1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
#include <random>
#include <set>
#include <purify/AllToAllSparseVector.h>
#include <purify/DistributeSparseVector.h>
#include "catch2/catch_all.hpp"
#include <sopt/mpi/communicator.h>
using namespace purify;
TEST_CASE("Distribe Sparse Vector") {
auto const world = sopt::mpi::Communicator::World();
Vector<t_int> const grid = world.broadcast<Vector<t_int>>(
Vector<t_int>::Random(std::max(world.size() * 2, world.size() + 2)));
std::vector<t_int> const indices = {static_cast<t_int>(world.rank()),
static_cast<t_int>(world.size() + 1)};
DistributeSparseVector distributor(indices, grid.size(), world);
SECTION("Scatter") {
Vector<t_int> output;
distributor.scatter(grid, output);
REQUIRE(output.size() == 2);
CHECK(output(0) == grid(world.rank()));
CHECK(output(1) == grid(world.size() + 1));
}
SECTION("Gather") {
Vector<t_int> local(2);
local << world.rank(), world.size() + world.rank();
Vector<t_int> output;
if (world.is_root()) {
distributor.gather(local, output);
CHECK(output.size() == grid.size());
for (decltype(world.size()) i(0); i < world.size(); ++i) CHECK(output(i) == i);
CHECK(output(world.size()) == 0);
CHECK(output(world.size() + 1) ==
world.size() * world.size() + (world.size() * (world.size() - 1)) / 2);
CHECK(grid.size() - 2 >= world.size());
CHECK((output.tail(grid.size() - world.size() - 2).array() == 0).all());
} else {
distributor.gather(local);
}
}
}
TEST_CASE("All to one Sparse Vector") {
auto const world = sopt::mpi::Communicator::World();
Vector<t_int> const grid = world.broadcast<Vector<t_int>>(
Vector<t_int>::Random(std::max(world.size() * 2, world.size() + 2)));
std::vector<t_int> const indices = {static_cast<t_int>(world.rank()),
static_cast<t_int>(world.size() + 1)};
AllToAllSparseVector<t_int> distributor(indices, grid.size(), grid.size() * world.rank(), world);
SECTION("Scatter") {
Vector<t_int> output;
distributor.recv_grid(grid, output);
CAPTURE(world.rank());
REQUIRE(output.size() == 2);
CHECK(output(0) == grid(world.rank()));
CHECK(output(1) == grid(world.size() + 1));
}
SECTION("Gather") {
Vector<t_int> local(2);
local << world.rank(), world.size() + world.rank();
Vector<t_int> output;
distributor.send_grid(local, output);
CHECK(output.size() == grid.size());
if (world.is_root()) {
for (decltype(world.size()) i(0); i < world.size(); ++i) CHECK(output(i) == i);
CHECK(output(world.size()) == 0);
CHECK(output(world.size() + 1) ==
world.size() * world.size() + (world.size() * (world.size() - 1)) / 2);
CHECK(grid.size() - 2 >= world.size());
CHECK((output.tail(grid.size() - world.size() - 2).array() == 0).all());
} else {
for (t_int i = 0; i < output.size(); i++) CHECK(output(i) == 0);
}
}
}
TEST_CASE("All to All Sparse Vector") {
auto const world = sopt::mpi::Communicator::World();
CAPTURE(world.rank());
Vector<t_int> const grid = world.broadcast<Vector<t_int>>(
Vector<t_int>::Random(std::max(world.size() * 2, world.size() + 2)));
SECTION("Check throw when index is not ordered by node") {
std::vector<t_int> const indices = {
static_cast<t_int>(grid.size() * (world.rank() + 1) + world.size() + 1),
static_cast<t_int>(world.rank())};
CHECK_THROWS(
AllToAllSparseVector<t_int>(indices, grid.size(), grid.size() * world.rank(), world));
}
