File: sshbn.c

package info (click to toggle)
putty 0.62-9+deb7u3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 9,348 kB
  • sloc: ansic: 79,830; objc: 3,101; perl: 1,600; python: 908; sh: 479; makefile: 153
file content (2019 lines) | stat: -rw-r--r-- 54,554 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
/*
 * Bignum routines for RSA and DH and stuff.
 */

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#include "misc.h"

/*
 * Usage notes:
 *  * Do not call the DIVMOD_WORD macro with expressions such as array
 *    subscripts, as some implementations object to this (see below).
 *  * Note that none of the division methods below will cope if the
 *    quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
 *    to avoid this case.
 *    If this condition occurs, in the case of the x86 DIV instruction,
 *    an overflow exception will occur, which (according to a correspondent)
 *    will manifest on Windows as something like
 *      0xC0000095: Integer overflow
 *    The C variant won't give the right answer, either.
 */

#if defined __GNUC__ && defined __i386__
typedef unsigned long BignumInt;
typedef unsigned long long BignumDblInt;
#define BIGNUM_INT_MASK  0xFFFFFFFFUL
#define BIGNUM_TOP_BIT   0x80000000UL
#define BIGNUM_INT_BITS  32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) \
    __asm__("div %2" : \
	    "=d" (r), "=a" (q) : \
	    "r" (w), "d" (hi), "a" (lo))
#elif defined _MSC_VER && defined _M_IX86
typedef unsigned __int32 BignumInt;
typedef unsigned __int64 BignumDblInt;
#define BIGNUM_INT_MASK  0xFFFFFFFFUL
#define BIGNUM_TOP_BIT   0x80000000UL
#define BIGNUM_INT_BITS  32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
/* Note: MASM interprets array subscripts in the macro arguments as
 * assembler syntax, which gives the wrong answer. Don't supply them.
 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
    __asm mov edx, hi \
    __asm mov eax, lo \
    __asm div w \
    __asm mov r, edx \
    __asm mov q, eax \
} while(0)
#elif defined _LP64
/* 64-bit architectures can do 32x32->64 chunks at a time */
typedef unsigned int BignumInt;
typedef unsigned long BignumDblInt;
#define BIGNUM_INT_MASK  0xFFFFFFFFU
#define BIGNUM_TOP_BIT   0x80000000U
#define BIGNUM_INT_BITS  32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
    BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
    q = n / w; \
    r = n % w; \
} while (0)
#elif defined _LLP64
/* 64-bit architectures in which unsigned long is 32 bits, not 64 */
typedef unsigned long BignumInt;
typedef unsigned long long BignumDblInt;
#define BIGNUM_INT_MASK  0xFFFFFFFFUL
#define BIGNUM_TOP_BIT   0x80000000UL
#define BIGNUM_INT_BITS  32
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
    BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
    q = n / w; \
    r = n % w; \
} while (0)
#else
/* Fallback for all other cases */
typedef unsigned short BignumInt;
typedef unsigned long BignumDblInt;
#define BIGNUM_INT_MASK  0xFFFFU
#define BIGNUM_TOP_BIT   0x8000U
#define BIGNUM_INT_BITS  16
#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
#define DIVMOD_WORD(q, r, hi, lo, w) do { \
    BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
    q = n / w; \
    r = n % w; \
} while (0)
#endif

#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)

#define BIGNUM_INTERNAL
typedef BignumInt *Bignum;

#include "ssh.h"

BignumInt bnZero[1] = { 0 };
BignumInt bnOne[2] = { 1, 1 };

/*
 * The Bignum format is an array of `BignumInt'. The first
 * element of the array counts the remaining elements. The
 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
 * significant digit first. (So it's trivial to extract the bit
 * with value 2^n for any n.)
 *
 * All Bignums in this module are positive. Negative numbers must
 * be dealt with outside it.
 *
 * INVARIANT: the most significant word of any Bignum must be
 * nonzero.
 */

Bignum Zero = bnZero, One = bnOne;

static Bignum newbn(int length)
{
    Bignum b;

    assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS);

    b = snewn(length + 1, BignumInt);
    if (!b)
	abort();		       /* FIXME */
    memset(b, 0, (length + 1) * sizeof(*b));
    b[0] = length;
    return b;
}

void bn_restore_invariant(Bignum b)
{
    while (b[0] > 1 && b[b[0]] == 0)
	b[0]--;
}

Bignum copybn(Bignum orig)
{
    Bignum b = snewn(orig[0] + 1, BignumInt);
    if (!b)
	abort();		       /* FIXME */
    memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
    return b;
}

void freebn(Bignum b)
{
    /*
     * Burn the evidence, just in case.
     */
    memset(b, 0, sizeof(b[0]) * (b[0] + 1));
    sfree(b);
}

Bignum bn_power_2(int n)
{
    Bignum ret;

    assert(n >= 0);

    ret = newbn(n / BIGNUM_INT_BITS + 1);
    bignum_set_bit(ret, n, 1);
    return ret;
}

/*
 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
 * off the top.
 */
static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
                              BignumInt *c, int len)
{
    int i;
    BignumDblInt carry = 0;

    for (i = len-1; i >= 0; i--) {
        carry += (BignumDblInt)a[i] + b[i];
        c[i] = (BignumInt)carry;
        carry >>= BIGNUM_INT_BITS;
    }

    return (BignumInt)carry;
}

/*
 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
 * is ignored.
 */
static void internal_sub(const BignumInt *a, const BignumInt *b,
                         BignumInt *c, int len)
{
    int i;
    BignumDblInt carry = 1;

    for (i = len-1; i >= 0; i--) {
        carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
        c[i] = (BignumInt)carry;
        carry >>= BIGNUM_INT_BITS;
    }
}

/*
 * Compute c = a * b.
 * Input is in the first len words of a and b.
 * Result is returned in the first 2*len words of c.
 *
 * 'scratch' must point to an array of BignumInt of size at least
 * mul_compute_scratch(len). (This covers the needs of internal_mul
 * and all its recursive calls to itself.)
 */
#define KARATSUBA_THRESHOLD 50
static int mul_compute_scratch(int len)
{
    int ret = 0;
    while (len > KARATSUBA_THRESHOLD) {
        int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
        int midlen = botlen + 1;
        ret += 4*midlen;
        len = midlen;
    }
    return ret;
}
static void internal_mul(const BignumInt *a, const BignumInt *b,
			 BignumInt *c, int len, BignumInt *scratch)
{
    if (len > KARATSUBA_THRESHOLD) {
        int i;

