File: mpi_algo_factory.cc

package info (click to toggle)
purify 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 186,836 kB
  • sloc: cpp: 17,731; python: 510; xml: 182; makefile: 7; sh: 6
file content (529 lines) | stat: -rw-r--r-- 27,199 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#include <numeric>
#include <random>
#include <utility>
#include <catch2/catch_all.hpp>

#include "purify/types.h"
#include "purify/directories.h"
#include "purify/distribute.h"
#include "purify/logging.h"
#include "purify/mpi_utilities.h"
#include "purify/pfitsio.h"
#include "purify/utilities.h"
#include <sopt/logging.h>
#include <sopt/mpi/communicator.h>
#include <sopt/mpi/utilities.h>
#include <sopt/power_method.h>
#include <sopt/wavelets.h>

#ifdef PURIFY_H5
#include "purify/h5reader.h"
#endif

#include "purify/algorithm_factory.h"
#include "purify/measurement_operator_factory.h"
#include "purify/wavelet_operator_factory.h"

using namespace purify;
utilities::vis_params dirty_visibilities(const std::vector<std::string> &names) {
  return utilities::read_visibility(names, false);
}

utilities::vis_params dirty_visibilities(const std::vector<std::string> &names,
                                         sopt::mpi::Communicator const &comm) {
  if (comm.size() == 1) return dirty_visibilities(names);
  if (comm.is_root()) {
    auto result = dirty_visibilities(names);
    auto const order = distribute::distribute_measurements(result, comm, distribute::plan::none);
    return utilities::regroup_and_scatter(result, order, comm);
  }
  auto result = utilities::scatter_visibilities(comm);
  return result;
}

TEST_CASE("Serial vs. Serial with MPI PADMM") {
  auto const world = sopt::mpi::Communicator::World();

  const std::string &test_dir = "expected/padmm/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");

  auto uv_data = dirty_visibilities({input_data_path}, world);
  uv_data.units = utilities::vis_units::radians;
  if (world.is_root()) {
    CAPTURE(uv_data.vis.head(5));
  }
  REQUIRE(world.all_sum_all(uv_data.size()) == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::mpi_distribute_image, uv_data, imsizey, imsizex, 1,
      1, 2, kernels::kernel_from_string.at("kb"), 4, 4);
  Vector<t_complex> const init = Vector<t_complex>::Ones(imsizex * imsizey).eval();
  auto const power_method_stuff =
      sopt::algorithm::power_method<Vector<t_complex>>(*measurements_transform, 1000, 1e-5, init);
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::mpi_sara, sara, imsizey, imsizex);
  t_real const sigma =
      world.broadcast(0.016820222945913496) * std::sqrt(2);  // see test_parameters file
  SECTION("global") {
    auto const padmm = factory::padmm_factory<sopt::algorithm::ImagingProximalADMM<t_complex>>(
        factory::algo_distribution::mpi_serial, measurements_transform, wavelets, uv_data, sigma,
        imsizey, imsizex, sara.size(), 300, true, true, false, 1e-2, 1e-3, 50, 1);

    auto const diagnostic = (*padmm)();
    CHECK(diagnostic.niters == 10);

    const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
    const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");

    const auto solution = pfitsio::read2d(expected_solution_path);
    const auto residual = pfitsio::read2d(expected_residual_path);

    const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
    CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map((image / solution).eval().data(), image.size()).real().head(10));
    CHECK(image.isApprox(solution, 1e-4));

    const Vector<t_complex> residuals = measurements_transform->adjoint() *
                                        (uv_data.vis - ((*measurements_transform) * diagnostic.x));
    const Image<t_complex> residual_image =
        Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
    CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
    CHECK(residual_image.real().isApprox(residual.real(), 1e-4));
  }
  SECTION("local") {
    auto const padmm = factory::padmm_factory<sopt::algorithm::ImagingProximalADMM<t_complex>>(
        factory::algo_distribution::mpi_distributed, measurements_transform, wavelets, uv_data,
        sigma, imsizey, imsizex, sara.size(), 500, true, true, false, 1e-2, 1e-3, 50, 1);

