File: cryptsuite.py

package info (click to toggle)
putty 0.74-1%2Bdeb11u2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,020 kB
  • sloc: ansic: 114,140; python: 4,372; perl: 3,511; sh: 1,563; makefile: 167
file content (2303 lines) | stat: -rwxr-xr-x 125,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
#!/usr/bin/env python3

import unittest
import struct
import itertools
import functools
import contextlib
import hashlib
import binascii
import base64
try:
    from math import gcd
except ImportError:
    from fractions import gcd

from eccref import *
from testcrypt import *
from ssh import *

try:
    base64decode = base64.decodebytes
except AttributeError:
    base64decode = base64.decodestring

def unhex(s):
    return binascii.unhexlify(s.replace(" ", "").replace("\n", ""))

def rsa_bare(e, n):
    rsa = rsa_new()
    get_rsa_ssh1_pub(ssh_uint32(nbits(n)) + ssh1_mpint(e) + ssh1_mpint(n),
                     rsa, 'exponent_first')
    return rsa

def find_non_square_mod(p):
    # Find a non-square mod p, using the Jacobi symbol
    # calculation function from eccref.py.
    return next(z for z in itertools.count(2) if jacobi(z, p) == -1)

def fibonacci_scattered(n=10):
    # Generate a list of Fibonacci numbers with power-of-2 indices
    # (F_1, F_2, F_4, ...), to be used as test inputs of varying
    # sizes. Also put F_0 = 0 into the list as a bonus.
    yield 0
    a, b, c = 0, 1, 1
    while True:
        yield b
        n -= 1
        if n <= 0:
            break
        a, b, c = (a**2+b**2, b*(a+c), b**2+c**2)

def fibonacci(n=10):
    # Generate the full Fibonacci sequence starting from F_0 = 0.
    a, b = 0, 1
    while True:
        yield a
        n -= 1
        if n <= 0:
            break
        a, b = b, a+b

def mp_mask(mp):
    # Return the value that mp would represent if all its bits
    # were set. Useful for masking a true mathematical output
    # value (e.g. from an operation that can over/underflow, like
    # mp_sub or mp_anything_into) to check it's right within the
    # ability of that particular mp_int to represent.
    return ((1 << mp_max_bits(mp))-1)

def adjtuples(iterable, n):
    # Return all the contiguous n-tuples of an iterable, including
    # overlapping ones. E.g. if called on [0,1,2,3,4] with n=3 it
    # would return (0,1,2), (1,2,3), (2,3,4) and then stop.
    it = iter(iterable)
    toret = [next(it) for _ in range(n-1)]
    for element in it:
        toret.append(element)
        yield tuple(toret)
        toret[:1] = []

def last(iterable):
    # Return the last element of an iterable, or None if it is empty.
    it = iter(iterable)
    toret = None
    for toret in it:
        pass
    return toret

def le_integer(x, nbits):
    assert nbits % 8 == 0
    return bytes([0xFF & (x >> (8*n)) for n in range(nbits//8)])

def be_integer(x, nbits):
    return bytes(reversed(le_integer(x, nbits)))

@contextlib.contextmanager
def queued_random_data(nbytes, seed):
    hashsize = 512 // 8
    data = b''.join(
        hashlib.sha512(unicode_to_bytes("preimage:{:d}:{}".format(i, seed)))
        .digest() for i in range((nbytes + hashsize - 1) // hashsize))
    data = data[:nbytes]
    random_queue(data)
    yield None
    random_clear()