std::vector<t_int> const indices = {
static_cast<t_int>(world.rank()),
static_cast<t_int>(grid.size() * world.rank() + world.size() + 1)};
AllToAllSparseVector<t_int> distributor(indices, grid.size(), grid.size() * world.rank(), world);
SECTION("Scatter") {
Vector<t_int> output;
distributor.recv_grid(grid, output);
REQUIRE(output.size() == 2);
CHECK(output(0) == grid(world.rank()));
CHECK(output(1) == grid(world.size() + 1));
}
SECTION("Gather") {
Vector<t_int> local = Vector<t_int>::Ones(2);
Vector<t_int> output;
distributor.send_grid(local, output);
CHECK(output.size() == grid.size());
CAPTURE(world.rank());
CAPTURE(output);
if (world.is_root()) {
for (decltype(world.size()) i(0); i < world.size(); ++i) CHECK(output(i) == 1);
CHECK(output(world.size()) == 0);
CHECK(output(world.size() + 1) == 1);
CHECK(grid.size() - 2 >= world.size());
CHECK((output.tail(grid.size() - world.size() - 2).array() == 0).all());
} else {
for (t_int i = 0; i < output.size(); i++) {
if (i != world.size() + 1)
CHECK(output(i) == 0);
else
CHECK(output(i) == 1);
}
}
}
}
TEST_CASE("recv_sizes") {
for (t_int nodes : {1, 2, 5, 10, 20, 50, 100, 1000}) {
for (t_int imsize : {128, 1024, 2048, 4096, 8192, 16384, 32768}) {
const std::int32_t N = imsize * imsize;
CAPTURE(imsize);
CAPTURE(N);
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937_64 mersenne_engine(rnd_device()); // Generates random integers
std::uniform_int_distribution<t_int> dist(0, nodes * N);
auto gen = [&dist, &mersenne_engine]() { return dist(mersenne_engine); };
std::vector<t_int> local_indices(10);
std::generate(local_indices.begin(), local_indices.end(), gen);
std::sort(local_indices.begin(), local_indices.end(),
[](t_int a, t_int b) { return (a < b); });
CAPTURE(local_indices);
CAPTURE(nodes);
if (static_cast<std::int64_t>(N) * static_cast<std::int64_t>(nodes) >
std::numeric_limits<t_int>::max())
CHECK_THROWS(all_to_all_recv_sizes<t_int>(local_indices, nodes, N));
else {
std::vector<t_int> recv = all_to_all_recv_sizes<t_int>(local_indices, nodes, N);
for (const auto& a : recv) CHECK(a >= 0);
CHECK(local_indices.size() == std::accumulate(recv.begin(), recv.end(), 0));
}
}
}
}
TEST_CASE("recv_sizes 64 bit") {
for (std::int64_t nodes : {1, 2, 5, 10, 20, 50, 100, 1000}) {
for (std::int64_t imsize : {128, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072}) {
const std::int64_t N = imsize * imsize;
CAPTURE(imsize);
// First create an instance of an engine.
std::random_device rnd_device;
// Specify the engine and distribution.
std::mt19937_64 mersenne_engine(rnd_device()); // Generates random integers
std::uniform_int_distribution<std::int64_t> dist(
0, static_cast<std::int64_t>(nodes) * static_cast<std::int64_t>(N));
auto gen = [&dist, &mersenne_engine]() -> std::int64_t { return dist(mersenne_engine); };
std::vector<std::int64_t> local_indices(10);
std::generate(local_indices.begin(), local_indices.end(), gen);
std::sort(local_indices.begin(), local_indices.end(),
[](std::int64_t a, std::int64_t b) { return (a < b); });
CAPTURE(local_indices);
CAPTURE(nodes);
std::vector<t_int> recv = all_to_all_recv_sizes<std::int64_t>(local_indices, nodes, N);
for (const auto& a : recv) CHECK(a >= 0);
CHECK(local_indices.size() == std::accumulate(recv.begin(), recv.end(), 0));
}
}
}
|