1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
#include <random>
#include "catch2/catch_all.hpp"
#include "purify/directories.h"
#include "purify/utilities.h"
#include "purify/uvw_utilities.h"
using namespace purify;
using Catch::Approx;
TEST_CASE("utilities [mod]", "[mod]") {
Array<t_real> range;
range.setLinSpaced(201, -100, 100);
Array<t_real> output(range.size());
for (t_int i = 0; i < range.size(); ++i) {
output(i) = utilities::mod(range(i), 20);
}
Array<t_real> expected(201);
expected << 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0;
CHECK(expected.isApprox(output, 1e-13));
}
TEST_CASE("utilities [reshape]", "[reshape]") {
// Testing if resize works the same as matlab's reshape
Matrix<t_real> magic(4, 4);
magic << 16, 2, 3, 13, 5, 11, 10, 8, 9, 7, 6, 12, 4, 14, 15, 1;
CAPTURE(magic);
Vector<t_real> magic_vector(16);
magic_vector << 16, 5, 9, 4, 2, 11, 7, 14, 3, 10, 6, 15, 13, 8, 12, 1;
Matrix<t_real> magic_matrix(16, 1);
magic_matrix << 16, 5, 9, 4, 2, 11, 7, 14, 3, 10, 6, 15, 13, 8, 12, 1;
magic_matrix.resize(4, 4);
CHECK(magic.isApprox(magic_matrix, 1e-13));
magic.resize(16, 1);
CAPTURE(magic);
CAPTURE(magic_vector);
CHECK(magic.isApprox(magic_vector, 1e-13));
}
TEST_CASE("utilities [variance]", "[variance]") {
// tests if mean and variance calculations are the same as done in matlab
Vector<t_complex> real_data = Vector<t_complex>::Random(1000);
Vector<t_complex> imag_data = Vector<t_complex>::Random(1000);
t_complex I(0, 1);
const Vector<t_complex> data = (real_data + I * imag_data);
const t_complex mu = utilities::mean(data);
CAPTURE(mu);
CHECK(std::abs(mu - data.mean()) < 1e-13);
const t_real var = utilities::variance(data);
const t_real expected_var =
std::abs(((data.array() - mu) * (data.array() - mu).conjugate()).sum()) / (data.size() - 1.);
CAPTURE(var);
CAPTURE(expected_var);
CHECK(std::abs(var - expected_var) < 1e-13);
}
TEST_CASE("utilities [median]", "[median]") {
Vector<t_real> x(100);
x << 0.824149356327936, 0.218232263733975, 0.0996423029616137, 0.619505816445823,
0.103814782651106, 0.799061803589637, 0.902925119282939, 0.312512845986667, 0.281589166159224,
0.00678194126805909, 0.495871665666786, 0.988482243012287, 0.737940751495519,
0.310719817391570, 0.600407500351151, 0.781679826661116, 0.111533124684943, 0.579329289388906,
0.870371220311720, 0.689776249611124, 0.242970250921629, 0.342722251869759, 0.545439787975426,
0.0675726926893163, 0.410448399698545, 0.237511397229394, 0.488973556424727,
0.806066588301788, 0.377847951671179, 0.517978144507388, 0.0945978893449516,
0.909095192849836, 0.207630593997342, 0.382064523540530, 0.660280265178685, 0.758373302277572,
0.173069412392096, 0.517379761506326, 0.995338112303466, 0.707609406590709,
0.0805673009239308, 0.0433080963751025, 0.491155562984260, 0.446596440169203,
0.486798565845346, 0.165891122085342, 0.360656504813112, 0.880721941763713, 0.744352179996200,
0.416771050919451, 0.907354808475253, 0.0943068737715302, 0.181326261018145,
0.946587232183202, 0.100849056860381, 0.388038069974207, 0.289224862024986,
0.0730868607975930, 0.194608005437083, 0.417485231103283, 0.292926559143940,
0.702138511791249, 0.239713177935322, 0.959482620708005, 0.305462202307119, 0.154915458213084,