        /*
         * Karatsuba divide-and-conquer algorithm. Cut each input in
         * half, so that it's expressed as two big 'digits' in a giant
         * base D:
         *
         *   a = a_1 D + a_0
         *   b = b_1 D + b_0
         *
         * Then the product is of course
         *
         *  ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
         *
         * and we compute the three coefficients by recursively
         * calling ourself to do half-length multiplications.
         *
         * The clever bit that makes this worth doing is that we only
         * need _one_ half-length multiplication for the central
         * coefficient rather than the two that it obviouly looks
         * like, because we can use a single multiplication to compute
         *
         *   (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
         *
         * and then we subtract the other two coefficients (a_1 b_1
         * and a_0 b_0) which we were computing anyway.
         *
         * Hence we get to multiply two numbers of length N in about
         * three times as much work as it takes to multiply numbers of
         * length N/2, which is obviously better than the four times
         * as much work it would take if we just did a long
         * conventional multiply.
         */

        int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
        int midlen = botlen + 1;
        BignumDblInt carry;
#ifdef KARA_DEBUG
        int i;
#endif

        /*
         * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
         * in the output array, so we can compute them immediately in
         * place.
         */

#ifdef KARA_DEBUG
        printf("a1,a0 = 0x");
        for (i = 0; i < len; i++) {
            if (i == toplen) printf(", 0x");
            printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
        }
        printf("\n");
        printf("b1,b0 = 0x");
        for (i = 0; i < len; i++) {
            if (i == toplen) printf(", 0x");
            printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
        }
        printf("\n");
#endif

        /* a_1 b_1 */
        internal_mul(a, b, c, toplen, scratch);
#ifdef KARA_DEBUG
        printf("a1b1 = 0x");
        for (i = 0; i < 2*toplen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
        }
        printf("\n");
#endif

        /* a_0 b_0 */
        internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
#ifdef KARA_DEBUG
        printf("a0b0 = 0x");
        for (i = 0; i < 2*botlen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
        }
        printf("\n");
#endif

        /* Zero padding. midlen exceeds toplen by at most 2, so just
         * zero the first two words of each input and the rest will be
         * copied over. */
        scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;

        for (i = 0; i < toplen; i++) {
            scratch[midlen - toplen + i] = a[i]; /* a_1 */
            scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
        }

        /* compute a_1 + a_0 */
        scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
#ifdef KARA_DEBUG
        printf("a1plusa0 = 0x");
        for (i = 0; i < midlen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
        }
        printf("\n");
#endif
        /* compute b_1 + b_0 */
        scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
                                       scratch+midlen+1, botlen);
#ifdef KARA_DEBUG
        printf("b1plusb0 = 0x");
        for (i = 0; i < midlen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
        }
        printf("\n");
#endif

        /*
         * Now we can do the third multiplication.
         */
        internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
                     scratch + 4*midlen);
#ifdef KARA_DEBUG
        printf("a1plusa0timesb1plusb0 = 0x");
        for (i = 0; i < 2*midlen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
        }
        printf("\n");
#endif

        /*
         * Now we can reuse the first half of 'scratch' to compute the
         * sum of the outer two coefficients, to subtract from that
         * product to obtain the middle one.
         */
        scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
        for (i = 0; i < 2*toplen; i++)
            scratch[2*midlen - 2*toplen + i] = c[i];
        scratch[1] = internal_add(scratch+2, c + 2*toplen,
                                  scratch+2, 2*botlen);
#ifdef KARA_DEBUG
        printf("a1b1plusa0b0 = 0x");
        for (i = 0; i < 2*midlen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
        }
        printf("\n");
#endif

        internal_sub(scratch + 2*midlen, scratch,
                     scratch + 2*midlen, 2*midlen);
#ifdef KARA_DEBUG
        printf("a1b0plusa0b1 = 0x");
        for (i = 0; i < 2*midlen; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
        }
        printf("\n");
#endif

        /*
         * And now all we need to do is to add that middle coefficient
         * back into the output. We may have to propagate a carry
         * further up the output, but we can be sure it won't
         * propagate right the way off the top.
         */
        carry = internal_add(c + 2*len - botlen - 2*midlen,
                             scratch + 2*midlen,
                             c + 2*len - botlen - 2*midlen, 2*midlen);
        i = 2*len - botlen - 2*midlen - 1;
        while (carry) {
            assert(i >= 0);
            carry += c[i];
            c[i] = (BignumInt)carry;
            carry >>= BIGNUM_INT_BITS;
            i--;
        }
#ifdef KARA_DEBUG
        printf("ab = 0x");
        for (i = 0; i < 2*len; i++) {
            printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
        }
        printf("\n");
#endif

    } else {
        int i;
        BignumInt carry;
        BignumDblInt t;
        const BignumInt *ap, *bp;
        BignumInt *cp, *cps;

        /*
         * Multiply in the ordinary O(N^2) way.
         */

        for (i = 0; i < 2 * len; i++)
            c[i] = 0;

        for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
            carry = 0;
            for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
                t = (MUL_WORD(*ap, *bp) + carry) + *cp;
                *cp = (BignumInt) t;
                carry = (BignumInt)(t >> BIGNUM_INT_BITS);
            }
            *cp = carry;
        }
    }
}

/*
 * Variant form of internal_mul used for the initial step of
 * Montgomery reduction. Only bothers outputting 'len' words
 * (everything above that is thrown away).
 */
static void internal_mul_low(const BignumInt *a, const BignumInt *b,
                             BignumInt *c, int len, BignumInt *scratch)
{
    if (len > KARATSUBA_THRESHOLD) {
        int i;

        /*
         * Karatsuba-aware version of internal_mul_low. As before, we
         * express each input value as a shifted combination of two
         * halves:
         *
         *   a = a_1 D + a_0
         *   b = b_1 D + b_0
         *
         * Then the full product is, as before,
         *
         *  ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
         *
         * Provided we choose D on the large side (so that a_0 and b_0
         * are _at least_ as long as a_1 and b_1), we don't need the
         * topmost term at all, and we only need half of the middle
         * term. So there's no point in doing the proper Karatsuba
         * optimisation which computes the middle term using the top
         * one, because we'd take as long computing the top one as
         * just computing the middle one directly.
         *
         * So instead, we do a much more obvious thing: we call the
         * fully optimised internal_mul to compute a_0 b_0, and we
         * recursively call ourself to compute the _bottom halves_ of
         * a_1 b_0 and a_0 b_1, each of which we add into the result
         * in the obvious way.
         *
         * In other words, there's no actual Karatsuba _optimisation_
         * in this function; the only benefit in doing it this way is
         * that we call internal_mul proper for a large part of the
         * work, and _that_ can optimise its operation.
         */

        int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */

        /*
         * Scratch space for the various bits and pieces we're going
         * to be adding together: we need botlen*2 words for a_0 b_0
         * (though we may end up throwing away its topmost word), and
         * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
         * to exactly 2*len.
         */

        /* a_0 b_0 */
        internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
                     scratch + 2*len);

        /* a_1 b_0 */
        internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
                         scratch + 2*len);

