File: utils.cc

package info (click to toggle)
purify 5.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 186,836 kB
  • sloc: cpp: 17,731; python: 510; xml: 182; makefile: 7; sh: 6
file content (434 lines) | stat: -rw-r--r-- 21,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#include <random>
#include "catch2/catch_all.hpp"
#include "purify/directories.h"
#include "purify/utilities.h"
#include "purify/uvw_utilities.h"

using namespace purify;
using Catch::Approx;

TEST_CASE("utilities [mod]", "[mod]") {
  Array<t_real> range;
  range.setLinSpaced(201, -100, 100);
  Array<t_real> output(range.size());
  for (t_int i = 0; i < range.size(); ++i) {
    output(i) = utilities::mod(range(i), 20);
  }
  Array<t_real> expected(201);
  expected << 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4,
      5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
      12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
      18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4,
      5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
      12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
      18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4,
      5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0;
  CHECK(expected.isApprox(output, 1e-13));
}

TEST_CASE("utilities [reshape]", "[reshape]") {
  // Testing if resize works the same as matlab's reshape
  Matrix<t_real> magic(4, 4);
  magic << 16, 2, 3, 13, 5, 11, 10, 8, 9, 7, 6, 12, 4, 14, 15, 1;
  CAPTURE(magic);
  Vector<t_real> magic_vector(16);
  magic_vector << 16, 5, 9, 4, 2, 11, 7, 14, 3, 10, 6, 15, 13, 8, 12, 1;
  Matrix<t_real> magic_matrix(16, 1);
  magic_matrix << 16, 5, 9, 4, 2, 11, 7, 14, 3, 10, 6, 15, 13, 8, 12, 1;
  magic_matrix.resize(4, 4);
  CHECK(magic.isApprox(magic_matrix, 1e-13));
  magic.resize(16, 1);
  CAPTURE(magic);
  CAPTURE(magic_vector);
  CHECK(magic.isApprox(magic_vector, 1e-13));
}
TEST_CASE("utilities [variance]", "[variance]") {
  // tests if mean and variance calculations are the same as done in matlab
  Vector<t_complex> real_data = Vector<t_complex>::Random(1000);
  Vector<t_complex> imag_data = Vector<t_complex>::Random(1000);
  t_complex I(0, 1);
  const Vector<t_complex> data = (real_data + I * imag_data);
  const t_complex mu = utilities::mean(data);
  CAPTURE(mu);
  CHECK(std::abs(mu - data.mean()) < 1e-13);
  const t_real var = utilities::variance(data);
  const t_real expected_var =
      std::abs(((data.array() - mu) * (data.array() - mu).conjugate()).sum()) / (data.size() - 1.);
  CAPTURE(var);
  CAPTURE(expected_var);
  CHECK(std::abs(var - expected_var) < 1e-13);
}
TEST_CASE("utilities [median]", "[median]") {
  Vector<t_real> x(100);
  x << 0.824149356327936, 0.218232263733975, 0.0996423029616137, 0.619505816445823,
      0.103814782651106, 0.799061803589637, 0.902925119282939, 0.312512845986667, 0.281589166159224,
      0.00678194126805909, 0.495871665666786, 0.988482243012287, 0.737940751495519,
      0.310719817391570, 0.600407500351151, 0.781679826661116, 0.111533124684943, 0.579329289388906,
      0.870371220311720, 0.689776249611124, 0.242970250921629, 0.342722251869759, 0.545439787975426,
      0.0675726926893163, 0.410448399698545, 0.237511397229394, 0.488973556424727,
      0.806066588301788, 0.377847951671179, 0.517978144507388, 0.0945978893449516,
      0.909095192849836, 0.207630593997342, 0.382064523540530, 0.660280265178685, 0.758373302277572,
      0.173069412392096, 0.517379761506326, 0.995338112303466, 0.707609406590709,
