1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
import os
import multiprocessing
import time
import numpy as np
import pyfits
import glob
import subprocess
import matplotlib.pyplot as plt
image = "30dor_256"
n_tests = 10
input_SNR = 30
def kernel_settings(kernel):
J = 4
oversample = 2
if kernel == "pswf":
J = 6
if kernel == "kb_interp":
oversample = 1.375
J = 5
if kernel == "box":
J = 1
if kernel == "kb_min":
oversample = 1.375
J = 5
if kernel == "kb_min4":
oversample = 1.375
J = 4
kernel = "kb_min"
if kernel == "kb_interp4":
oversample = 1.375
J = 4
kernel = "kb_interp"
return J, oversample, kernel
def run_test_padmm_reweighted((i, kernel, M_N_ratio, start_time, input_SNR, image)):
time.sleep(start_time)
J, oversample, kernel = kernel_settings(kernel)
os.system("screen -S "+ kernel + "_" + str(i) + " -d -m " +
"../build/cpp/example/padmm_reweighted_simulation " + kernel + " "
+ str(oversample) + " " +str(J) + " " +str(M_N_ratio) + " " + str(i) + " "+str(input_SNR)+ " " + str(image))
results_file = "../build/outputs/"+image+"_results_" + kernel + "_" + str(i) + ".txt"
while not os.path.exists(results_file):
time.sleep(1)
results = np.loadtxt(results_file, dtype = str)
SNR = results[0]
total_time = results[1]
os.system("rm " + results_file)
return [float(SNR), float(total_time)]
def run_test_padmm((i, kernel, M_N_ratio, start_time, input_SNR, image)):
time.sleep(start_time)
J, oversample, kernel = kernel_settings(kernel)
os.system("screen -S "+ kernel + "_" + str(i) + " -d -m " +
"../build/cpp/example/padmm_simulation padmm " + kernel + " "
+ str(oversample) + " " +str(J) + " " +str(M_N_ratio) + " " + str(i) + " "+str(input_SNR)+ " " + str(image))
results_file = "../build/outputs/"+image+"_results_" + kernel + "_" + str(i) + ".txt"
while not os.path.exists(results_file):
time.sleep(1)
results = np.loadtxt(results_file, dtype = str)
SNR = results[0]
total_time = results[1]
converged = results[2]
niters = results[3]
os.system("rm " + results_file)
return [float(SNR), float(total_time), int(converged), float(niters)]
def run_test_ms_clean((i, kernel, M_N_ratio, start_time, input_SNR, image)):
time.sleep(start_time)
J, oversample, kernel = kernel_settings(kernel)
os.system("screen -S "+ kernel + "_" + str(i) + " -d -m " +
"../build/cpp/example/padmm_simulation ms_clean " + kernel + " "
+ str(oversample) + " " +str(J) + " " +str(M_N_ratio) + " " + str(i) + " "+str(input_SNR)+ " " + str(image))
results_file = "../build/outputs/"+image+"_results_" + kernel + "_" + str(i) + ".txt"
while not os.path.exists(results_file):
time.sleep(1)
results = np.loadtxt(results_file, dtype = str)
SNR = results[0]
total_time = results[1]
converged = results[2]
niters = results[3]
os.system("rm " + results_file)
return [float(SNR), float(total_time), int(converged), float(niters)]
def run_test_clean((i, kernel, M_N_ratio, start_time, input_SNR, image)):
time.sleep(start_time)
J, oversample, kernel = kernel_settings(kernel)
os.system("screen -S "+ kernel + "_" + str(i) + " -d -m " +
"../build/cpp/example/padmm_simulation clean " + kernel + " "
+ str(oversample) + " " +str(J) + " " +str(M_N_ratio) + " " + str(i) + " "+str(input_SNR)+ " " + str(image))
results_file = "../build/outputs/"+image+"_results_" + kernel + "_" + str(i) + ".txt"
while not os.path.exists(results_file):
time.sleep(1)
results = np.loadtxt(results_file, dtype = str)
SNR = results[0]
total_time = results[1]
converged = results[2]
niters = results[3]
os.system("rm " + results_file)
return [float(SNR), float(total_time), int(converged), float(niters)]
def collect_data(args, results, M_N_ratios, kernel):
meantempSNR = []
errortempSNR = []
meantempTime = []
errortempTime = []
meantempIters = []
errortempIters = []
totaltempConverges = []
for m in M_N_ratios:
tempSNR = []
tempTime = []
tempIters = []
tempConverges = []
for i in range(len(args)):
if m == args[i][2]:
if args[i][1] == kernel:
tempSNR.append(results[i][0])
tempTime.append(results[i][1])
tempConverges.append(results[i][2])
tempIters.append(results[i][3])
tempSNR = np.array(tempSNR)