    auto const diagnostic = (*padmm)();
    t_real const epsilon = utilities::calculate_l2_radius(world.all_sum_all(uv_data.vis.size()),
                                                          world.broadcast(sigma));
    CHECK(sopt::mpi::l2_norm(diagnostic.residual, padmm->l2ball_proximal_weights(), world) <
          epsilon);
    // the algorithm depends on nodes, so other than a basic bounds check,
    // it is hard to know exact precision (might depend on probability theory...)
    if (world.size() > 2 or world.size() == 0) return;
    // testing the case where there are two nodes exactly.
    const std::string &expected_solution_path = (world.size() == 2)
                                                    ? data_filename(test_dir + "mpi_solution.fits")
                                                    : data_filename(test_dir + "solution.fits");
    const std::string &expected_residual_path = (world.size() == 2)
                                                    ? data_filename(test_dir + "mpi_residual.fits")
                                                    : data_filename(test_dir + "residual.fits");
    if (world.size() == 1) CHECK(diagnostic.niters == 10);
    if (world.size() == 2) CHECK(diagnostic.niters == 11);

    const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
    // if (world.is_root()) pfitsio::write2d(image.real(), expected_solution_path);
    const auto solution = pfitsio::read2d(expected_solution_path);
    CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map((image / solution).eval().data(), image.size()).real().head(10));
    CHECK(image.isApprox(solution, 1e-4));

    const Vector<t_complex> residuals = measurements_transform->adjoint() *
                                        (uv_data.vis - ((*measurements_transform) * diagnostic.x));
    const Image<t_complex> residual_image =
        Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
    // if (world.is_root()) pfitsio::write2d(residual_image.real(), expected_residual_path);
    const auto residual = pfitsio::read2d(expected_residual_path);
    CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
    CHECK(residual_image.real().isApprox(residual.real(), 1e-4));
  }
}

TEST_CASE("Serial vs. Serial with MPI Primal Dual", "[!shouldfail]") {
  auto const world = sopt::mpi::Communicator::World();

  const std::string &test_dir = "expected/primal_dual/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");

  auto uv_data = dirty_visibilities({input_data_path}, world);
  uv_data.units = utilities::vis_units::radians;
  if (world.is_root()) {
    CAPTURE(uv_data.vis.head(5));
  }
  REQUIRE(world.all_sum_all(uv_data.size()) == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  auto const measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::mpi_distribute_image, uv_data, imsizey, imsizex, 1,
      1, 2, kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff = sopt::algorithm::power_method<Vector<t_complex>>(
      *measurements_transform, 1000, 1e-5,
      world.broadcast(Vector<t_complex>::Ones(imsizex * imsizey).eval()));
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::mpi_sara, sara, imsizey, imsizex);
  t_real const sigma =
      world.broadcast(0.016820222945913496) * std::sqrt(2);  // see test_parameters file
  SECTION("global") {
    auto const primaldual =
        factory::primaldual_factory<sopt::algorithm::ImagingPrimalDual<t_complex>>(
            factory::algo_distribution::mpi_serial, measurements_transform, wavelets, uv_data,
            sigma, imsizey, imsizex, sara.size(), 500, true, true, 1e-2, 1);

    auto const diagnostic = (*primaldual)();
    CHECK(diagnostic.niters == 16);

    const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
    const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");

    const auto solution = pfitsio::read2d(expected_solution_path);
    const auto residual = pfitsio::read2d(expected_residual_path);

    const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
    CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map((image / solution).eval().data(), image.size()).real().head(10));
    CHECK(image.isApprox(solution, 1e-4));

    const Vector<t_complex> residuals = measurements_transform->adjoint() *
                                        (uv_data.vis - ((*measurements_transform) * diagnostic.x));
    const Image<t_complex> residual_image =
        Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
    CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
    CHECK(residual_image.real().isApprox(residual.real(), 1e-4));
  }
  SECTION("local") {
    auto const primaldual =
        factory::primaldual_factory<sopt::algorithm::ImagingPrimalDual<t_complex>>(
            factory::algo_distribution::mpi_distributed, measurements_transform, wavelets, uv_data,
            sigma, imsizey, imsizex, sara.size(), 500, true, true, 1e-2, 1);