0.555508419323977, 0.790543689112232, 0.443872293587844, 0.995818721727493, 0.436586698162556,
0.304441172973089, 0.246510340916772, 0.960825251654563, 0.222880958438666, 0.395609181466230,
0.224524553336017, 0.270024669015495, 0.418441479002589, 0.997735979773324, 0.911030403930781,
0.550426888716037, 0.596335815776380, 0.0791452393029073, 0.576636037390549,
0.898172311971638, 0.463310567259345, 0.398396426873099, 0.104461114798391, 0.652236388678710,
0.991700005353602, 0.678072815973294, 0.428477593633851, 0.654801321575878, 0.588745528605038,
0.745054910247788, 0.640870288169766, 0.503676186207024, 0.938041475805194, 0.605343580621484;
t_real const median = 0.475054566552345;
CHECK(std::abs(median - utilities::median(x)) < 1e-13);
}
TEST_CASE("utilities [read_write_vis]", "[read_write_vis]") {
// tests the read and write function for a visibility data set
std::string vis_file = vla_filename("at166B.3C129.c0.vis");
std::string out_file = output_filename("test_output.vis");
std::string out_w_file = output_filename("test_w_output.vis");
auto uv_data = utilities::read_visibility(vis_file);
utilities::write_visibility(uv_data, out_file);
auto new_uv_data = utilities::read_visibility(out_file);
CHECK(new_uv_data.u.isApprox(uv_data.u, 1e-13));
CHECK(new_uv_data.v.isApprox(uv_data.v, 1e-13));
CHECK(new_uv_data.vis.isApprox(uv_data.vis, 1e-13));
CHECK(new_uv_data.weights.isApprox(uv_data.weights, 1e-13));
t_int number_of_random_vis = 1e5;
const bool w_term = true;
auto random_uv_data = utilities::random_sample_density(number_of_random_vis, 0, constant::pi / 3);
utilities::write_visibility(random_uv_data, out_w_file, w_term);
auto new_random_uv_data = utilities::read_visibility(out_w_file, w_term);
CHECK(new_random_uv_data.u.isApprox(random_uv_data.u, 1e-8));
CHECK(new_random_uv_data.v.isApprox(random_uv_data.v, 1e-8));
CHECK(new_random_uv_data.w.isApprox(random_uv_data.w, 1e-8));
CHECK(new_random_uv_data.vis.isApprox(random_uv_data.vis, 1e-8));
CHECK(new_random_uv_data.weights.isApprox(random_uv_data.weights, 1e-8));
}
TEST_CASE("read_mutiple_vis") {
std::string csv_file = vla_filename("at166B.3C129.c0.vis");
std::string h5_file = atca_filename("0332-391.h5");
SECTION("one csv file") {
const std::vector<std::string> names = {csv_file};
const auto uv_data = utilities::read_visibility(csv_file);
const auto uv_multi = utilities::read_visibility(names);
CAPTURE(names.size());
CAPTURE(uv_data.size());
CHECK(uv_data.size() * names.size() == uv_multi.size());
for (int i = 0; i < names.size(); i++) {
CHECK(uv_data.u.isApprox(uv_multi.u.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.v.isApprox(uv_multi.v.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.w.isApprox(uv_multi.w.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.vis.isApprox(uv_multi.vis.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.weights.isApprox(uv_multi.weights.segment(i * uv_data.size(), uv_data.size())));
}
}
SECTION("many csv files") {
const std::vector<std::string> names = {csv_file, csv_file, csv_file};
const auto uv_data = utilities::read_visibility(csv_file);
const auto uv_multi = utilities::read_visibility(names);
