1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
#include "catch2/catch_all.hpp"
#include "purify/distribute.h"
#include "purify/logging.h"
#include "purify/measurement_operator_factory.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/utilities.h"
#include <sopt/mpi/communicator.h>
#include <sopt/power_method.h>
using namespace purify;
TEST_CASE("Serial vs Distributed Operator") {
purify::logging::set_level("debug");
auto const world = sopt::mpi::Communicator::World();
auto const N = 100;
auto uv_serial = utilities::random_sample_density(N, 0, constant::pi / 3, 100);
uv_serial.u = world.broadcast(uv_serial.u);
uv_serial.v = world.broadcast(uv_serial.v);
uv_serial.w = world.broadcast(uv_serial.w);
uv_serial.units = utilities::vis_units::radians;
uv_serial.vis = world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(uv_serial.u.size()));
uv_serial.weights =
world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(uv_serial.u.size()));
utilities::vis_params uv_mpi;
if (world.is_root()) {
auto const order =
distribute::distribute_measurements(uv_serial, world, distribute::plan::radial);
uv_mpi = utilities::regroup_and_scatter(uv_serial, order, world);
} else
uv_mpi = utilities::scatter_visibilities(world);
auto const over_sample = 2;
auto const J = 4;
auto const kernel = kernels::kernel::kb;
auto const width = 128;
auto const height = 128;
const Vector<t_complex> power_init =
world.broadcast(Vector<t_complex>::Random(height * width).eval());
const auto op_serial = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
purify::measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
uv_serial.u, uv_serial.v, uv_serial.w, uv_serial.weights, height, width, over_sample),
100, 1e-4, power_init));
CAPTURE(world.size());
for (auto method : {factory::distributed_measurement_operator::mpi_distribute_image,
factory::distributed_measurement_operator::mpi_distribute_grid}) {
const auto op = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
factory::measurement_operator_factory<Vector<t_complex>>(
method, uv_mpi.u, uv_mpi.v, uv_mpi.w, uv_mpi.weights, height, width, over_sample),
100, 1e-4, power_init));
if (uv_serial.u.size() == uv_mpi.u.size()) {
REQUIRE(uv_serial.u.isApprox(uv_mpi.u));
CHECK(uv_serial.v.isApprox(uv_mpi.v));
CHECK(uv_serial.weights.isApprox(uv_mpi.weights));
}
SECTION("Degridding") {
Vector<t_complex> const image =
world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(width * height));
auto uv_degrid = uv_serial;
if (world.is_root()) {
uv_degrid.vis = *op_serial * image;
auto const order =
distribute::distribute_measurements(uv_degrid, world, distribute::plan::radial);
uv_degrid = utilities::regroup_and_scatter(uv_degrid, order, world);
} else
uv_degrid = utilities::scatter_visibilities(world);
Vector<t_complex> const degridded = *op * image;
REQUIRE(degridded.size() == uv_degrid.vis.size());
REQUIRE(degridded.isApprox(uv_degrid.vis, 1e-4));
}
SECTION("Gridding") {
Vector<t_complex> const gridded = op->adjoint() * uv_mpi.vis;
Vector<t_complex> const gridded_serial = op_serial->adjoint() * uv_serial.vis;
REQUIRE(gridded.size() == gridded_serial.size());
REQUIRE(gridded.isApprox(gridded_serial, 1e-4));
}
}
SECTION("All to All") {
t_real const cell_size = 1;
const auto kmeans = distribute::kmeans_algo(uv_mpi.w, world.size(), 100, world);
const std::vector<t_int> image_index = std::get<0>(kmeans);
const std::vector<t_real> w_stacks = std::get<1>(kmeans);
const auto uv_stacks = utilities::regroup_and_all_to_all(uv_mpi, image_index, world);
// standard operator
const auto op_wproj = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
purify::measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
world, uv_stacks, height, width, cell_size, cell_size, over_sample, kernel, J, J, true),
100, 1e-4, power_init));
// all to all operator
const auto op_wproj_all = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
factory::all_to_all_measurement_operator_factory<Vector<t_complex>>(
factory::distributed_measurement_operator::mpi_distribute_all_to_all, image_index,
w_stacks, uv_mpi, height, width, cell_size, cell_size, over_sample, kernel, J, J, true),
100, 1e-4, power_init));
if (world.size() == 1) {
REQUIRE(uv_serial.u.isApprox(uv_mpi.u));
CHECK(uv_serial.v.isApprox(uv_mpi.v));
CHECK(uv_serial.weights.isApprox(uv_mpi.weights));
}
SECTION("Degridding") {
Vector<t_complex> const image =
world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(width * height));
const Vector<t_complex> degridded = *op_wproj * image;
auto uv_degrid = uv_mpi;
uv_degrid.vis = *op_wproj_all * image;
uv_degrid = utilities::regroup_and_all_to_all(uv_degrid, image_index, world);
REQUIRE(degridded.size() == uv_degrid.vis.size());
REQUIRE(degridded.isApprox(uv_degrid.vis, 1e-4));
}
SECTION("Gridding") {
Vector<t_complex> const gridded = op_wproj_all->adjoint() * uv_mpi.vis;
Vector<t_complex> const gridded_serial = op_wproj->adjoint() * uv_stacks.vis;
REQUIRE(gridded.size() == gridded_serial.size());
REQUIRE(gridded.isApprox(gridded_serial, 1e-4));
