu = [=](const t_int ju) -> t_complex { return 1.; };
auto convol_kernelv = [=](const t_int jv) -> t_complex { return 1.; };
auto convol_kernelw = [=](const t_int jv, const t_int ju) -> t_complex {
return ((std::floor(ju - (Jw - 1) * 0.5) == 0) and (std::floor(jv - (Jw - 1) * 0.5) == 0))
? 1.
: 0.;
};
const Matrix<t_complex> projection_kernel = convol::linear_convol_2d<t_complex>(
convol_kernelu, convol_kernelv, convol_kernelw, static_cast<t_int>(Ju),
static_cast<t_int>(Jv), static_cast<t_int>(Jw), static_cast<t_int>(Jw));
CAPTURE(projection_kernel);
CHECK(projection_kernel.cols() == (Ju + Jw - 1));
CHECK(projection_kernel.rows() == (Jv + Jw - 1));
CHECK(projection_kernel.block(2, 2, Jv, Ju)
.isApprox(Matrix<t_complex>::Constant(Jv, Ju, 1.), 1e-12));
}
SECTION("delta and delta") {
const t_int Jw = 5;
auto convol_kernelu = [=](const t_int ju) -> t_complex {
return (std::floor(ju - (Ju - 1) * 0.5) == 0) ? 1. : 0.;
};
auto convol_kernelv = [=](const t_int jv) -> t_complex {
return (std::floor(jv - (Jv - 1) * 0.5) == 0) ? 1. : 0.;
};
auto convol_kernelw = [=](const t_int jv, const t_int ju) -> t_complex {
return ((std::floor(ju - (Jw - 1) * 0.5) == 0) and (std::floor(jv - (Jw - 1) * 0.5) == 0))
? 1.
: 0.;
};
const Matrix<t_complex> projection_kernel = convol::linear_convol_2d<t_complex>(
convol_kernelu, convol_kernelv, convol_kernelw, static_cast<t_int>(Ju),
static_cast<t_int>(Jv), static_cast<t_int>(Jw), static_cast<t_int>(Jw));
CAPTURE(projection_kernel);
CHECK(projection_kernel.cols() == (Ju + Jw - 1));
CHECK(projection_kernel.rows() == (Jv + Jw - 1));
CHECK(projection_kernel(4, 3) == 1.);
}
SECTION("delta_size_1") {
const t_int Jw = 1;
auto convol_kernelu = [=](const t_int ju) -> t_complex {
return (std::floor(ju - (Ju - 1) * 0.5) == 0) ? 1. : 0.;
};
auto convol_kernelv = [=](const t_int jv) -> t_complex {
return (std::floor(jv - (Jv - 1) * 0.5) == 0) ? 1. : 0.;
};
auto convol_kernelw = [=](const t_int jv, const t_int ju) -> t_complex {
return ((std::floor(ju - (Jw - 1) * 0.5) == 0) and (std::floor(jv - (Jw - 1) * 0.5) == 0))
? 1.
: 0.;
};
const Matrix<t_complex> projection_kernel = convol::linear_convol_2d<t_complex>(
convol_kernelu, convol_kernelv, convol_kernelw, static_cast<t_int>(Ju),
static_cast<t_int>(Jv), static_cast<t_int>(Jw), static_cast<t_int>(Jw));
CAPTURE(projection_kernel);
CHECK(projection_kernel.cols() == (Ju + Jw - 1));
CHECK(projection_kernel.rows() == (Jv + Jw - 1));
CHECK(projection_kernel(2, 1) == 1.);
}
SECTION("box_and_delta_size_1") {
const t_int Jw = 1;
auto convol_kernelu = [=](const t_int ju) -> t_complex { return ju * 1.; };
auto convol_kernelv = [=](const t_int jv) -> t_complex { return jv * 1.; };
auto convol_kernelw = [=](const t_int jv, const t_int ju) -> t_complex {
return ((std::floor(ju - (Jw - 1) * 0.5) == 0) and (std::floor(jv - (Jw - 1) * 0.5) == 0))
? 1.
: 0.;
};
const Matrix<t_complex> projection_kernel = convol::linear_convol_2d<t_complex>(
convol_kernelu, convol_kernelv, convol_kernelw, static_cast<t_int>(Ju),
static_cast<t_int>(Jv), static_cast<t_int>(Jw), static_cast<t_int>(Jw));
CAPTURE(projection_kernel);
CHECK(projection_kernel.cols() == (Ju + Jw - 1));
CHECK(projection_kernel.rows() == (Jv + Jw - 1));
for (int i = 0; i < projection_kernel.cols(); i++) {
for (int j = 0; j < projection_kernel.rows(); j++) {
CHECK(std::abs(static_cast<t_real>(i * j) - projection_kernel(j, i)) < 1e-12);
}
}
}
}
|