CAPTURE(names.size());
CAPTURE(uv_data.size());
CHECK(uv_data.size() * names.size() == uv_multi.size());
for (int i = 0; i < names.size(); i++) {
CHECK(uv_data.u.isApprox(uv_multi.u.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.v.isApprox(uv_multi.v.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.w.isApprox(uv_multi.w.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.vis.isApprox(uv_multi.vis.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.weights.isApprox(uv_multi.weights.segment(i * uv_data.size(), uv_data.size())));
}
}
#ifdef PURIFY_H5
SECTION("one HDF5 file") {
const std::vector<std::string> names = {h5_file};
const auto uv_data = utilities::read_visibility(h5_file);
const auto uv_multi = utilities::read_visibility(names);
CAPTURE(names.size());
CAPTURE(uv_data.size());
CHECK(uv_data.size() * names.size() == uv_multi.size());
for (int i = 0; i < names.size(); i++) {
CHECK(uv_data.u.isApprox(uv_multi.u.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.v.isApprox(uv_multi.v.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.w.isApprox(uv_multi.w.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.vis.isApprox(uv_multi.vis.segment(i * uv_data.size(), uv_data.size())));
CHECK(uv_data.weights.isApprox(uv_multi.weights.segment(i * uv_data.size(), uv_data.size())));
}
}
#endif
}
TEST_CASE("utilities [file exists]", "[file exists]") {
std::string vis_file = vla_filename("at166B.3C129.c0.vis");
// File should exist
CHECK(utilities::file_exists(vis_file));
// File should not exist
CHECK(not utilities::file_exists("adfadsf"));
}
TEST_CASE("utilities [fit_fwhm]", "[fit_fwhm]") {
// testing that the gaussian fitting works.
t_int imsizex = 512;
t_int imsizey = 512;
Image<t_real> psf = Image<t_real>::Zero(imsizey, imsizex);
// choice of parameters
t_real const fwhm_x = 3;
t_real const fwhm_y = 6;
t_real const theta = 0;
// setting up Gaussian calculation
t_real const sigma_x = fwhm_x / (2 * std::sqrt(2 * std::log(2)));
t_real const sigma_y = fwhm_y / (2 * std::sqrt(2 * std::log(2)));
// calculating Gaussian
t_real const a = std::pow(std::cos(theta), 2) / (2 * sigma_x * sigma_x) +
std::pow(std::sin(theta), 2) / (2 * sigma_y * sigma_y);
t_real const b = -std::sin(2 * theta) / (4 * sigma_x * sigma_x) +
std::sin(2 * theta) / (4 * sigma_y * sigma_y);
t_real const c = std::pow(std::sin(theta), 2) / (2 * sigma_x * sigma_x) +
std::pow(std::cos(theta), 2) / (2 * sigma_y * sigma_y);
auto x0 = imsizex * 0.5;
auto y0 = imsizey * 0.5;
for (t_int i = 0; i < imsizex; ++i) {
for (t_int j = 0; j < imsizey; ++j) {
t_real x = i - x0;
t_real y = j - y0;
psf(j, i) = std::exp(-a * x * x + 2 * b * x * y - c * y * y);
}
}
auto const fit = utilities::fit_fwhm(psf, 3);
auto new_fwhm_x = std::get<0>(fit) * 2 * std::sqrt(2 * std::log(2));
auto new_fwhm_y = std::get<1>(fit) * 2 * std::sqrt(2 * std::log(2));
auto new_theta = std::get<2>(fit);
CHECK(std::abs(new_fwhm_x - fwhm_x) < 1e-13);
CHECK(std::abs(new_fwhm_y - fwhm_y) < 1e-13);
CHECK(std::abs(new_theta - theta) < 1e-13);
}
TEST_CASE("utilities [sparse multiply]", "[sparse multiply]") {
// Checking that the parallel sparse matrix multiplication works against Eigen.