      0.0805673009239308, 0.0433080963751025, 0.491155562984260, 0.446596440169203,
      0.486798565845346, 0.165891122085342, 0.360656504813112, 0.880721941763713, 0.744352179996200,
      0.416771050919451, 0.907354808475253, 0.0943068737715302, 0.181326261018145,
      0.946587232183202, 0.100849056860381, 0.388038069974207, 0.289224862024986,
      0.0730868607975930, 0.194608005437083, 0.417485231103283, 0.292926559143940,
      0.702138511791249, 0.239713177935322, 0.959482620708005, 0.305462202307119, 0.154915458213084,
      0.555508419323977, 0.790543689112232, 0.443872293587844, 0.995818721727493, 0.436586698162556,
      0.304441172973089, 0.246510340916772, 0.960825251654563, 0.222880958438666, 0.395609181466230,
      0.224524553336017, 0.270024669015495, 0.418441479002589, 0.997735979773324, 0.911030403930781,
      0.550426888716037, 0.596335815776380, 0.0791452393029073, 0.576636037390549,
      0.898172311971638, 0.463310567259345, 0.398396426873099, 0.104461114798391, 0.652236388678710,
      0.991700005353602, 0.678072815973294, 0.428477593633851, 0.654801321575878, 0.588745528605038,
      0.745054910247788, 0.640870288169766, 0.503676186207024, 0.938041475805194, 0.605343580621484;
  t_real const median = 0.475054566552345;
  CHECK(std::abs(median - utilities::median(x)) < 1e-13);
}
TEST_CASE("utilities [read_write_vis]", "[read_write_vis]") {
  // tests the read and write function for a visibility data set
  std::string vis_file = vla_filename("at166B.3C129.c0.vis");
  std::string out_file = output_filename("test_output.vis");
  std::string out_w_file = output_filename("test_w_output.vis");
  auto uv_data = utilities::read_visibility(vis_file);
  utilities::write_visibility(uv_data, out_file);
  auto new_uv_data = utilities::read_visibility(out_file);
  CHECK(new_uv_data.u.isApprox(uv_data.u, 1e-13));
  CHECK(new_uv_data.v.isApprox(uv_data.v, 1e-13));
  CHECK(new_uv_data.vis.isApprox(uv_data.vis, 1e-13));
  CHECK(new_uv_data.weights.isApprox(uv_data.weights, 1e-13));
  t_int number_of_random_vis = 1e5;
  const bool w_term = true;
  auto random_uv_data = utilities::random_sample_density(number_of_random_vis, 0, constant::pi / 3);
  utilities::write_visibility(random_uv_data, out_w_file, w_term);
  auto new_random_uv_data = utilities::read_visibility(out_w_file, w_term);
  CHECK(new_random_uv_data.u.isApprox(random_uv_data.u, 1e-8));
  CHECK(new_random_uv_data.v.isApprox(random_uv_data.v, 1e-8));
  CHECK(new_random_uv_data.w.isApprox(random_uv_data.w, 1e-8));
  CHECK(new_random_uv_data.vis.isApprox(random_uv_data.vis, 1e-8));
  CHECK(new_random_uv_data.weights.isApprox(random_uv_data.weights, 1e-8));
}
TEST_CASE("read_mutiple_vis") {
  std::string csv_file = vla_filename("at166B.3C129.c0.vis");
  std::string h5_file = atca_filename("0332-391.h5");
  SECTION("one csv file") {
    const std::vector<std::string> names = {csv_file};
    const auto uv_data = utilities::read_visibility(csv_file);
    const auto uv_multi = utilities::read_visibility(names);
    CAPTURE(names.size());
    CAPTURE(uv_data.size());
    CHECK(uv_data.size() * names.size() == uv_multi.size());
    for (int i = 0; i < names.size(); i++) {
      CHECK(uv_data.u.isApprox(uv_multi.u.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.v.isApprox(uv_multi.v.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.w.isApprox(uv_multi.w.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.vis.isApprox(uv_multi.vis.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.weights.isApprox(uv_multi.weights.segment(i * uv_data.size(), uv_data.size())));