@contextlib.contextmanager
def queued_specific_random_data(data):
    random_queue(data)
    yield None
    random_clear()

def hash_str(alg, message):
    h = ssh_hash_new(alg)
    ssh_hash_update(h, message)
    return ssh_hash_final(h)

def hash_str_iter(alg, message_iter):
    h = ssh_hash_new(alg)
    for string in message_iter:
        ssh_hash_update(h, string)
    return ssh_hash_final(h)

def mac_str(alg, key, message, cipher=None):
    m = ssh2_mac_new(alg, cipher)
    ssh2_mac_setkey(m, key)
    ssh2_mac_start(m)
    ssh2_mac_update(m, "dummy")
    # Make sure ssh_mac_start erases previous state
    ssh2_mac_start(m)
    ssh2_mac_update(m, message)
    return ssh2_mac_genresult(m)

class MyTestBase(unittest.TestCase):
    "Intermediate class that adds useful helper methods."
    def assertEqualBin(self, x, y):
        # Like assertEqual, but produces more legible error reports
        # for random-looking binary data.
        self.assertEqual(binascii.hexlify(x), binascii.hexlify(y))

class mpint(MyTestBase):
    def testCreation(self):
        self.assertEqual(int(mp_new(128)), 0)
        self.assertEqual(int(mp_from_bytes_be(b'ABCDEFGHIJKLMNOP')),
                         0x4142434445464748494a4b4c4d4e4f50)
        self.assertEqual(int(mp_from_bytes_le(b'ABCDEFGHIJKLMNOP')),
                         0x504f4e4d4c4b4a494847464544434241)
        self.assertEqual(int(mp_from_integer(12345)), 12345)
        decstr = '91596559417721901505460351493238411077414937428167'
        self.assertEqual(int(mp_from_decimal_pl(decstr)), int(decstr, 10))
        self.assertEqual(int(mp_from_decimal(decstr)), int(decstr, 10))
        self.assertEqual(int(mp_from_decimal("")), 0)
        # For hex, test both upper and lower case digits
        hexstr = 'ea7cb89f409ae845215822e37D32D0C63EC43E1381C2FF8094'
        self.assertEqual(int(mp_from_hex_pl(hexstr)), int(hexstr, 16))
        self.assertEqual(int(mp_from_hex(hexstr)), int(hexstr, 16))
        self.assertEqual(int(mp_from_hex("")), 0)
        p2 = mp_power_2(123)
        self.assertEqual(int(p2), 1 << 123)
        p2c = mp_copy(p2)
        self.assertEqual(int(p2c), 1 << 123)
        # Check mp_copy really makes a copy, not an alias (ok, that's
        # testing the testcrypt system more than it's testing the
        # underlying C functions)
        mp_set_bit(p2c, 120, 1)
        self.assertEqual(int(p2c), (1 << 123) + (1 << 120))
        self.assertEqual(int(p2), 1 << 123)

    def testBytesAndBits(self):
        x = mp_new(128)
        self.assertEqual(mp_get_byte(x, 2), 0)
        mp_set_bit(x, 2*8+3, 1)
        self.assertEqual(mp_get_byte(x, 2), 1<<3)
        self.assertEqual(mp_get_bit(x, 2*8+3), 1)
        mp_set_bit(x, 2*8+3, 0)
        self.assertEqual(mp_get_byte(x, 2), 0)
        self.assertEqual(mp_get_bit(x, 2*8+3), 0)
        # Currently I expect 128 to be a multiple of any
        # BIGNUM_INT_BITS value we might be running with, so these
        # should be exact equality
        self.assertEqual(mp_max_bytes(x), 128/8)
        self.assertEqual(mp_max_bits(x), 128)

        nb = lambda hexstr: mp_get_nbits(mp_from_hex(hexstr))
        self.assertEqual(nb('00000000000000000000000000000000'), 0)
        self.assertEqual(nb('00000000000000000000000000000001'), 1)
        self.assertEqual(nb('00000000000000000000000000000002'), 2)
        self.assertEqual(nb('00000000000000000000000000000003'), 2)
        self.assertEqual(nb('00000000000000000000000000000004'), 3)
        self.assertEqual(nb('000003ffffffffffffffffffffffffff'), 106)
        self.assertEqual(nb('000003ffffffffff0000000000000000'), 106)
        self.assertEqual(nb('80000000000000000000000000000000'), 128)
        self.assertEqual(nb('ffffffffffffffffffffffffffffffff'), 128)