t_int cols = 1024 * 1024;
t_int rows = 1e3;
t_int nz_values = 16 * rows;
Vector<t_complex> const x = Vector<t_complex>::Random(cols);
std::vector<t_tripletList> tripletList;
tripletList.reserve(nz_values);
Vector<t_complex> M_values = Vector<t_complex>::Random(nz_values);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis_row(0, rows);
std::uniform_real_distribution<> dis_col(0, cols);
for (t_int i = 0; i < nz_values; ++i) {
tripletList.emplace_back(std::floor(dis_row(rd)), std::floor(dis_col(rd)), M_values(i));
}
Sparse<t_complex> M(rows, cols);
M.setFromTriplets(tripletList.begin(), tripletList.end());
Vector<t_complex> const parallel_output = utilities::sparse_multiply_matrix(M, x);
Vector<t_complex> const correct_output = M * x;
for (t_int i = 0; i < rows; ++i) {
CHECK(std::abs((correct_output(i) - parallel_output(i)) / correct_output(i)) < 1e-13);
}
}
TEST_CASE("generate_baseline") {
// testing if randomly generating a uvcoverage from baseline configuration works
const Matrix<t_real> B = utilities::generate_antennas(4, 1);
CHECK(B.allFinite());
CHECK(B.rows() == 4);
CHECK(B.cols() == 3);
CAPTURE(B);
SECTION("one wavelength") {
const t_real frequency = constant::c;
const t_real times = 0.;
const t_real phi_dec = 0.;
const t_real theta_ra = 0.;
const t_real latitude = 0.;
const utilities::vis_params test_coverage =
utilities::antenna_to_coverage(B, frequency, times, theta_ra, phi_dec, latitude);
CHECK(test_coverage.units == utilities::vis_units::lambda);
const utilities::vis_params test_coverage_xyz = utilities::antenna_to_coverage(
B.col(0), B.col(1), B.col(2), frequency, times, theta_ra, phi_dec, latitude);
CHECK(test_coverage_xyz.u.isApprox(test_coverage.u));
CHECK(test_coverage_xyz.v.isApprox(test_coverage.v));
CHECK(test_coverage_xyz.w.isApprox(test_coverage.w));
CHECK(test_coverage.u.allFinite());
CHECK(test_coverage.v.allFinite());
CHECK(test_coverage.w.allFinite());
CHECK(test_coverage.size() == 2 * 3);
const Vector<t_real> R0 = B.row(0) - B.row(1);
const Vector<t_real> R1 = B.row(0) - B.row(2);
const Vector<t_real> R2 = B.row(0) - B.row(3);
const Vector<t_real> R3 = B.row(1) - B.row(2);
const Vector<t_real> R4 = B.row(1) - B.row(3);
const Vector<t_real> R5 = B.row(2) - B.row(3);
CHECK(R0(0) == Approx(test_coverage.u(0)));
CHECK(R0(1) == Approx(test_coverage.v(0)));
CHECK(R0(2) == Approx(test_coverage.w(0)));
CHECK(R1(0) == Approx(test_coverage.u(1)));
CHECK(R1(1) == Approx(test_coverage.v(1)));
CHECK(R1(2) == Approx(test_coverage.w(1)));
CHECK(R2(0) == Approx(test_coverage.u(2)));
CHECK(R2(1) == Approx(test_coverage.v(2)));
CHECK(R2(2) == Approx(test_coverage.w(2)));
CHECK(R3(0) == Approx(test_coverage.u(3)));
CHECK(R3(1) == Approx(test_coverage.v(3)));
CHECK(R3(2) == Approx(test_coverage.w(3)));
CHECK(R4(0) == Approx(test_coverage.u(4)));
CHECK(R4(1) == Approx(test_coverage.v(4)));
CHECK(R4(2) == Approx(test_coverage.w(4)));
CHECK(R5(0) == Approx(test_coverage.u(5)));
CHECK(R5(1) == Approx(test_coverage.v(5)));
CHECK(R5(2) == Approx(test_coverage.w(5)));
}
SECTION("more wavelengths") {