    auto const diagnostic = (*primaldual)();
    t_real const epsilon = utilities::calculate_l2_radius(world.all_sum_all(uv_data.vis.size()),
                                                          world.broadcast(sigma));
    CHECK(sopt::mpi::l2_norm(diagnostic.residual, primaldual->l2ball_proximal_weights(), world) <
          epsilon);
    // the algorithm depends on nodes, so other than a basic bounds check,
    // it is hard to know exact precision (might depend on probability theory...)
    if (world.size() > 2 or world.size() == 0) return;
    // testing the case where there are two nodes exactly.
    const std::string &expected_solution_path = (world.size() == 2)
                                                    ? data_filename(test_dir + "mpi_solution.fits")
                                                    : data_filename(test_dir + "solution.fits");
    const std::string &expected_residual_path = (world.size() == 2)
                                                    ? data_filename(test_dir + "mpi_residual.fits")
                                                    : data_filename(test_dir + "residual.fits");
    if (world.size() == 1) CHECK(diagnostic.niters == 16);
    if (world.size() == 2) CHECK(diagnostic.niters == 18);
    const auto solution = pfitsio::read2d(expected_solution_path);
    const auto residual = pfitsio::read2d(expected_residual_path);

    const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
    // if (world.is_root()) pfitsio::write2d(image.real(), expected_solution_path);
    CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map((image / solution).eval().data(), image.size()).real().head(10));
    CHECK(image.isApprox(solution, 1e-4));

    const Vector<t_complex> residuals = measurements_transform->adjoint() *
                                        (uv_data.vis - ((*measurements_transform) * diagnostic.x));
    const Image<t_complex> residual_image =
        Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
    // if (world.is_root()) pfitsio::write2d(residual_image.real(), expected_residual_path);
    CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
    CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
    CHECK(residual_image.real().isApprox(residual.real(), 1e-4));
  }
  SECTION("random update") {
    auto const measurements_transform_serial =
        factory::measurement_operator_factory<Vector<t_complex>>(
            factory::distributed_measurement_operator::serial, uv_data, imsizey, imsizex, 1, 1, 2,
            kernels::kernel_from_string.at("kb"), 4, 4);
    auto const power_method_stuff = sopt::algorithm::all_sum_all_power_method<Vector<t_complex>>(
        world, *measurements_transform, 1000, 1e-5,
        world.broadcast(Vector<t_complex>::Ones(imsizex * imsizey).eval()));
    const t_real op_norm = std::get<0>(power_method_stuff);
    measurements_transform->set_norm(op_norm);

    auto sara_dist = sopt::wavelets::distribute_sara(sara, world);
    auto const wavelets_serial = factory::wavelet_operator_factory<Vector<t_complex>>(
        factory::distributed_wavelet_operator::serial, sara_dist, imsizey, imsizex);

    auto const primaldual =
        factory::primaldual_factory<sopt::algorithm::ImagingPrimalDual<t_complex>>(
            factory::algo_distribution::mpi_random_updates, measurements_transform_serial,
            wavelets_serial, uv_data, sigma, imsizey, imsizex, sara_dist.size(), 500, true, true,
            1e-2, 1);

    auto const diagnostic = (*primaldual)();
    t_real const epsilon = utilities::calculate_l2_radius(world.all_sum_all(uv_data.vis.size()),
                                                          world.broadcast(sigma));
    CHECK(sopt::mpi::l2_norm(diagnostic.residual, primaldual->l2ball_proximal_weights(), world) <
          epsilon);
    if (world.size() > 1) return;
    // the algorithm depends on nodes, so other than a basic bounds check,
    // it is hard to know exact precision (might depend on probability theory...)
    if (world.size() == 0)
      return;
    else if (world.size() == 2 or world.size() == 1) {
      // testing the case where there are two nodes exactly.
      const std::string &expected_solution_path =
          (world.size() == 2) ? data_filename(test_dir + "mpi_random_solution.fits")
                              : data_filename(test_dir + "solution.fits");
      const std::string &expected_residual_path =
          (world.size() == 2) ? data_filename(test_dir + "mpi_random_residual.fits")
                              : data_filename(test_dir + "residual.fits");
      if (world.size() == 1) CHECK(diagnostic.niters == 16);
      if (world.size() == 2) CHECK(diagnostic.niters < 100);

      const auto solution = pfitsio::read2d(expected_solution_path);
      const auto residual = pfitsio::read2d(expected_residual_path);

      const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
      // if (world.is_root()) pfitsio::write2d(image.real(), expected_solution_path);
      CAPTURE(Vector<t_complex>::Map(solution.data(), solution.size()).real().head(10));
      CAPTURE(Vector<t_complex>::Map(image.data(), image.size()).real().head(10));
      CAPTURE(
          Vector<t_complex>::Map((image / solution).eval().data(), image.size()).real().head(10));
      CHECK(image.isApprox(solution, 1e-3));

