1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
#include "purify/config.h"
#include "purify/types.h"
#include <iostream>
#include "catch2/catch_all.hpp"
#include "purify/directories.h"
#include "purify/logging.h"
#include "purify/integration.h"
#include "purify/kernels.h"
using namespace purify;
TEST_CASE("integration") {
const t_uint max_evaluations = 1000;
std::function<t_real(Vector<t_real>)> func;
std::function<t_complex(Vector<t_real>)> cfunc;
for (auto int_method : {integration::method::p, integration::method::h}) {
SECTION("1d") {
const t_uint ndim = 1;
const Vector<t_real> xmin = -Vector<t_real>::Ones(ndim);
const Vector<t_real> xmax = Vector<t_real>::Ones(ndim);
func = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x.array() * x.array()).sum();
};
cfunc = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x.array() * x.array()).sum();
};
const t_real result = integration::integrate(xmin, xmax, func, integration::norm_type::l2,
1e-4, 1e-4, max_evaluations, int_method);
const t_complex cresult =
integration::integrate(xmin, xmax, cfunc, integration::norm_type::paired, 1e-4, 1e-4,
max_evaluations, integration::method::p);
CAPTURE(result);
CAPTURE(cresult);
CHECK(std::abs(result - ndim * std::pow(2, ndim - 1) * 2. / 3) < 1e-4);
CHECK(std::abs(cresult - ndim * std::pow(2, ndim - 1) * 2. / 3) < 1e-4);
}
SECTION("2d") {
const t_uint ndim = 2;
const Vector<t_real> xmin = -Vector<t_real>::Ones(ndim);
const Vector<t_real> xmax = Vector<t_real>::Ones(ndim);
func = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x.array() * x.array()).sum();
};
cfunc = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x.array() * x.array()).sum();
};
const t_real result = integration::integrate(xmin, xmax, func, integration::norm_type::l2,
1e-4, 1e-4, max_evaluations, int_method);
const t_complex cresult =
integration::integrate(xmin, xmax, cfunc, integration::norm_type::paired, 1e-4, 1e-4,
max_evaluations, int_method);
CAPTURE(result);
CAPTURE(cresult);
CHECK(std::abs(result - ndim * std::pow(2, ndim - 1) * 2. / 3) < 1e-4);
CHECK(std::abs(cresult - ndim * std::pow(2, ndim - 1) * 2. / 3) < 1e-4);
}
SECTION("3d") {
const t_uint ndim = 3;
const Vector<t_real> xmin = -Vector<t_real>::Ones(ndim);
const Vector<t_real> xmax = Vector<t_real>::Ones(ndim);
func = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x.array() * x.array()).sum();
};
cfunc = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x.array() * x.array()).sum();
};
const t_real result = integration::integrate(xmin, xmax, func, integration::norm_type::l2,
1e-4, 1e-4, max_evaluations, int_method);
const t_complex cresult =
integration::integrate(xmin, xmax, cfunc, integration::norm_type::paired, 1e-4, 1e-4,
max_evaluations, integration::method::p);
CAPTURE(result);
CAPTURE(cresult);
CHECK(std::abs(result - ndim * std::pow(2, ndim - 1) * 2. / 3) < 1e-4);
CHECK(std::abs(cresult - ndim * std::pow(2, ndim - 1) * 2. / 3) < 1e-4);
}
}
}
TEST_CASE("complex") {
const t_uint max_evaluations = 100000;
std::function<t_complex(Vector<t_real>)> cfunc1;
for (auto int_method : {integration::method::p, integration::method::h}) {
SECTION("Fourier Series") {
const t_uint ndim = 1;
const Vector<t_real> xmin = -Vector<t_real>::Ones(ndim) * constant::pi;
const Vector<t_real> xmax = Vector<t_real>::Ones(ndim) * constant::pi;
const t_real n = 1.;
const t_complex I(0., 1.);
cfunc1 = [=](const Vector<t_real> &x) {
assert(x.size() == ndim);
return (x(0) >= 0) ? std::exp(I * n * x(0)) * 1. / 2. : -std::exp(I * n * x(0)) * 1. / 2.;
};
const t_complex cresult = integration::integrate(
xmin, xmax, cfunc1, integration::norm_type::l2, 1e-6, 1e-6, max_evaluations, int_method);
CAPTURE(cresult);
CHECK(std::abs(cresult - t_complex(0., 2.)) / 2. < 1e-4);
}
SECTION("Fourier Series omp") {
const t_uint ndim = 1;
const Vector<t_real> xmin = -Vector<t_real>::Ones(ndim) * constant::pi;
const Vector<t_real> xmax = Vector<t_real>::Ones(ndim) * constant::pi;
const t_real n = 1.;
const t_complex I(0., 1.);
std::vector<std::function<t_complex(Vector<t_real>)>> funcs;
for (int i = 0; i < 4; i++) {
funcs.push_back([=](const Vector<t_real> &x) -> t_complex {
assert(x.size() == ndim);
return ((x(0) >= 0) ? std::exp(I * n * x(0)) * 1. / 2.
: -std::exp(I * n * x(0)) * 1. / 2.) *
(i + 1.);
});
}
#pragma omp parallel for
for (int i = 0; i < funcs.size(); i++) {
const t_complex cresult =
integration::integrate(xmin, xmax, funcs.at(i), integration::norm_type::l2, 1e-6, 1e-6,
max_evaluations, int_method);
CAPTURE(cresult);
CHECK(std::abs(cresult - t_complex(0., 2. * static_cast<t_real>(i + 1))) /
(2. * static_cast<t_real>(i + 1)) <
1e-4);
}
}
}
}
TEST_CASE("Numerical_Fourier_transform") {
const t_uint max_evaluations = 1e7;
const t_uint J = 4;
const t_real w = 10;
const t_real u = 10;
const t_real v = 10;
std::function<t_complex(Vector<t_real>)> cfunc;
const t_uint ndim = 2;
const Vector<t_real> xmin = Vector<t_real>::Zero(ndim);
Vector<t_real> xmax = Vector<t_real>::Ones(ndim);
xmax(0) = 0.99;
xmax(1) = 2 * constant::pi;
t_real width = 1.;
const t_complex I(0., 1.);
t_uint evals = 0;
cfunc = [=, &evals](const Vector<t_real> &x) -> t_complex {
assert(x.size() == ndim);
evals++;
return std::exp(-2 * constant::pi * I *
(x(0) * std::cos(x(1)) * u + x(0) * std::sin(x(1)) * v +
w * (std::sqrt(1 - std::pow(x(0), 2)) - 1))) *
x(0) / std::sqrt(1 - std::pow(x(0), 2)) / (2 * constant::pi);
};
const t_complex cresult =
integration::integrate(xmin, xmax, cfunc, integration::norm_type::paired, 1e-5, 1e-5,
max_evaluations, integration::method::p);
CAPTURE(cresult);
CAPTURE(evals);
CHECK(std::abs(cresult - t_complex(0.007601618963237, -0.003167113583181)) / std::abs(cresult) <
1e-6);
}
|