        /* a_0 b_1 */
        internal_mul_low(a + len - toplen, b, scratch, toplen,
                         scratch + 2*len);

        /* Copy the bottom half of the big coefficient into place */
        for (i = 0; i < botlen; i++)
            c[toplen + i] = scratch[2*toplen + botlen + i];

        /* Add the two small coefficients, throwing away the returned carry */
        internal_add(scratch, scratch + toplen, scratch, toplen);

        /* And add that to the large coefficient, leaving the result in c. */
        internal_add(scratch, scratch + 2*toplen + botlen - toplen,
                     c, toplen);

    } else {
        int i;
        BignumInt carry;
        BignumDblInt t;
        const BignumInt *ap, *bp;
        BignumInt *cp, *cps;

        /*
         * Multiply in the ordinary O(N^2) way.
         */

        for (i = 0; i < len; i++)
            c[i] = 0;

        for (cps = c + len, ap = a + len; ap-- > a; cps--) {
            carry = 0;
            for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
                t = (MUL_WORD(*ap, *bp) + carry) + *cp;
                *cp = (BignumInt) t;
                carry = (BignumInt)(t >> BIGNUM_INT_BITS);
            }
        }
    }
}

/*
 * Montgomery reduction. Expects x to be a big-endian array of 2*len
 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
 * x' < n.
 *
 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
 * each, containing respectively n and the multiplicative inverse of
 * -n mod r.
 *
 * 'tmp' is an array of BignumInt used as scratch space, of length at
 * least 3*len + mul_compute_scratch(len).
 */
static void monty_reduce(BignumInt *x, const BignumInt *n,
                         const BignumInt *mninv, BignumInt *tmp, int len)
{
    int i;
    BignumInt carry;

    /*
     * Multiply x by (-n)^{-1} mod r. This gives us a value m such
     * that mn is congruent to -x mod r. Hence, mn+x is an exact
     * multiple of r, and is also (obviously) congruent to x mod n.
     */
    internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);

    /*
     * Compute t = (mn+x)/r in ordinary, non-modular, integer
     * arithmetic. By construction this is exact, and is congruent mod
     * n to x * r^{-1}, i.e. the answer we want.
     *
     * The following multiply leaves that answer in the _most_
     * significant half of the 'x' array, so then we must shift it
     * down.
     */
    internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
    carry = internal_add(x, tmp+len, x, 2*len);
    for (i = 0; i < len; i++)
        x[len + i] = x[i], x[i] = 0;

    /*
     * Reduce t mod n. This doesn't require a full-on division by n,
     * but merely a test and single optional subtraction, since we can
     * show that 0 <= t < 2n.
     *
     * Proof:
     *  + we computed m mod r, so 0 <= m < r.
     *  + so 0 <= mn < rn, obviously
     *  + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
     *  + yielding 0 <= (mn+x)/r < 2n as required.
     */
    if (!carry) {
        for (i = 0; i < len; i++)
            if (x[len + i] != n[i])
                break;
    }
    if (carry || i >= len || x[len + i] > n[i])
        internal_sub(x+len, n, x+len, len);
}

static void internal_add_shifted(BignumInt *number,
				 unsigned n, int shift)
{
    int word = 1 + (shift / BIGNUM_INT_BITS);
    int bshift = shift % BIGNUM_INT_BITS;
    BignumDblInt addend;

    addend = (BignumDblInt)n << bshift;

    while (addend) {
        assert(word <= number[0]);
	addend += number[word];
	number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
	addend >>= BIGNUM_INT_BITS;
	word++;
    }
}

/*
 * Compute a = a % m.
 * Input in first alen words of a and first mlen words of m.
 * Output in first alen words of a
 * (of which first alen-mlen words will be zero).
 * The MSW of m MUST have its high bit set.
 * Quotient is accumulated in the `quotient' array, which is a Bignum
 * rather than the internal bigendian format. Quotient parts are shifted
 * left by `qshift' before adding into quot.
 */
static void internal_mod(BignumInt *a, int alen,
			 BignumInt *m, int mlen,
			 BignumInt *quot, int qshift)
{
    BignumInt m0, m1;
    unsigned int h;
    int i, k;

    m0 = m[0];
    assert(m0 >> (BIGNUM_INT_BITS-1) == 1);
    if (mlen > 1)
	m1 = m[1];
    else
	m1 = 0;

    for (i = 0; i <= alen - mlen; i++) {
	BignumDblInt t;
	unsigned int q, r, c, ai1;

	if (i == 0) {
	    h = 0;
	} else {
	    h = a[i - 1];
	    a[i - 1] = 0;
	}

	if (i == alen - 1)
	    ai1 = 0;
	else
	    ai1 = a[i + 1];

	/* Find q = h:a[i] / m0 */
	if (h >= m0) {
	    /*
	     * Special case.
	     * 
	     * To illustrate it, suppose a BignumInt is 8 bits, and
	     * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
	     * our initial division will be 0xA123 / 0xA1, which
	     * will give a quotient of 0x100 and a divide overflow.
	     * However, the invariants in this division algorithm
	     * are not violated, since the full number A1:23:... is
	     * _less_ than the quotient prefix A1:B2:... and so the
	     * following correction loop would have sorted it out.
	     * 
	     * In this situation we set q to be the largest
	     * quotient we _can_ stomach (0xFF, of course).
	     */
	    q = BIGNUM_INT_MASK;
	} else {
	    /* Macro doesn't want an array subscript expression passed
	     * into it (see definition), so use a temporary. */
	    BignumInt tmplo = a[i];
	    DIVMOD_WORD(q, r, h, tmplo, m0);

	    /* Refine our estimate of q by looking at
	     h:a[i]:a[i+1] / m0:m1 */
	    t = MUL_WORD(m1, q);
	    if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
		q--;
		t -= m1;
		r = (r + m0) & BIGNUM_INT_MASK;     /* overflow? */
		if (r >= (BignumDblInt) m0 &&
		    t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
	    }
	}

	/* Subtract q * m from a[i...] */
	c = 0;
	for (k = mlen - 1; k >= 0; k--) {
	    t = MUL_WORD(q, m[k]);
	    t += c;
	    c = (unsigned)(t >> BIGNUM_INT_BITS);
	    if ((BignumInt) t > a[i + k])
		c++;
	    a[i + k] -= (BignumInt) t;
	}

	/* Add back m in case of borrow */
	if (c != h) {
	    t = 0;
	    for (k = mlen - 1; k >= 0; k--) {
		t += m[k];
		t += a[i + k];
		a[i + k] = (BignumInt) t;
		t = t >> BIGNUM_INT_BITS;
	    }
	    q--;
	}
	if (quot)
	    internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
    }
}

/*
 * Compute (base ^ exp) % mod, the pedestrian way.
 */
Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
{
    BignumInt *a, *b, *n, *m, *scratch;
    int mshift;
    int mlen, scratchlen, i, j;
    Bignum base, result;