      const Vector<t_complex> residuals =
          measurements_transform->adjoint() *
          (uv_data.vis - ((*measurements_transform) * diagnostic.x));
      const Image<t_complex> residual_image =
          Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
      // if (world.is_root()) pfitsio::write2d(residual_image.real(), expected_residual_path);
      CAPTURE(Vector<t_complex>::Map(residual.data(), residual.size()).real().head(10));
      CAPTURE(Vector<t_complex>::Map(residuals.data(), residuals.size()).real().head(10));
      CHECK(residual_image.real().isApprox(residual.real(), 1e-3));
    } else
      return;
  }
}

TEST_CASE("Serial vs. Serial with MPI Forward Backward") {
  auto const world = sopt::mpi::Communicator::World();

  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.vis");
  const std::string &result_path = data_filename(test_dir + "mpi_fb_result.fits");

  auto uv_data = dirty_visibilities({input_data_path}, world);
  uv_data.units = utilities::vis_units::radians;
  if (world.is_root()) {
    CAPTURE(uv_data.vis.head(5));
  }
  REQUIRE(world.all_sum_all(uv_data.size()) == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::mpi_distribute_image, uv_data, imsizey, imsizex, 1,
      1, 2, kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff = sopt::algorithm::power_method<Vector<t_complex>>(
      *measurements_transform, 1000, 1e-5,
      world.broadcast(Vector<t_complex>::Ones(imsizex * imsizey).eval()));
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::mpi_sara, sara, imsizey, imsizex);
  t_real const sigma =
      world.broadcast(0.016820222945913496) * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;
  auto const fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::mpi_serial, measurements_transform, wavelets, uv_data, sigma,
      beta, gamma, imsizey, imsizex, sara.size(), 1000, true, true, false, 1e-2, 1e-3, 50);

  auto const diagnostic = (*fb)();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  if (world.is_root()) {
    pfitsio::write2d(image.real(), result_path);
    // pfitsio::write2d(residual_image.real(), expected_residual_path);
  }

  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  double average_intensity = diagnostic.x.real().sum() / diagnostic.x.size();
  SOPT_HIGH_LOG("Average intensity = {}", average_intensity);
  double mse = (Vector<t_complex>::Map(solution.data(), solution.size()) - diagnostic.x)
                   .real()
                   .squaredNorm() /
               solution.size();
  SOPT_HIGH_LOG("MSE = {}", mse);
  CHECK(mse <= average_intensity * 1e-3);
}

#ifdef PURIFY_H5
TEST_CASE("MPI_fb_factory_hdf5") {
  auto const world = sopt::mpi::Communicator::World();
  const size_t N = 13107;

  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.h5");
  const std::string &result_path = data_filename(test_dir + "mpi_fb_result_hdf5.fits");
  H5::H5Handler h5file(input_data_path, world);

  auto uv_data = H5::stochread_visibility(h5file, 6000, false);
  uv_data.units = utilities::vis_units::radians;
  if (world.is_root()) {
    CAPTURE(uv_data.vis.head(5));
  }
  // REQUIRE(world.all_sum_all(uv_data.size()) == 13107);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  auto measurements_transform = factory::measurement_operator_factory<Vector<t_complex>>(
      factory::distributed_measurement_operator::mpi_distribute_image, uv_data, imsizey, imsizex, 1,
      1, 2, kernels::kernel_from_string.at("kb"), 4, 4);
  auto const power_method_stuff = sopt::algorithm::power_method<Vector<t_complex>>(
      *measurements_transform, 1000, 1e-5,
      world.broadcast(Vector<t_complex>::Ones(imsizex * imsizey).eval()));
  const t_real op_norm = std::get<0>(power_method_stuff);
  measurements_transform->set_norm(op_norm);

  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::mpi_sara, sara, imsizey, imsizex);
  t_real const sigma =
      world.broadcast(0.016820222945913496) * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;
  auto const fb = factory::fb_factory<sopt::algorithm::ImagingForwardBackward<t_complex>>(
      factory::algo_distribution::mpi_serial, measurements_transform, wavelets, uv_data, sigma,
      beta, gamma, imsizey, imsizex, sara.size(), 1000, true, true, false, 1e-2, 1e-3, 50);

  auto const diagnostic = (*fb)();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // if (world.is_root())
  //{
  //  pfitsio::write2d(image.real(), result_path);
  //}