    }
  }
  SECTION("many csv files") {
    const std::vector<std::string> names = {csv_file, csv_file, csv_file};
    const auto uv_data = utilities::read_visibility(csv_file);
    const auto uv_multi = utilities::read_visibility(names);
    CAPTURE(names.size());
    CAPTURE(uv_data.size());
    CHECK(uv_data.size() * names.size() == uv_multi.size());
    for (int i = 0; i < names.size(); i++) {
      CHECK(uv_data.u.isApprox(uv_multi.u.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.v.isApprox(uv_multi.v.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.w.isApprox(uv_multi.w.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.vis.isApprox(uv_multi.vis.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.weights.isApprox(uv_multi.weights.segment(i * uv_data.size(), uv_data.size())));
    }
  }
#ifdef PURIFY_H5
  SECTION("one HDF5 file") {
    const std::vector<std::string> names = {h5_file};
    const auto uv_data = utilities::read_visibility(h5_file);
    const auto uv_multi = utilities::read_visibility(names);
    CAPTURE(names.size());
    CAPTURE(uv_data.size());
    CHECK(uv_data.size() * names.size() == uv_multi.size());
    for (int i = 0; i < names.size(); i++) {
      CHECK(uv_data.u.isApprox(uv_multi.u.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.v.isApprox(uv_multi.v.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.w.isApprox(uv_multi.w.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.vis.isApprox(uv_multi.vis.segment(i * uv_data.size(), uv_data.size())));
      CHECK(uv_data.weights.isApprox(uv_multi.weights.segment(i * uv_data.size(), uv_data.size())));
    }
  }
#endif
}
TEST_CASE("utilities [file exists]", "[file exists]") {
  std::string vis_file = vla_filename("at166B.3C129.c0.vis");
  // File should exist
  CHECK(utilities::file_exists(vis_file));
  // File should not exist
  CHECK(not utilities::file_exists("adfadsf"));
}
TEST_CASE("utilities [fit_fwhm]", "[fit_fwhm]") {
  // testing that the gaussian fitting works.
  t_int imsizex = 512;
  t_int imsizey = 512;
  Image<t_real> psf = Image<t_real>::Zero(imsizey, imsizex);
  // choice of parameters
  t_real const fwhm_x = 3;
  t_real const fwhm_y = 6;
  t_real const theta = 0;
  // setting up Gaussian calculation
  t_real const sigma_x = fwhm_x / (2 * std::sqrt(2 * std::log(2)));
  t_real const sigma_y = fwhm_y / (2 * std::sqrt(2 * std::log(2)));
  // calculating Gaussian
  t_real const a = std::pow(std::cos(theta), 2) / (2 * sigma_x * sigma_x) +
                   std::pow(std::sin(theta), 2) / (2 * sigma_y * sigma_y);
  t_real const b = -std::sin(2 * theta) / (4 * sigma_x * sigma_x) +
                   std::sin(2 * theta) / (4 * sigma_y * sigma_y);
  t_real const c = std::pow(std::sin(theta), 2) / (2 * sigma_x * sigma_x) +
                   std::pow(std::cos(theta), 2) / (2 * sigma_y * sigma_y);
  auto x0 = imsizex * 0.5;
  auto y0 = imsizey * 0.5;
  for (t_int i = 0; i < imsizex; ++i) {
    for (t_int j = 0; j < imsizey; ++j) {
      t_real x = i - x0;
      t_real y = j - y0;
      psf(j, i) = std::exp(-a * x * x + 2 * b * x * y - c * y * y);
    }
  }
  auto const fit = utilities::fit_fwhm(psf, 3);
  auto new_fwhm_x = std::get<0>(fit) * 2 * std::sqrt(2 * std::log(2));
  auto new_fwhm_y = std::get<1>(fit) * 2 * std::sqrt(2 * std::log(2));
  auto new_theta = std::get<2>(fit);
  CHECK(std::abs(new_fwhm_x - fwhm_x) < 1e-13);
  CHECK(std::abs(new_fwhm_y - fwhm_y) < 1e-13);
  CHECK(std::abs(new_theta - theta) < 1e-13);
}