    /*
     * The most significant word of mod needs to be non-zero. It
     * should already be, but let's make sure.
     */
    assert(mod[mod[0]] != 0);

    /*
     * Make sure the base is smaller than the modulus, by reducing
     * it modulo the modulus if not.
     */
    base = bigmod(base_in, mod);

    /* Allocate m of size mlen, copy mod to m */
    /* We use big endian internally */
    mlen = mod[0];
    m = snewn(mlen, BignumInt);
    for (j = 0; j < mlen; j++)
	m[j] = mod[mod[0] - j];

    /* Shift m left to make msb bit set */
    for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
	if ((m[0] << mshift) & BIGNUM_TOP_BIT)
	    break;
    if (mshift) {
	for (i = 0; i < mlen - 1; i++)
	    m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
	m[mlen - 1] = m[mlen - 1] << mshift;
    }

    /* Allocate n of size mlen, copy base to n */
    n = snewn(mlen, BignumInt);
    i = mlen - base[0];
    for (j = 0; j < i; j++)
	n[j] = 0;
    for (j = 0; j < (int)base[0]; j++)
	n[i + j] = base[base[0] - j];

    /* Allocate a and b of size 2*mlen. Set a = 1 */
    a = snewn(2 * mlen, BignumInt);
    b = snewn(2 * mlen, BignumInt);
    for (i = 0; i < 2 * mlen; i++)
	a[i] = 0;
    a[2 * mlen - 1] = 1;

    /* Scratch space for multiplies */
    scratchlen = mul_compute_scratch(mlen);
    scratch = snewn(scratchlen, BignumInt);

    /* Skip leading zero bits of exp. */
    i = 0;
    j = BIGNUM_INT_BITS-1;
    while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
	j--;
	if (j < 0) {
	    i++;
	    j = BIGNUM_INT_BITS-1;
	}
    }

    /* Main computation */
    while (i < (int)exp[0]) {
	while (j >= 0) {
	    internal_mul(a + mlen, a + mlen, b, mlen, scratch);
	    internal_mod(b, mlen * 2, m, mlen, NULL, 0);
	    if ((exp[exp[0] - i] & (1 << j)) != 0) {
		internal_mul(b + mlen, n, a, mlen, scratch);
		internal_mod(a, mlen * 2, m, mlen, NULL, 0);
	    } else {
		BignumInt *t;
		t = a;
		a = b;
		b = t;
	    }
	    j--;
	}
	i++;
	j = BIGNUM_INT_BITS-1;
    }

    /* Fixup result in case the modulus was shifted */
    if (mshift) {
	for (i = mlen - 1; i < 2 * mlen - 1; i++)
	    a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
	a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
	internal_mod(a, mlen * 2, m, mlen, NULL, 0);
	for (i = 2 * mlen - 1; i >= mlen; i--)
	    a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
    }

    /* Copy result to buffer */
    result = newbn(mod[0]);
    for (i = 0; i < mlen; i++)
	result[result[0] - i] = a[i + mlen];
    while (result[0] > 1 && result[result[0]] == 0)
	result[0]--;

    /* Free temporary arrays */
    for (i = 0; i < 2 * mlen; i++)
	a[i] = 0;
    sfree(a);
    for (i = 0; i < scratchlen; i++)
	scratch[i] = 0;
    sfree(scratch);
    for (i = 0; i < 2 * mlen; i++)
	b[i] = 0;
    sfree(b);
    for (i = 0; i < mlen; i++)
	m[i] = 0;
    sfree(m);
    for (i = 0; i < mlen; i++)
	n[i] = 0;
    sfree(n);

    freebn(base);

    return result;
}

/*
 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
 * technique where possible, falling back to modpow_simple otherwise.
 */
Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
{
    BignumInt *a, *b, *x, *n, *mninv, *scratch;
    int len, scratchlen, i, j;
    Bignum base, base2, r, rn, inv, result;

    /*
     * The most significant word of mod needs to be non-zero. It
     * should already be, but let's make sure.
     */
    assert(mod[mod[0]] != 0);

    /*
     * mod had better be odd, or we can't do Montgomery multiplication
     * using a power of two at all.
     */
    if (!(mod[1] & 1))
        return modpow_simple(base_in, exp, mod);

    /*
     * Make sure the base is smaller than the modulus, by reducing
     * it modulo the modulus if not.
     */
    base = bigmod(base_in, mod);

    /*
     * Compute the inverse of n mod r, for monty_reduce. (In fact we
     * want the inverse of _minus_ n mod r, but we'll sort that out
     * below.)
     */
    len = mod[0];
    r = bn_power_2(BIGNUM_INT_BITS * len);
    inv = modinv(mod, r);
    assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */

    /*
     * Multiply the base by r mod n, to get it into Montgomery
     * representation.
     */
    base2 = modmul(base, r, mod);
    freebn(base);
    base = base2;

    rn = bigmod(r, mod);               /* r mod n, i.e. Montgomerified 1 */

    freebn(r);                         /* won't need this any more */

    /*
     * Set up internal arrays of the right lengths, in big-endian
     * format, containing the base, the modulus, and the modulus's
     * inverse.
     */
    n = snewn(len, BignumInt);
    for (j = 0; j < len; j++)
	n[len - 1 - j] = mod[j + 1];

    mninv = snewn(len, BignumInt);
    for (j = 0; j < len; j++)
	mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
    freebn(inv);         /* we don't need this copy of it any more */
    /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
    x = snewn(len, BignumInt);
    for (j = 0; j < len; j++)
        x[j] = 0;
    internal_sub(x, mninv, mninv, len);

    /* x = snewn(len, BignumInt); */ /* already done above */
    for (j = 0; j < len; j++)
	x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
    freebn(base);        /* we don't need this copy of it any more */

    a = snewn(2*len, BignumInt);
    b = snewn(2*len, BignumInt);
    for (j = 0; j < len; j++)
	a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
    freebn(rn);

    /* Scratch space for multiplies */
    scratchlen = 3*len + mul_compute_scratch(len);
    scratch = snewn(scratchlen, BignumInt);

    /* Skip leading zero bits of exp. */
    i = 0;
    j = BIGNUM_INT_BITS-1;
    while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
	j--;
	if (j < 0) {
	    i++;
	    j = BIGNUM_INT_BITS-1;
	}
    }

    /* Main computation */
    while (i < (int)exp[0]) {
	while (j >= 0) {
	    internal_mul(a + len, a + len, b, len, scratch);
            monty_reduce(b, n, mninv, scratch, len);
	    if ((exp[exp[0] - i] & (1 << j)) != 0) {
                internal_mul(b + len, x, a, len,  scratch);
                monty_reduce(a, n, mninv, scratch, len);
	    } else {
		BignumInt *t;
		t = a;
		a = b;
		b = t;
	    }
	    j--;
	}
	i++;
	j = BIGNUM_INT_BITS-1;
    }