  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &expected_residual_path = data_filename(test_dir + "residual.fits");

  const auto solution = pfitsio::read2d(expected_solution_path);
  const auto residual = pfitsio::read2d(expected_residual_path);

  double average_intensity = diagnostic.x.real().sum() / diagnostic.x.size();
  SOPT_HIGH_LOG("Average intensity = {}", average_intensity);
  double mse = (Vector<t_complex>::Map(solution.data(), solution.size()) - diagnostic.x)
                   .real()
                   .squaredNorm() /
               solution.size();
  SOPT_HIGH_LOG("MSE = {}", mse);
  CHECK(mse <= average_intensity * 1e-3);
}

TEST_CASE("fb_factory_stochastic") {
  const std::string &test_dir = "expected/fb/";
  const std::string &input_data_path = data_filename(test_dir + "input_data.h5");
  const std::string &expected_solution_path = data_filename(test_dir + "solution.fits");
  const std::string &result_path = data_filename(test_dir + "fb_stochastic_result_mpi.fits");

  // HDF5
  auto const comm = sopt::mpi::Communicator::World();
  const size_t N = 2000;
  H5::H5Handler h5file(input_data_path, comm);  // length 13107
  using t_complexVec = Vector<t_complex>;

  // This functor would be defined in Purify
  std::function<std::shared_ptr<sopt::IterationState<Vector<t_complex>>>()> random_updater =
      [&h5file, &N, &comm]() {
        utilities::vis_params uv_data =
            H5::stochread_visibility(h5file, N, false);  // no w-term in this data-set
        uv_data.units = utilities::vis_units::radians;
        auto phi = factory::measurement_operator_factory<t_complexVec>(
            factory::distributed_measurement_operator::mpi_distribute_image, uv_data, 128, 128, 1,
            1, 2, kernels::kernel_from_string.at("kb"), 4, 4);

        auto const power_method_stuff = sopt::algorithm::power_method<Vector<t_complex>>(
            *phi, 1000, 1e-5, comm.broadcast(Vector<t_complex>::Ones(128 * 128).eval()));
        const t_real op_norm = std::get<0>(power_method_stuff);
        phi->set_norm(op_norm);

        return std::make_shared<sopt::IterationState<Vector<t_complex>>>(uv_data.vis, phi);
      };

  const auto solution = pfitsio::read2d(expected_solution_path);

  t_uint const imsizey = 128;
  t_uint const imsizex = 128;

  // wavelets
  std::vector<std::tuple<std::string, t_uint>> const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
  auto const wavelets = factory::wavelet_operator_factory<Vector<t_complex>>(
      factory::distributed_wavelet_operator::serial, sara, imsizey, imsizex);

  // algorithm
  t_real const sigma = 0.016820222945913496 * std::sqrt(2);  // see test_parameters file
  t_real const beta = sigma * sigma;
  t_real const gamma = 0.0001;

  sopt::algorithm::ImagingForwardBackward<t_complex> fb(random_updater);
  fb.itermax(1000)
      .step_size(beta * sqrt(2))
      .sigma(sigma * sqrt(2))
      .regulariser_strength(gamma)
      .relative_variation(1e-3)
      .residual_tolerance(0)
      .tight_frame(true)
      .obj_comm(comm);

  auto gp = std::make_shared<sopt::algorithm::L1GProximal<t_complex>>(false);
  gp->l1_proximal_tolerance(1e-4)
      .l1_proximal_nu(1)
      .l1_proximal_itermax(50)
      .l1_proximal_positivity_constraint(true)
      .l1_proximal_real_constraint(true)
      .Psi(*wavelets);
  fb.g_function(gp);

  auto const diagnostic = fb();
  const Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  // if (comm.is_root())
  //{
  //  //pfitsio::write2d(image.real(), result_path);
  //}

  auto soln_flat = Vector<t_complex>::Map(solution.data(), solution.size());
  double average_intensity = soln_flat.real().sum() / soln_flat.size();
  SOPT_HIGH_LOG("Average intensity = {}", average_intensity);
  double mse = (soln_flat - diagnostic.x).real().squaredNorm() / solution.size();
  SOPT_HIGH_LOG("MSE = {}", mse);
  CHECK(mse <= average_intensity * 1e-3);
}
#endif