TEST_CASE("utilities [sparse multiply]", "[sparse multiply]") {
  // Checking that the parallel sparse matrix multiplication works against Eigen.
  t_int cols = 1024 * 1024;
  t_int rows = 1e3;
  t_int nz_values = 16 * rows;
  Vector<t_complex> const x = Vector<t_complex>::Random(cols);

  std::vector<t_tripletList> tripletList;
  tripletList.reserve(nz_values);
  Vector<t_complex> M_values = Vector<t_complex>::Random(nz_values);
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_real_distribution<> dis_row(0, rows);
  std::uniform_real_distribution<> dis_col(0, cols);
  for (t_int i = 0; i < nz_values; ++i) {
    tripletList.emplace_back(std::floor(dis_row(rd)), std::floor(dis_col(rd)), M_values(i));
  }
  Sparse<t_complex> M(rows, cols);
  M.setFromTriplets(tripletList.begin(), tripletList.end());

  Vector<t_complex> const parallel_output = utilities::sparse_multiply_matrix(M, x);
  Vector<t_complex> const correct_output = M * x;

  for (t_int i = 0; i < rows; ++i) {
    CHECK(std::abs((correct_output(i) - parallel_output(i)) / correct_output(i)) < 1e-13);
  }
}

TEST_CASE("generate_baseline") {
  // testing if randomly generating a uvcoverage from baseline configuration works
  const Matrix<t_real> B = utilities::generate_antennas(4, 1);
  CHECK(B.allFinite());
  CHECK(B.rows() == 4);
  CHECK(B.cols() == 3);
  CAPTURE(B);
  SECTION("one wavelength") {
    const t_real frequency = constant::c;
    const t_real times = 0.;
    const t_real phi_dec = 0.;
    const t_real theta_ra = 0.;
    const t_real latitude = 0.;
    const utilities::vis_params test_coverage =
        utilities::antenna_to_coverage(B, frequency, times, theta_ra, phi_dec, latitude);
    CHECK(test_coverage.units == utilities::vis_units::lambda);
    const utilities::vis_params test_coverage_xyz = utilities::antenna_to_coverage(
        B.col(0), B.col(1), B.col(2), frequency, times, theta_ra, phi_dec, latitude);
    CHECK(test_coverage_xyz.u.isApprox(test_coverage.u));
    CHECK(test_coverage_xyz.v.isApprox(test_coverage.v));
    CHECK(test_coverage_xyz.w.isApprox(test_coverage.w));
    CHECK(test_coverage.u.allFinite());
    CHECK(test_coverage.v.allFinite());
    CHECK(test_coverage.w.allFinite());
    CHECK(test_coverage.size() == 2 * 3);
    const Vector<t_real> R0 = B.row(0) - B.row(1);
    const Vector<t_real> R1 = B.row(0) - B.row(2);
    const Vector<t_real> R2 = B.row(0) - B.row(3);
    const Vector<t_real> R3 = B.row(1) - B.row(2);
    const Vector<t_real> R4 = B.row(1) - B.row(3);
    const Vector<t_real> R5 = B.row(2) - B.row(3);
    CHECK(R0(0) == Approx(test_coverage.u(0)));
    CHECK(R0(1) == Approx(test_coverage.v(0)));
    CHECK(R0(2) == Approx(test_coverage.w(0)));
    CHECK(R1(0) == Approx(test_coverage.u(1)));
    CHECK(R1(1) == Approx(test_coverage.v(1)));
    CHECK(R1(2) == Approx(test_coverage.w(1)));
    CHECK(R2(0) == Approx(test_coverage.u(2)));
    CHECK(R2(1) == Approx(test_coverage.v(2)));
    CHECK(R2(2) == Approx(test_coverage.w(2)));
    CHECK(R3(0) == Approx(test_coverage.u(3)));
    CHECK(R3(1) == Approx(test_coverage.v(3)));
    CHECK(R3(2) == Approx(test_coverage.w(3)));
    CHECK(R4(0) == Approx(test_coverage.u(4)));
    CHECK(R4(1) == Approx(test_coverage.v(4)));
    CHECK(R4(2) == Approx(test_coverage.w(4)));
    CHECK(R5(0) == Approx(test_coverage.u(5)));
    CHECK(R5(1) == Approx(test_coverage.v(5)));
    CHECK(R5(2) == Approx(test_coverage.w(5)));
  }
  SECTION("more wavelengths") {
    const auto frequency = std::vector<t_real>{constant::c, 2 * constant::c, 5 * constant::c};
    const auto times = std::vector<t_real>{0, 2, 100};
    const t_real phi_dec = 0.;
    const t_real theta_ra = 0.;
    const t_real latitude = 0.;
    const t_int M = B.rows() * (B.rows() - 1) / 2;
    const utilities::vis_params test_coverage =
        utilities::antenna_to_coverage(B, frequency, times, theta_ra, phi_dec, latitude);
    CHECK(test_coverage.u.allFinite());
    CHECK(test_coverage.v.allFinite());
    CHECK(test_coverage.w.allFinite());
    CHECK(test_coverage.size() == M * frequency.size() * times.size());
    t_int f_index = 0;
    t_int t_index = 0;
    for (t_int k = 0; k < frequency.size(); k++) {
      for (t_int j = 0; j < times.size(); j++) {
        const t_real f = frequency.at(k);
        const t_real t = times.at(j);
        CAPTURE(f);
        CAPTURE(t);
        CAPTURE(f_index);
        CAPTURE(frequency.size());
        const utilities::vis_params test_coverage_f =
            utilities::antenna_to_coverage(B, f, t, theta_ra, phi_dec, latitude);
        const t_int index = (k + j * frequency.size()) * M;
        CAPTURE(test_coverage.u.segment(index, M).head(5));
        CAPTURE(test_coverage_f.u.head(5));
        CHECK(test_coverage_f.u.isApprox(test_coverage.u.segment(index, M)));
        CHECK(test_coverage_f.v.isApprox(test_coverage.v.segment(index, M)));
        CHECK(test_coverage_f.w.isApprox(test_coverage.w.segment(index, M)));
      }
    }
  }
}