    /*
     * Final monty_reduce to get back from the adjusted Montgomery
     * representation.
     */
    monty_reduce(a, n, mninv, scratch, len);

    /* Copy result to buffer */
    result = newbn(mod[0]);
    for (i = 0; i < len; i++)
	result[result[0] - i] = a[i + len];
    while (result[0] > 1 && result[result[0]] == 0)
	result[0]--;

    /* Free temporary arrays */
    for (i = 0; i < scratchlen; i++)
	scratch[i] = 0;
    sfree(scratch);
    for (i = 0; i < 2 * len; i++)
	a[i] = 0;
    sfree(a);
    for (i = 0; i < 2 * len; i++)
	b[i] = 0;
    sfree(b);
    for (i = 0; i < len; i++)
	mninv[i] = 0;
    sfree(mninv);
    for (i = 0; i < len; i++)
	n[i] = 0;
    sfree(n);
    for (i = 0; i < len; i++)
	x[i] = 0;
    sfree(x);

    return result;
}

/*
 * Compute (p * q) % mod.
 * The most significant word of mod MUST be non-zero.
 * We assume that the result array is the same size as the mod array.
 */
Bignum modmul(Bignum p, Bignum q, Bignum mod)
{
    BignumInt *a, *n, *m, *o, *scratch;
    int mshift, scratchlen;
    int pqlen, mlen, rlen, i, j;
    Bignum result;

    /*
     * The most significant word of mod needs to be non-zero. It
     * should already be, but let's make sure.
     */
    assert(mod[mod[0]] != 0);

    /* Allocate m of size mlen, copy mod to m */
    /* We use big endian internally */
    mlen = mod[0];
    m = snewn(mlen, BignumInt);
    for (j = 0; j < mlen; j++)
	m[j] = mod[mod[0] - j];

    /* Shift m left to make msb bit set */
    for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
	if ((m[0] << mshift) & BIGNUM_TOP_BIT)
	    break;
    if (mshift) {
	for (i = 0; i < mlen - 1; i++)
	    m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
	m[mlen - 1] = m[mlen - 1] << mshift;
    }

    pqlen = (p[0] > q[0] ? p[0] : q[0]);

    /*
     * Make sure that we're allowing enough space. The shifting below
     * will underflow the vectors we allocate if pqlen is too small.
     */
    if (2*pqlen <= mlen)
        pqlen = mlen/2 + 1;

    /* Allocate n of size pqlen, copy p to n */
    n = snewn(pqlen, BignumInt);
    i = pqlen - p[0];
    for (j = 0; j < i; j++)
	n[j] = 0;
    for (j = 0; j < (int)p[0]; j++)
	n[i + j] = p[p[0] - j];

    /* Allocate o of size pqlen, copy q to o */
    o = snewn(pqlen, BignumInt);
    i = pqlen - q[0];
    for (j = 0; j < i; j++)
	o[j] = 0;
    for (j = 0; j < (int)q[0]; j++)
	o[i + j] = q[q[0] - j];

    /* Allocate a of size 2*pqlen for result */
    a = snewn(2 * pqlen, BignumInt);

    /* Scratch space for multiplies */
    scratchlen = mul_compute_scratch(pqlen);
    scratch = snewn(scratchlen, BignumInt);

    /* Main computation */
    internal_mul(n, o, a, pqlen, scratch);
    internal_mod(a, pqlen * 2, m, mlen, NULL, 0);

    /* Fixup result in case the modulus was shifted */
    if (mshift) {
	for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
	    a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
	a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
	internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
	for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
	    a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
    }

    /* Copy result to buffer */
    rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
    result = newbn(rlen);
    for (i = 0; i < rlen; i++)
	result[result[0] - i] = a[i + 2 * pqlen - rlen];
    while (result[0] > 1 && result[result[0]] == 0)
	result[0]--;

    /* Free temporary arrays */
    for (i = 0; i < scratchlen; i++)
	scratch[i] = 0;
    sfree(scratch);
    for (i = 0; i < 2 * pqlen; i++)
	a[i] = 0;
    sfree(a);
    for (i = 0; i < mlen; i++)
	m[i] = 0;
    sfree(m);
    for (i = 0; i < pqlen; i++)
	n[i] = 0;
    sfree(n);
    for (i = 0; i < pqlen; i++)
	o[i] = 0;
    sfree(o);

    return result;
}

/*
 * Compute p % mod.
 * The most significant word of mod MUST be non-zero.
 * We assume that the result array is the same size as the mod array.
 * We optionally write out a quotient if `quotient' is non-NULL.
 * We can avoid writing out the result if `result' is NULL.
 */
static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
{
    BignumInt *n, *m;
    int mshift;
    int plen, mlen, i, j;

    /*
     * The most significant word of mod needs to be non-zero. It
     * should already be, but let's make sure.
     */
    assert(mod[mod[0]] != 0);

    /* Allocate m of size mlen, copy mod to m */
    /* We use big endian internally */
    mlen = mod[0];
    m = snewn(mlen, BignumInt);
    for (j = 0; j < mlen; j++)
	m[j] = mod[mod[0] - j];

    /* Shift m left to make msb bit set */
    for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
	if ((m[0] << mshift) & BIGNUM_TOP_BIT)
	    break;
    if (mshift) {
	for (i = 0; i < mlen - 1; i++)
	    m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
	m[mlen - 1] = m[mlen - 1] << mshift;
    }

    plen = p[0];
    /* Ensure plen > mlen */
    if (plen <= mlen)
	plen = mlen + 1;

    /* Allocate n of size plen, copy p to n */
    n = snewn(plen, BignumInt);
    for (j = 0; j < plen; j++)
	n[j] = 0;
    for (j = 1; j <= (int)p[0]; j++)
	n[plen - j] = p[j];

    /* Main computation */
    internal_mod(n, plen, m, mlen, quotient, mshift);

    /* Fixup result in case the modulus was shifted */
    if (mshift) {
	for (i = plen - mlen - 1; i < plen - 1; i++)
	    n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
	n[plen - 1] = n[plen - 1] << mshift;
	internal_mod(n, plen, m, mlen, quotient, 0);
	for (i = plen - 1; i >= plen - mlen; i--)
	    n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
    }

    /* Copy result to buffer */
    if (result) {
	for (i = 1; i <= (int)result[0]; i++) {
	    int j = plen - i;
	    result[i] = j >= 0 ? n[j] : 0;
	}
    }

    /* Free temporary arrays */
    for (i = 0; i < mlen; i++)
	m[i] = 0;
    sfree(m);
    for (i = 0; i < plen; i++)
	n[i] = 0;
    sfree(n);
}

