File: sshauxcrypt.c

package info (click to toggle)
putty 0.74-1%2Bdeb11u2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,020 kB
  • sloc: ansic: 114,140; python: 4,372; perl: 3,511; sh: 1,563; makefile: 167
file content (168 lines) | stat: -rw-r--r-- 4,651 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
 * sshauxcrypt.c: wrapper functions on crypto primitives for use in
 * other contexts than the main SSH packet protocol, such as
 * encrypting private key files and performing XDM-AUTHORIZATION-1.
 *
 * These all work through the standard cipher/hash/MAC APIs, so they
 * don't need to live in the same actual source files as the ciphers
 * they wrap, and I think it keeps things tidier to have them out of
 * the way here instead.
 */

#include "ssh.h"

static ssh_cipher *aes256_pubkey_cipher(const void *key)
{
    /*
     * PuTTY's own .PPK format for SSH-2 private key files is
     * encrypted with 256-bit AES in CBC mode.
     */
    char iv[16];
    memset(iv, 0, 16);
    ssh_cipher *cipher = ssh_cipher_new(&ssh_aes256_cbc);
    ssh_cipher_setkey(cipher, key);
    ssh_cipher_setiv(cipher, iv);
    return cipher;
}

void aes256_encrypt_pubkey(const void *key, void *blk, int len)
{
    ssh_cipher *c = aes256_pubkey_cipher(key);
    ssh_cipher_encrypt(c, blk, len);
    ssh_cipher_free(c);
}

void aes256_decrypt_pubkey(const void *key, void *blk, int len)
{
    ssh_cipher *c = aes256_pubkey_cipher(key);
    ssh_cipher_decrypt(c, blk, len);
    ssh_cipher_free(c);
}

static ssh_cipher *des3_pubkey_cipher(const void *vkey)
{
    /*
     * SSH-1 private key files are encrypted with triple-DES in SSH-1
     * style (three separate CBC layers), but the same key is used for
     * the first and third layers.
     */
    ssh_cipher *c = ssh_cipher_new(&ssh_3des_ssh1);
    uint8_t keys3[24], iv[8];

    memcpy(keys3, vkey, 16);
    memcpy(keys3 + 16, vkey, 8);
    ssh_cipher_setkey(c, keys3);
    smemclr(keys3, sizeof(keys3));

    memset(iv, 0, 8);
    ssh_cipher_setiv(c, iv);

    return c;
}

void des3_decrypt_pubkey(const void *vkey, void *vblk, int len)
{
    ssh_cipher *c = des3_pubkey_cipher(vkey);
    ssh_cipher_decrypt(c, vblk, len);
    ssh_cipher_free(c);
}

void des3_encrypt_pubkey(const void *vkey, void *vblk, int len)
{
    ssh_cipher *c = des3_pubkey_cipher(vkey);
    ssh_cipher_encrypt(c, vblk, len);
    ssh_cipher_free(c);
}

static ssh_cipher *des3_pubkey_ossh_cipher(const void *vkey, const void *viv)
{
    /*
     * OpenSSH PEM private key files are encrypted with triple-DES in
     * SSH-2 style (one CBC layer), with three distinct keys, and an
     * IV also generated from the passphrase.
     */
    ssh_cipher *c = ssh_cipher_new(&ssh_3des_ssh2);
    ssh_cipher_setkey(c, vkey);
    ssh_cipher_setiv(c, viv);
    return c;
}

void des3_decrypt_pubkey_ossh(const void *vkey, const void *viv,
                              void *vblk, int len)
{
    ssh_cipher *c = des3_pubkey_ossh_cipher(vkey, viv);
    ssh_cipher_decrypt(c, vblk, len);
    ssh_cipher_free(c);
}

void des3_encrypt_pubkey_ossh(const void *vkey, const void *viv,
                              void *vblk, int len)
{
    ssh_cipher *c = des3_pubkey_ossh_cipher(vkey, viv);
    ssh_cipher_encrypt(c, vblk, len);
    ssh_cipher_free(c);
}

static ssh_cipher *des_xdmauth_cipher(const void *vkeydata)
{
    /*
     * XDM-AUTHORIZATION-1 uses single-DES, but packs the key into 7
     * bytes, so here we have to repack it manually into the canonical
     * form where it occupies 8 bytes each with the low bit unused.
     */
    const unsigned char *keydata = (const unsigned char *)vkeydata;
    unsigned char key[8];
    int i, nbits, j;
    unsigned int bits;

    bits = 0;
    nbits = 0;
    j = 0;
    for (i = 0; i < 8; i++) {
        if (nbits < 7) {
            bits = (bits << 8) | keydata[j];
            nbits += 8;
            j++;
        }
        key[i] = (bits >> (nbits - 7)) << 1;
        bits &= ~(0x7F << (nbits - 7));
        nbits -= 7;
    }

    ssh_cipher *c = ssh_cipher_new(&ssh_des);
    ssh_cipher_setkey(c, key);
    smemclr(key, sizeof(key));
    ssh_cipher_setiv(c, key);
    return c;
}

void des_encrypt_xdmauth(const void *keydata, void *blk, int len)
{
    ssh_cipher *c = des_xdmauth_cipher(keydata);
    ssh_cipher_encrypt(c, blk, len);
    ssh_cipher_free(c);
}

void des_decrypt_xdmauth(const void *keydata, void *blk, int len)
{
    ssh_cipher *c = des_xdmauth_cipher(keydata);
    ssh_cipher_decrypt(c, blk, len);
    ssh_cipher_free(c);
}

void hash_simple(const ssh_hashalg *alg, ptrlen data, void *output)
{
    ssh_hash *hash = ssh_hash_new(alg);
    put_datapl(hash, data);
    ssh_hash_final(hash, output);
}

void mac_simple(const ssh2_macalg *alg, ptrlen key, ptrlen data, void *output)
{
    ssh2_mac *mac = ssh2_mac_new(alg, NULL);
    ssh2_mac_setkey(mac, key);
    ssh2_mac_start(mac);
    put_datapl(mac, data);
    ssh2_mac_genresult(mac, output);
    ssh2_mac_free(mac);
}