TEST_CASE("generate coverage from antenna positions") {
  const std::string pos_filename = mwa_filename("Phase2_config.txt");

  auto const B = utilities::read_ant_positions(pos_filename);
  CHECK(B.rows() == 128);
  CHECK(B.cols() == 3);
  CHECK(B.allFinite());
  SECTION("generate coverage") {
    SECTION("one frequency") {
      const t_real f = constant::c;
      const t_real t = 0.;
      const t_real latitude = 0.;
      auto const coverage_from_file =
          utilities::read_ant_positions_to_coverage(pos_filename, f, t, 0., 0., latitude);
      auto const coverage_from_B = utilities::antenna_to_coverage(B, f, t, 0., 0., latitude);
      CHECK(coverage_from_file.u.isApprox(coverage_from_B.u));
      CHECK(coverage_from_file.v.isApprox(coverage_from_B.v));
      CHECK(coverage_from_file.w.isApprox(coverage_from_B.w));
    }
    SECTION("multi frequency") {
      const std::vector<t_real> f = {constant::c, constant::c * 4, constant::c * 2};
      const std::vector<t_real> t = {0., 4, 24};
      const t_real latitude = 0.;
      auto const coverage_from_file =
          utilities::read_ant_positions_to_coverage(pos_filename, f, t, 0., 0., latitude);
      auto const coverage_from_B = utilities::antenna_to_coverage(B, f, t, 0., 0., latitude);
      CHECK(coverage_from_file.u.isApprox(coverage_from_B.u));
      CHECK(coverage_from_file.v.isApprox(coverage_from_B.v));
      CHECK(coverage_from_file.w.isApprox(coverage_from_B.w));
    }
  }
}