}
}
SECTION("All to All wproj") {
t_real const cell_size = 1;
const auto kmeans = distribute::kmeans_algo(uv_mpi.w, world.size(), 100, world);
const std::vector<t_int> image_index = std::get<0>(kmeans);
const std::vector<t_real> w_stacks = std::get<1>(kmeans);
const auto uv_stacks = utilities::regroup_and_all_to_all(uv_mpi, image_index, world);
// standard operator
const auto op_wproj = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
purify::measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
world, uv_stacks, height, width, cell_size, cell_size, over_sample, kernel, J, 10, true,
1e-8, 1e-8, dde_type::wkernel_radial),
100, 1e-4, power_init));
// all to all operator
const auto op_wproj_all = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
factory::all_to_all_measurement_operator_factory<Vector<t_complex>>(
factory::distributed_measurement_operator::mpi_distribute_all_to_all, image_index,
w_stacks, uv_mpi, height, width, cell_size, cell_size, over_sample, kernel, J, 100,
true, 1e-8, 1e-8, dde_type::wkernel_radial),
100, 1e-4, power_init));
if (world.size() == 1) {
REQUIRE(uv_serial.u.isApprox(uv_mpi.u));
CHECK(uv_serial.v.isApprox(uv_mpi.v));
CHECK(uv_serial.weights.isApprox(uv_mpi.weights));
}
SECTION("Degridding") {
Vector<t_complex> const image =
world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(width * height));
const Vector<t_complex> degridded = *op_wproj * image;
auto uv_degrid = uv_mpi;
uv_degrid.vis = *op_wproj_all * image;
uv_degrid = utilities::regroup_and_all_to_all(uv_degrid, image_index, world);
REQUIRE(degridded.size() == uv_degrid.vis.size());
REQUIRE(degridded.isApprox(uv_degrid.vis, 1e-4));
}
SECTION("Gridding") {
Vector<t_complex> const gridded = op_wproj_all->adjoint() * uv_mpi.vis;
Vector<t_complex> const gridded_serial = op_wproj->adjoint() * uv_stacks.vis;
REQUIRE(gridded.size() == gridded_serial.size());
REQUIRE(gridded.isApprox(gridded_serial, 1e-4));
}
}
}
TEST_CASE("GPU Serial vs Distributed Operator") {
purify::logging::set_level("debug");
auto const world = sopt::mpi::Communicator::World();
auto const N = 100;
auto uv_serial = utilities::random_sample_density(N, 0, constant::pi / 3);
uv_serial.u = world.broadcast(uv_serial.u);
uv_serial.v = world.broadcast(uv_serial.v);
uv_serial.w = world.broadcast(uv_serial.w);
uv_serial.units = utilities::vis_units::radians;
uv_serial.vis = world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(uv_serial.u.size()));
uv_serial.weights =
world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(uv_serial.u.size()));
utilities::vis_params uv_mpi;
if (world.is_root()) {
auto const order =
distribute::distribute_measurements(uv_serial, world, distribute::plan::radial);
uv_mpi = utilities::regroup_and_scatter(uv_serial, order, world);
} else
uv_mpi = utilities::scatter_visibilities(world);
auto const over_sample = 2;
auto const J = 4;
auto const kernel = kernels::kernel::kb;
auto const width = 128;
auto const height = 128;
const Vector<t_complex> power_init =
world.broadcast(Vector<t_complex>::Random(height * width).eval());
const auto op_serial = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
purify::measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
uv_serial.u, uv_serial.v, uv_serial.w, uv_serial.weights, height, width, over_sample),
100, 1e-4, power_init));
CAPTURE(world.size());
for (auto method : {factory::distributed_measurement_operator::gpu_mpi_distribute_image,
factory::distributed_measurement_operator::gpu_mpi_distribute_grid}) {
#ifndef PURIFY_ARRAYFIRE
REQUIRE_THROWS(factory::measurement_operator_factory<Vector<t_complex>>(
method, uv_mpi.u, uv_mpi.v, uv_mpi.w, uv_mpi.weights, height, width, over_sample));
#else
const auto op = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
factory::measurement_operator_factory<Vector<t_complex>>(
method, uv_mpi.u, uv_mpi.v, uv_mpi.w, uv_mpi.weights, height, width, over_sample),
100, 1e-4, power_init));
if (uv_serial.u.size() == uv_mpi.u.size()) {
REQUIRE(uv_serial.u.isApprox(uv_mpi.u));
CHECK(uv_serial.v.isApprox(uv_mpi.v));
CHECK(uv_serial.weights.isApprox(uv_mpi.weights));
}
SECTION("Degridding") {
Vector<t_complex> const image =
world.broadcast<Vector<t_complex>>(Vector<t_complex>::Random(width * height));
auto uv_degrid = uv_serial;
if (world.is_root()) {
uv_degrid.vis = *op_serial * image;
auto const order =
distribute::distribute_measurements(uv_degrid, world, distribute::plan::radial);
uv_degrid = utilities::regroup_and_scatter(uv_degrid, order, world);
} else
uv_degrid = utilities::scatter_visibilities(world);
Vector<t_complex> const degridded = *op * image;
REQUIRE(degridded.size() == uv_degrid.vis.size());
REQUIRE(degridded.isApprox(uv_degrid.vis, 1e-4));
}
SECTION("Gridding") {
Vector<t_complex> const gridded = op->adjoint() * uv_mpi.vis;
Vector<t_complex> const gridded_serial = op_serial->adjoint() * uv_serial.vis;
REQUIRE(gridded.size() == gridded_serial.size());
REQUIRE(gridded.isApprox(gridded_serial, 1e-4));
}
#endif
}
}
|