const auto frequency = std::vector<t_real>{constant::c, 2 * constant::c, 5 * constant::c};
const auto times = std::vector<t_real>{0, 2, 100};
const t_real phi_dec = 0.;
const t_real theta_ra = 0.;
const t_real latitude = 0.;
const t_int M = B.rows() * (B.rows() - 1) / 2;
const utilities::vis_params test_coverage =
utilities::antenna_to_coverage(B, frequency, times, theta_ra, phi_dec, latitude);
CHECK(test_coverage.u.allFinite());
CHECK(test_coverage.v.allFinite());
CHECK(test_coverage.w.allFinite());
CHECK(test_coverage.size() == M * frequency.size() * times.size());
t_int f_index = 0;
t_int t_index = 0;
for (t_int k = 0; k < frequency.size(); k++) {
for (t_int j = 0; j < times.size(); j++) {
const t_real f = frequency.at(k);
const t_real t = times.at(j);
CAPTURE(f);
CAPTURE(t);
CAPTURE(f_index);
CAPTURE(frequency.size());
const utilities::vis_params test_coverage_f =
utilities::antenna_to_coverage(B, f, t, theta_ra, phi_dec, latitude);
const t_int index = (k + j * frequency.size()) * M;
CAPTURE(test_coverage.u.segment(index, M).head(5));
CAPTURE(test_coverage_f.u.head(5));
CHECK(test_coverage_f.u.isApprox(test_coverage.u.segment(index, M)));
CHECK(test_coverage_f.v.isApprox(test_coverage.v.segment(index, M)));
CHECK(test_coverage_f.w.isApprox(test_coverage.w.segment(index, M)));
}
}
}
}
TEST_CASE("generate coverage from antenna positions") {
const std::string pos_filename = mwa_filename("Phase2_config.txt");
auto const B = utilities::read_ant_positions(pos_filename);
CHECK(B.rows() == 128);
CHECK(B.cols() == 3);
CHECK(B.allFinite());
SECTION("generate coverage") {
SECTION("one frequency") {
const t_real f = constant::c;
const t_real t = 0.;
const t_real latitude = 0.;
auto const coverage_from_file =
utilities::read_ant_positions_to_coverage(pos_filename, f, t, 0., 0., latitude);
auto const coverage_from_B = utilities::antenna_to_coverage(B, f, t, 0., 0., latitude);
CHECK(coverage_from_file.u.isApprox(coverage_from_B.u));
CHECK(coverage_from_file.v.isApprox(coverage_from_B.v));
CHECK(coverage_from_file.w.isApprox(coverage_from_B.w));
}
SECTION("multi frequency") {
const std::vector<t_real> f = {constant::c, constant::c * 4, constant::c * 2};
const std::vector<t_real> t = {0., 4, 24};
const t_real latitude = 0.;
auto const coverage_from_file =
utilities::read_ant_positions_to_coverage(pos_filename, f, t, 0., 0., latitude);
auto const coverage_from_B = utilities::antenna_to_coverage(B, f, t, 0., 0., latitude);
CHECK(coverage_from_file.u.isApprox(coverage_from_B.u));
CHECK(coverage_from_file.v.isApprox(coverage_from_B.v));
CHECK(coverage_from_file.w.isApprox(coverage_from_B.w));
}
}
}
TEST_CASE("rotations") {
SECTION("u = 0, v = 0, w = 1") {
const t_real theta_0 = 0.;
const t_real phi_0 = 0.;
CHECK(0. ==
Approx(utilities::calculate_rotated_u(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
CHECK(0. ==
Approx(utilities::calculate_rotated_v(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
CHECK(1. == Approx(utilities::calculate_rotated_w(0., 0., 1., theta_0, phi_0, 0.)));
}
SECTION("u = 1, v = 0, w = 0") {
const t_real theta_0 = 0;
const t_real phi_0 = constant::pi / 2.;