/*
 * Decrement a number.
 */
void decbn(Bignum bn)
{
    int i = 1;
    while (i < (int)bn[0] && bn[i] == 0)
	bn[i++] = BIGNUM_INT_MASK;
    bn[i]--;
}

Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
{
    Bignum result;
    int w, i;

    assert(nbytes >= 0 && nbytes < INT_MAX/8);

    w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */

    result = newbn(w);
    for (i = 1; i <= w; i++)
	result[i] = 0;
    for (i = nbytes; i--;) {
	unsigned char byte = *data++;
	result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
    }

    while (result[0] > 1 && result[result[0]] == 0)
	result[0]--;
    return result;
}

/*
 * Read an SSH-1-format bignum from a data buffer. Return the number
 * of bytes consumed, or -1 if there wasn't enough data.
 */
int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
{
    const unsigned char *p = data;
    int i;
    int w, b;

    if (len < 2)
	return -1;

    w = 0;
    for (i = 0; i < 2; i++)
	w = (w << 8) + *p++;
    b = (w + 7) / 8;		       /* bits -> bytes */

    if (len < b+2)
	return -1;

    if (!result)		       /* just return length */
	return b + 2;

    *result = bignum_from_bytes(p, b);

    return p + b - data;
}

/*
 * Return the bit count of a bignum, for SSH-1 encoding.
 */
int bignum_bitcount(Bignum bn)
{
    int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
    while (bitcount >= 0
	   && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
    return bitcount + 1;
}

/*
 * Return the byte length of a bignum when SSH-1 encoded.
 */
int ssh1_bignum_length(Bignum bn)
{
    return 2 + (bignum_bitcount(bn) + 7) / 8;
}

/*
 * Return the byte length of a bignum when SSH-2 encoded.
 */
int ssh2_bignum_length(Bignum bn)
{
    return 4 + (bignum_bitcount(bn) + 8) / 8;
}

/*
 * Return a byte from a bignum; 0 is least significant, etc.
 */
int bignum_byte(Bignum bn, int i)
{
    if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0]))
	return 0;		       /* beyond the end */
    else
	return (bn[i / BIGNUM_INT_BYTES + 1] >>
		((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
}

/*
 * Return a bit from a bignum; 0 is least significant, etc.
 */
int bignum_bit(Bignum bn, int i)
{
    if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0]))
	return 0;		       /* beyond the end */
    else
	return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
}

/*
 * Set a bit in a bignum; 0 is least significant, etc.
 */
void bignum_set_bit(Bignum bn, int bitnum, int value)
{
    if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
	abort();		       /* beyond the end */
    else {
	int v = bitnum / BIGNUM_INT_BITS + 1;
	int mask = 1 << (bitnum % BIGNUM_INT_BITS);
	if (value)
	    bn[v] |= mask;
	else
	    bn[v] &= ~mask;
    }
}

/*
 * Write a SSH-1-format bignum into a buffer. It is assumed the
 * buffer is big enough. Returns the number of bytes used.
 */
int ssh1_write_bignum(void *data, Bignum bn)
{
    unsigned char *p = data;
    int len = ssh1_bignum_length(bn);
    int i;
    int bitc = bignum_bitcount(bn);

    *p++ = (bitc >> 8) & 0xFF;
    *p++ = (bitc) & 0xFF;
    for (i = len - 2; i--;)
	*p++ = bignum_byte(bn, i);
    return len;
}

/*
 * Compare two bignums. Returns like strcmp.
 */
int bignum_cmp(Bignum a, Bignum b)
{
    int amax = a[0], bmax = b[0];
    int i;

    /* Annoyingly we have two representations of zero */
    if (amax == 1 && a[amax] == 0)
        amax = 0;
    if (bmax == 1 && b[bmax] == 0)
        bmax = 0;

    assert(amax == 0 || a[amax] != 0);
    assert(bmax == 0 || b[bmax] != 0);

    i = (amax > bmax ? amax : bmax);
    while (i) {
	BignumInt aval = (i > amax ? 0 : a[i]);
	BignumInt bval = (i > bmax ? 0 : b[i]);
	if (aval < bval)
	    return -1;
	if (aval > bval)
	    return +1;
	i--;
    }
    return 0;
}

/*
 * Right-shift one bignum to form another.
 */
Bignum bignum_rshift(Bignum a, int shift)
{
    Bignum ret;
    int i, shiftw, shiftb, shiftbb, bits;
    BignumInt ai, ai1;

    assert(shift >= 0);

    bits = bignum_bitcount(a) - shift;
    ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);

    if (ret) {
	shiftw = shift / BIGNUM_INT_BITS;
	shiftb = shift % BIGNUM_INT_BITS;
	shiftbb = BIGNUM_INT_BITS - shiftb;

	ai1 = a[shiftw + 1];
	for (i = 1; i <= (int)ret[0]; i++) {
	    ai = ai1;
	    ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
	    ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
	}
    }

    return ret;
}

/*
 * Non-modular multiplication and addition.
 */
Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
{
    int alen = a[0], blen = b[0];
    int mlen = (alen > blen ? alen : blen);
    int rlen, i, maxspot;
    int wslen;
    BignumInt *workspace;
    Bignum ret;

    /* mlen space for a, mlen space for b, 2*mlen for result,
     * plus scratch space for multiplication */
    wslen = mlen * 4 + mul_compute_scratch(mlen);
    workspace = snewn(wslen, BignumInt);
    for (i = 0; i < mlen; i++) {
	workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
	workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
    }

    internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
		 workspace + 2 * mlen, mlen, workspace + 4 * mlen);

    /* now just copy the result back */
    rlen = alen + blen + 1;
    if (addend && rlen <= (int)addend[0])
	rlen = addend[0] + 1;
    ret = newbn(rlen);
    maxspot = 0;
    for (i = 1; i <= (int)ret[0]; i++) {
	ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
	if (ret[i] != 0)
	    maxspot = i;
    }
    ret[0] = maxspot;

    /* now add in the addend, if any */
    if (addend) {
	BignumDblInt carry = 0;
	for (i = 1; i <= rlen; i++) {
	    carry += (i <= (int)ret[0] ? ret[i] : 0);
	    carry += (i <= (int)addend[0] ? addend[i] : 0);
	    ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
	    carry >>= BIGNUM_INT_BITS;
	    if (ret[i] != 0 && i > maxspot)
		maxspot = i;
	}
    }
    ret[0] = maxspot;

    for (i = 0; i < wslen; i++)
        workspace[i] = 0;
    sfree(workspace);
    return ret;
}

/*
 * Non-modular multiplication.
 */
Bignum bigmul(Bignum a, Bignum b)
{
    return bigmuladd(a, b, NULL);
}