TEST_CASE("rotations") {
  SECTION("u = 0, v = 0, w = 1") {
    const t_real theta_0 = 0.;
    const t_real phi_0 = 0.;
    CHECK(0. ==
          Approx(utilities::calculate_rotated_u(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
    CHECK(0. ==
          Approx(utilities::calculate_rotated_v(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
    CHECK(1. == Approx(utilities::calculate_rotated_w(0., 0., 1., theta_0, phi_0, 0.)));
  }
  SECTION("u = 1, v = 0, w = 0") {
    const t_real theta_0 = 0;
    const t_real phi_0 = constant::pi / 2.;
    CHECK(1. == Approx(utilities::calculate_rotated_u(0., 0., 1., theta_0, phi_0, 0.)));
    CHECK(0. ==
          Approx(utilities::calculate_rotated_v(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
    CHECK(0. ==
          Approx(utilities::calculate_rotated_w(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
  }
  SECTION("u = 0, v = 1, w = 0") {
    const t_real theta_0 = constant::pi / 2.;
    const t_real phi_0 = constant::pi / 2.;
    CHECK(0. ==
          Approx(utilities::calculate_rotated_u(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
    CHECK(1. == Approx(utilities::calculate_rotated_v(0., 0., 1., theta_0, phi_0, 0.)));
    CHECK(0. ==
          Approx(utilities::calculate_rotated_w(0., 0., 1., theta_0, phi_0, 0.)).margin(1e-6));
  }
  SECTION("inverse") {
    const t_real offset_alpha = constant::pi / 2.;
    const t_real offset_beta = constant::pi / 3.;
    const t_real offset_gamma = constant::pi / 3.;
    const Vector<t_real> u = Vector<t_real>::Random(10);
    const Vector<t_real> v = Vector<t_real>::Random(10);
    const Vector<t_real> w = Vector<t_real>::Random(10);

    const Vector<t_real> rotated_u =
        utilities::calculate_rotated_u(u, v, w, offset_alpha, offset_beta, offset_gamma);
    const Vector<t_real> rotated_v =
        utilities::calculate_rotated_v(u, v, w, offset_alpha, offset_beta, offset_gamma);
    const Vector<t_real> rotated_w =
        utilities::calculate_rotated_w(u, v, w, offset_alpha, offset_beta, offset_gamma);

    const Vector<t_real> inv_u = utilities::calculate_rotated_u(
        rotated_u, rotated_v, rotated_w, (-offset_gamma), (-offset_beta), -offset_alpha);
    const Vector<t_real> inv_v = utilities::calculate_rotated_v(
        rotated_u, rotated_v, rotated_w, (-offset_gamma), (-offset_beta), -offset_alpha);
    const Vector<t_real> inv_w = utilities::calculate_rotated_w(
        rotated_u, rotated_v, rotated_w, (-offset_gamma), (-offset_beta), -offset_alpha);
    CAPTURE(u);
    CAPTURE(inv_u);
    CHECK(u.isApprox(inv_u));
    CHECK(v.isApprox(inv_v));
    CHECK(w.isApprox(inv_w));
  }
}

TEST_CASE("conjugate symmetry") {
  t_uint const number_of_vis = 100;
  t_uint const max_w = 100;
  t_real const sigma_m = 1000;
  const auto uv_data = utilities::random_sample_density(number_of_vis, 0, sigma_m, max_w);
  const auto reflected_data = utilities::conjugate_w(uv_data);
  REQUIRE(uv_data.size() == reflected_data.size());
  for (t_uint i = 0; i < uv_data.size(); i++) {
    if (uv_data.w(i) < 0) {
      REQUIRE(uv_data.u(i) == Approx(-reflected_data.u(i)).epsilon(1e-12));
      REQUIRE(uv_data.v(i) == Approx(-reflected_data.v(i)).epsilon(1e-12));
      REQUIRE(uv_data.w(i) == Approx(-reflected_data.w(i)).epsilon(1e-12));
      REQUIRE(uv_data.vis(i).real() ==
              Approx(std::conj(reflected_data.vis(i)).real()).epsilon(1e-12));
      REQUIRE(uv_data.vis(i).imag() ==
              Approx(std::conj(reflected_data.vis(i)).imag()).epsilon(1e-12));
    } else {
      REQUIRE(uv_data.u(i) == Approx(reflected_data.u(i)).epsilon(1e-12));
      REQUIRE(uv_data.v(i) == Approx(reflected_data.v(i)).epsilon(1e-12));
      REQUIRE(uv_data.w(i) == Approx(reflected_data.w(i)).epsilon(1e-12));
      REQUIRE(uv_data.vis(i).real() == Approx(reflected_data.vis(i).real()).epsilon(1e-12));
      REQUIRE(uv_data.vis(i).imag() == Approx(reflected_data.vis(i).imag()).epsilon(1e-12));
    }
  }
}