CHECK(1. == Approx(utilities::calculate_rotated_u(0., 0., 1., theta_0, phi_0, 0.)));
CHECK(0. ==
Approx(utilities::calculate_rotated_v(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
CHECK(0. ==
Approx(utilities::calculate_rotated_w(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
}
SECTION("u = 0, v = 1, w = 0") {
const t_real theta_0 = constant::pi / 2.;
const t_real phi_0 = constant::pi / 2.;
CHECK(0. ==
Approx(utilities::calculate_rotated_u(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
CHECK(1. == Approx(utilities::calculate_rotated_v(0., 0., 1., theta_0, phi_0, 0.)));
CHECK(0. ==
Approx(utilities::calculate_rotated_w(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
}
SECTION("inverse") {
const t_real offset_alpha = constant::pi / 2.;
const t_real offset_beta = constant::pi / 3.;
const t_real offset_gamma = constant::pi / 3.;
const Vector<t_real> u = Vector<t_real>::Random(10);
const Vector<t_real> v = Vector<t_real>::Random(10);
const Vector<t_real> w = Vector<t_real>::Random(10);
const Vector<t_real> rotated_u =
utilities::calculate_rotated_u(u, v, w, offset_alpha, offset_beta, offset_gamma);
const Vector<t_real> rotated_v =
utilities::calculate_rotated_v(u, v, w, offset_alpha, offset_beta, offset_gamma);
const Vector<t_real> rotated_w =
utilities::calculate_rotated_w(u, v, w, offset_alpha, offset_beta, offset_gamma);
const Vector<t_real> inv_u = utilities::calculate_rotated_u(
rotated_u, rotated_v, rotated_w, (-offset_gamma), (-offset_beta), -offset_alpha);
const Vector<t_real> inv_v = utilities::calculate_rotated_v(
rotated_u, rotated_v, rotated_w, (-offset_gamma), (-offset_beta), -offset_alpha);
const Vector<t_real> inv_w = utilities::calculate_rotated_w(
rotated_u, rotated_v, rotated_w, (-offset_gamma), (-offset_beta), -offset_alpha);
CAPTURE(u);
CAPTURE(inv_u);
CHECK(u.isApprox(inv_u));
CHECK(v.isApprox(inv_v));
CHECK(w.isApprox(inv_w));
}
}
TEST_CASE("conjugate symmetry") {
t_uint const number_of_vis = 100;
t_uint const max_w = 100;
t_real const sigma_m = 1000;
const auto uv_data = utilities::random_sample_density(number_of_vis, 0, sigma_m, max_w);
const auto reflected_data = utilities::conjugate_w(uv_data);
REQUIRE(uv_data.size() == reflected_data.size());
for (t_uint i = 0; i < uv_data.size(); i++) {
if (uv_data.w(i) < 0) {
REQUIRE(uv_data.u(i) == Approx(-reflected_data.u(i)).epsilon(1e-12));
REQUIRE(uv_data.v(i) == Approx(-reflected_data.v(i)).epsilon(1e-12));
REQUIRE(uv_data.w(i) == Approx(-reflected_data.w(i)).epsilon(1e-12));
REQUIRE(uv_data.vis(i).real() ==
Approx(std::conj(reflected_data.vis(i)).real()).epsilon(1e-12));
REQUIRE(uv_data.vis(i).imag() ==
Approx(std::conj(reflected_data.vis(i)).imag()).epsilon(1e-12));
} else {
REQUIRE(uv_data.u(i) == Approx(reflected_data.u(i)).epsilon(1e-12));
REQUIRE(uv_data.v(i) == Approx(reflected_data.v(i)).epsilon(1e-12));
REQUIRE(uv_data.w(i) == Approx(reflected_data.w(i)).epsilon(1e-12));
REQUIRE(uv_data.vis(i).real() == Approx(reflected_data.vis(i).real()).epsilon(1e-12));
REQUIRE(uv_data.vis(i).imag() == Approx(reflected_data.vis(i).imag()).epsilon(1e-12));
}
}
}
|