/*
 * Simple addition.
 */
Bignum bigadd(Bignum a, Bignum b)
{
    int alen = a[0], blen = b[0];
    int rlen = (alen > blen ? alen : blen) + 1;
    int i, maxspot;
    Bignum ret;
    BignumDblInt carry;

    ret = newbn(rlen);

    carry = 0;
    maxspot = 0;
    for (i = 1; i <= rlen; i++) {
        carry += (i <= (int)a[0] ? a[i] : 0);
        carry += (i <= (int)b[0] ? b[i] : 0);
        ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
        carry >>= BIGNUM_INT_BITS;
        if (ret[i] != 0 && i > maxspot)
            maxspot = i;
    }
    ret[0] = maxspot;

    return ret;
}

/*
 * Subtraction. Returns a-b, or NULL if the result would come out
 * negative (recall that this entire bignum module only handles
 * positive numbers).
 */
Bignum bigsub(Bignum a, Bignum b)
{
    int alen = a[0], blen = b[0];
    int rlen = (alen > blen ? alen : blen);
    int i, maxspot;
    Bignum ret;
    BignumDblInt carry;

    ret = newbn(rlen);

    carry = 1;
    maxspot = 0;
    for (i = 1; i <= rlen; i++) {
        carry += (i <= (int)a[0] ? a[i] : 0);
        carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
        ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
        carry >>= BIGNUM_INT_BITS;
        if (ret[i] != 0 && i > maxspot)
            maxspot = i;
    }
    ret[0] = maxspot;

    if (!carry) {
        freebn(ret);
        return NULL;
    }

    return ret;
}

/*
 * Create a bignum which is the bitmask covering another one. That
 * is, the smallest integer which is >= N and is also one less than
 * a power of two.
 */
Bignum bignum_bitmask(Bignum n)
{
    Bignum ret = copybn(n);
    int i;
    BignumInt j;

    i = ret[0];
    while (n[i] == 0 && i > 0)
	i--;
    if (i <= 0)
	return ret;		       /* input was zero */
    j = 1;
    while (j < n[i])
	j = 2 * j + 1;
    ret[i] = j;
    while (--i > 0)
	ret[i] = BIGNUM_INT_MASK;
    return ret;
}

/*
 * Convert a (max 32-bit) long into a bignum.
 */
Bignum bignum_from_long(unsigned long nn)
{
    Bignum ret;
    BignumDblInt n = nn;

    ret = newbn(3);
    ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
    ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
    ret[3] = 0;
    ret[0] = (ret[2]  ? 2 : 1);
    return ret;
}

/*
 * Add a long to a bignum.
 */
Bignum bignum_add_long(Bignum number, unsigned long addendx)
{
    Bignum ret = newbn(number[0] + 1);
    int i, maxspot = 0;
    BignumDblInt carry = 0, addend = addendx;

    for (i = 1; i <= (int)ret[0]; i++) {
	carry += addend & BIGNUM_INT_MASK;
	carry += (i <= (int)number[0] ? number[i] : 0);
	addend >>= BIGNUM_INT_BITS;
	ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
	carry >>= BIGNUM_INT_BITS;
	if (ret[i] != 0)
	    maxspot = i;
    }
    ret[0] = maxspot;
    return ret;
}

/*
 * Compute the residue of a bignum, modulo a (max 16-bit) short.
 */
unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
{
    BignumDblInt mod, r;
    int i;

    r = 0;
    mod = modulus;
    for (i = number[0]; i > 0; i--)
	r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
    return (unsigned short) r;
}

#ifdef DEBUG
void diagbn(char *prefix, Bignum md)
{
    int i, nibbles, morenibbles;
    static const char hex[] = "0123456789ABCDEF";

    debug(("%s0x", prefix ? prefix : ""));

    nibbles = (3 + bignum_bitcount(md)) / 4;
    if (nibbles < 1)
	nibbles = 1;
    morenibbles = 4 * md[0] - nibbles;
    for (i = 0; i < morenibbles; i++)
	debug(("-"));
    for (i = nibbles; i--;)
	debug(("%c",
	       hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));

    if (prefix)
	debug(("\n"));
}
#endif

/*
 * Simple division.
 */
Bignum bigdiv(Bignum a, Bignum b)
{
    Bignum q = newbn(a[0]);
    bigdivmod(a, b, NULL, q);
    return q;
}

/*
 * Simple remainder.
 */
Bignum bigmod(Bignum a, Bignum b)
{
    Bignum r = newbn(b[0]);
    bigdivmod(a, b, r, NULL);
    return r;
}

/*
 * Greatest common divisor.
 */
Bignum biggcd(Bignum av, Bignum bv)
{
    Bignum a = copybn(av);
    Bignum b = copybn(bv);

    while (bignum_cmp(b, Zero) != 0) {
	Bignum t = newbn(b[0]);
	bigdivmod(a, b, t, NULL);
	while (t[0] > 1 && t[t[0]] == 0)
	    t[0]--;
	freebn(a);
	a = b;
	b = t;
    }

    freebn(b);
    return a;
}

/*
 * Modular inverse, using Euclid's extended algorithm.
 */
Bignum modinv(Bignum number, Bignum modulus)
{
    Bignum a = copybn(modulus);
    Bignum b = copybn(number);
    Bignum xp = copybn(Zero);
    Bignum x = copybn(One);
    int sign = +1;

    assert(number[number[0]] != 0);
    assert(modulus[modulus[0]] != 0);

    while (bignum_cmp(b, One) != 0) {
	Bignum t, q;

        if (bignum_cmp(b, Zero) == 0) {
            /*
             * Found a common factor between the inputs, so we cannot
             * return a modular inverse at all.
             */
            freebn(b);
            freebn(a);
            freebn(xp);
            freebn(x);
            return NULL;
        }

        t = newbn(b[0]);
	q = newbn(a[0]);
	bigdivmod(a, b, t, q);
	while (t[0] > 1 && t[t[0]] == 0)
	    t[0]--;
	freebn(a);
	a = b;
	b = t;
	t = xp;
	xp = x;
	x = bigmuladd(q, xp, t);
	sign = -sign;
	freebn(t);
	freebn(q);
    }

    freebn(b);
    freebn(a);
    freebn(xp);

    /* now we know that sign * x == 1, and that x < modulus */
    if (sign < 0) {
	/* set a new x to be modulus - x */
	Bignum newx = newbn(modulus[0]);
	BignumInt carry = 0;
	int maxspot = 1;
	int i;

	for (i = 1; i <= (int)newx[0]; i++) {
	    BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
	    BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
	    newx[i] = aword - bword - carry;
	    bword = ~bword;
	    carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
	    if (newx[i] != 0)
		maxspot = i;
	}
	newx[0] = maxspot;
	freebn(x);
	x = newx;
    }

    /* and return. */
    return x;
}

/*
 * Render a bignum into decimal. Return a malloced string holding
 * the decimal representation.
 */
char *bignum_decimal(Bignum x)
{
    int ndigits, ndigit;
    int i, iszero;
    BignumDblInt carry;
    char *ret;
    BignumInt *workspace;