tempTime = np.array(tempTime)
tempConverges = np.array(tempConverges)
tempIters = np.array(tempIters)
meantempSNR.append(tempSNR.mean())
errortempSNR.append(tempSNR.std())
meantempTime.append(tempTime.mean())
errortempTime.append(tempTime.std())
meantempIters.append(tempIters.mean())
errortempIters.append(tempIters.std())
totaltempConverges.append(tempConverges.sum())
return meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges
def create_plots(args, results, M_N_ratios, name, kernels, colours,legend = []):
for k in range(len(kernels)):
meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges = collect_data(args, results, M_N_ratios, kernels[k])
plt.errorbar(M_N_ratios, meantempSNR, errortempSNR, fmt='', c = colours[k])
if len(legend) > 0:
plt.legend(legend)
plt.xlabel("M/N")
plt.ylabel("SNR, db")
plt.xlim(0, 2.2)
plt.ylim(5, 40)
plt.savefig(name + "_SNR_plot.pdf")
plt.clf()
for k in range(len(kernels)):
meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges = collect_data(args, results, M_N_ratios, kernels[k])
plt.errorbar(M_N_ratios, meantempTime, errortempTime, fmt='', c = colours[k])
plt.xlabel("M/N")
plt.ylabel("Time (seconds)")
plt.xlim(0, 2.2)
plt.savefig(name + "_Time_plot.pdf")
plt.clf()
for k in range(len(kernels)):
meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges = collect_data(args, results, M_N_ratios, kernels[k])
plt.errorbar(M_N_ratios, meantempIters, errortempIters, fmt='', c = colours[k])
plt.xlabel("M/N")
plt.ylabel("Iterations")
plt.xlim(0, 2.2)
plt.ylim(0, 110)
plt.savefig(name + "_Iterations_plot.pdf")
plt.clf()
for k in range(len(kernels)):
meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges = collect_data(args, results, M_N_ratios, kernels[k])
plt.scatter(M_N_ratios, totaltempConverges, c = colours[k])
plt.xlabel("M/N")
plt.ylabel("Number of converging tests")
plt.ylim(0, 11)
plt.xlim(0, 2.2)
plt.savefig(name + "_Converges_plot.pdf")
plt.clf()
for k in range(len(kernels)):
meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges = collect_data(args, results, M_N_ratios, kernels[k])
x = np.column_stack((meantempSNR, errortempSNR, meantempTime, errortempTime, meantempIters, errortempIters, totaltempConverges))
np.savetxt(name + '_' + kernels[k], x)
if __name__ == '__main__':
M_N_ratios = np.arange(1, 11) * 0.2
args = []
test_num = 0
#kernels = ["kb", "kb_interp", "pswf", "gauss", "box", "gauss_alt", "kb_min", "kb_min4"]#, "kb_interp4"]
kernels = ["kb", "pswf", "gauss", "gauss_alt", "box"]
total_tests = n_tests * len(kernels) * len(M_N_ratios)
for i in range(1, n_tests + 1):
for k in kernels:
for m in M_N_ratios:
test_num = test_num + 1
args.append((test_num, k, m, test_num * 1./ total_tests * 30., input_SNR, image))
print test_num
n_processors = multiprocessing.cpu_count() + 1
p = multiprocessing.Pool(min(n_processors, 1)) # Limiting the number of processes used to 40, otherwise it will cause problems with the user limit
#legend = ["Kaiser Bessel (KB)", "KB (Linear-interp, Min-oversample)", "PSWF", "Gaussian (Optimal)", "Box", "Gaussian (non-Optimal)", "KB (Min-oversample)", "KB4 (Min-oversample)"]#, "KB4 (Linear-interp, Min-oversample)"]
#colours = ['blue', 'red', 'black', 'green', 'magenta', 'cyan', 'yellow', "#800000"]#, "#808000"]
legend = ["Kaiser Bessel (KB)", "PSWF", "Gaussian (Optimal)", "Gaussian (non-Optimal)", "Box"]
colours = ['blue', 'black', 'green', 'cyan', 'magenta']
results = p.map(run_test_padmm, args)
create_plots(args, results, M_N_ratios, image + "_padmm_" + str(input_SNR) + "_", kernels, colours, legend)
print "PADMM Done!"
results = p.map(run_test_ms_clean, args)
create_plots(args, results, M_N_ratios, image + "_ms_clean" + str(input_SNR) + "_", kernels, colours)
print "MS CLEAN Done!"
results = p.map(run_test_clean, args)
create_plots(args, results, M_N_ratios, image + "_clean" + str(input_SNR) + "_", kernels, colours)
print "CLEAN Done!"
#results = p.map(run_test_padmm_reweighted, args)
#create_plots(args, results, M_N_ratios, image + "_padmm_reweighted" + str(input_SNR) + "_", kernels, colours, legend)
#print "PADMM REWEIGHTED Done!"
|