    /*
     * First, estimate the number of digits. Since log(10)/log(2)
     * is just greater than 93/28 (the joys of continued fraction
     * approximations...) we know that for every 93 bits, we need
     * at most 28 digits. This will tell us how much to malloc.
     *
     * Formally: if x has i bits, that means x is strictly less
     * than 2^i. Since 2 is less than 10^(28/93), this is less than
     * 10^(28i/93). We need an integer power of ten, so we must
     * round up (rounding down might make it less than x again).
     * Therefore if we multiply the bit count by 28/93, rounding
     * up, we will have enough digits.
     *
     * i=0 (i.e., x=0) is an irritating special case.
     */
    i = bignum_bitcount(x);
    if (!i)
	ndigits = 1;		       /* x = 0 */
    else
	ndigits = (28 * i + 92) / 93;  /* multiply by 28/93 and round up */
    ndigits++;			       /* allow for trailing \0 */
    ret = snewn(ndigits, char);

    /*
     * Now allocate some workspace to hold the binary form as we
     * repeatedly divide it by ten. Initialise this to the
     * big-endian form of the number.
     */
    workspace = snewn(x[0], BignumInt);
    for (i = 0; i < (int)x[0]; i++)
	workspace[i] = x[x[0] - i];

    /*
     * Next, write the decimal number starting with the last digit.
     * We use ordinary short division, dividing 10 into the
     * workspace.
     */
    ndigit = ndigits - 1;
    ret[ndigit] = '\0';
    do {
	iszero = 1;
	carry = 0;
	for (i = 0; i < (int)x[0]; i++) {
	    carry = (carry << BIGNUM_INT_BITS) + workspace[i];
	    workspace[i] = (BignumInt) (carry / 10);
	    if (workspace[i])
		iszero = 0;
	    carry %= 10;
	}
	ret[--ndigit] = (char) (carry + '0');
    } while (!iszero);

    /*
     * There's a chance we've fallen short of the start of the
     * string. Correct if so.
     */
    if (ndigit > 0)
	memmove(ret, ret + ndigit, ndigits - ndigit);

    /*
     * Done.
     */
    sfree(workspace);
    return ret;
}

#ifdef TESTBN

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

/*
 * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset
 *
 * Then feed to this program's standard input the output of
 * testdata/bignum.py .
 */

void modalfatalbox(char *p, ...)
{
    va_list ap;
    fprintf(stderr, "FATAL ERROR: ");
    va_start(ap, p);
    vfprintf(stderr, p, ap);
    va_end(ap);
    fputc('\n', stderr);
    exit(1);
}

#define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )

int main(int argc, char **argv)
{
    char *buf;
    int line = 0;
    int passes = 0, fails = 0;

    while ((buf = fgetline(stdin)) != NULL) {
        int maxlen = strlen(buf);
        unsigned char *data = snewn(maxlen, unsigned char);
        unsigned char *ptrs[5], *q;
        int ptrnum;
        char *bufp = buf;

        line++;

        q = data;
        ptrnum = 0;

        while (*bufp && !isspace((unsigned char)*bufp))
            bufp++;
        if (bufp)
            *bufp++ = '\0';

        while (*bufp) {
            char *start, *end;
            int i;

            while (*bufp && !isxdigit((unsigned char)*bufp))
                bufp++;
            start = bufp;

            if (!*bufp)
                break;

            while (*bufp && isxdigit((unsigned char)*bufp))
                bufp++;
            end = bufp;

            if (ptrnum >= lenof(ptrs))
                break;
            ptrs[ptrnum++] = q;
            
            for (i = -((end - start) & 1); i < end-start; i += 2) {
                unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
                val = val * 16 + fromxdigit(start[i+1]);
                *q++ = val;
            }

            ptrs[ptrnum] = q;
        }

        if (!strcmp(buf, "mul")) {
            Bignum a, b, c, p;

            if (ptrnum != 3) {
                printf("%d: mul with %d parameters, expected 3\n", line);
                exit(1);
            }
            a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
            b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
            c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
            p = bigmul(a, b);

            if (bignum_cmp(c, p) == 0) {
                passes++;
            } else {
                char *as = bignum_decimal(a);
                char *bs = bignum_decimal(b);
                char *cs = bignum_decimal(c);
                char *ps = bignum_decimal(p);
                
                printf("%d: fail: %s * %s gave %s expected %s\n",
                       line, as, bs, ps, cs);
                fails++;

                sfree(as);
                sfree(bs);
                sfree(cs);
                sfree(ps);
            }
            freebn(a);
            freebn(b);
            freebn(c);
            freebn(p);
        } else if (!strcmp(buf, "modmul")) {
            Bignum a, b, m, c, p;

            if (ptrnum != 4) {
                printf("%d: modmul with %d parameters, expected 4\n",
                       line, ptrnum);
                exit(1);
            }
            a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
            b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
            m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
            c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
            p = modmul(a, b, m);

            if (bignum_cmp(c, p) == 0) {
                passes++;
            } else {
                char *as = bignum_decimal(a);
                char *bs = bignum_decimal(b);
                char *ms = bignum_decimal(m);
                char *cs = bignum_decimal(c);
                char *ps = bignum_decimal(p);
                
                printf("%d: fail: %s * %s mod %s gave %s expected %s\n",
                       line, as, bs, ms, ps, cs);
                fails++;

                sfree(as);
                sfree(bs);
                sfree(ms);
                sfree(cs);
                sfree(ps);
            }
            freebn(a);
            freebn(b);
            freebn(m);
            freebn(c);
            freebn(p);
        } else if (!strcmp(buf, "pow")) {
            Bignum base, expt, modulus, expected, answer;

            if (ptrnum != 4) {
                printf("%d: mul with %d parameters, expected 3\n", line);
                exit(1);
            }

            base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
            expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
            modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
            expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
            answer = modpow(base, expt, modulus);

            if (bignum_cmp(expected, answer) == 0) {
                passes++;
            } else {
                char *as = bignum_decimal(base);
                char *bs = bignum_decimal(expt);
                char *cs = bignum_decimal(modulus);
                char *ds = bignum_decimal(answer);
                char *ps = bignum_decimal(expected);
                
                printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
                       line, as, bs, cs, ds, ps);
                fails++;

                sfree(as);
                sfree(bs);
                sfree(cs);
                sfree(ds);
                sfree(ps);
            }
            freebn(base);
            freebn(expt);
            freebn(modulus);
            freebn(expected);
            freebn(answer);
        } else {
            printf("%d: unrecognised test keyword: '%s'\n", line, buf);
            exit(1);
        }

        sfree(buf);
        sfree(data);
    }

    printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
    return fails != 0;
}

#endif