    def testDecAndHex(self):
        def checkHex(hexstr):
            n = mp_from_hex(hexstr)
            i = int(hexstr, 16)
            self.assertEqual(mp_get_hex(n),
                             unicode_to_bytes("{:x}".format(i)))
            self.assertEqual(mp_get_hex_uppercase(n),
                             unicode_to_bytes("{:X}".format(i)))
        checkHex("0")
        checkHex("f")
        checkHex("00000000000000000000000000000000000000000000000000")
        checkHex("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
        checkHex("ffffffffffffffffffffffffffffffffffffffffffffffffff")

        def checkDec(hexstr):
            n = mp_from_hex(hexstr)
            i = int(hexstr, 16)
            self.assertEqual(mp_get_decimal(n),
                             unicode_to_bytes("{:d}".format(i)))
        checkDec("0")
        checkDec("f")
        checkDec("00000000000000000000000000000000000000000000000000")
        checkDec("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
        checkDec("ffffffffffffffffffffffffffffffffffffffffffffffffff")
        checkDec("f" * 512)

    def testComparison(self):
        inputs = [
            "0", "1", "2", "10", "314159265358979", "FFFFFFFFFFFFFFFF",

            # Test over-long versions of some of the same numbers we
            # had short forms of above
            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000000",

            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000001",

            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000002",

            "0000000000000000000000000000000000000000000000000000000000000000"
            "000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFF",

            "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
            "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
        ]
        values = [(mp_from_hex(s), int(s, 16)) for s in inputs]
        for am, ai in values:
            for bm, bi in values:
                self.assertEqual(mp_cmp_eq(am, bm) == 1, ai == bi)
                self.assertEqual(mp_cmp_hs(am, bm) == 1, ai >= bi)
                if (bi >> 64) == 0:
                    self.assertEqual(mp_eq_integer(am, bi) == 1, ai == bi)
                    self.assertEqual(mp_hs_integer(am, bi) == 1, ai >= bi)

                # mp_{min,max}{,_into} is a reasonable thing to test
                # here as well
                self.assertEqual(int(mp_min(am, bm)), min(ai, bi))
                self.assertEqual(int(mp_max(am, bm)), max(ai, bi))
                am_small = mp_copy(am if ai<bi else bm)
                mp_min_into(am_small, am, bm)
                self.assertEqual(int(am_small), min(ai, bi))
                am_big = mp_copy(am if ai>bi else bm)
                mp_max_into(am_big, am, bm)
                self.assertEqual(int(am_big), max(ai, bi))

        # Test mp_{eq,hs}_integer in the case where the integer is as
        # large as possible and the bignum contains very few words. In
        # modes where BIGNUM_INT_BITS < 64, this used to go wrong.
        mp10 = mp_new(4)
        mp_add_integer_into(mp10, mp10, 10)
        highbit = 1 << 63
        self.assertEqual(mp_hs_integer(mp10, highbit | 9), 0)
        self.assertEqual(mp_hs_integer(mp10, highbit | 10), 0)
        self.assertEqual(mp_hs_integer(mp10, highbit | 11), 0)
        self.assertEqual(mp_eq_integer(mp10, highbit | 9), 0)
        self.assertEqual(mp_eq_integer(mp10, highbit | 10), 0)
        self.assertEqual(mp_eq_integer(mp10, highbit | 11), 0)

    def testConditionals(self):
        testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()]
        for am, ai in testnumbers:
            for bm, bi in testnumbers:
                cm = mp_copy(am)
                mp_select_into(cm, am, bm, 0)
                self.assertEqual(int(cm), ai & mp_mask(am))
                mp_select_into(cm, am, bm, 1)
                self.assertEqual(int(cm), bi & mp_mask(am))

                mp_cond_add_into(cm, am, bm, 0)
                self.assertEqual(int(cm), ai & mp_mask(am))
                mp_cond_add_into(cm, am, bm, 1)
                self.assertEqual(int(cm), (ai+bi) & mp_mask(am))

                mp_cond_sub_into(cm, am, bm, 0)
                self.assertEqual(int(cm), ai & mp_mask(am))
                mp_cond_sub_into(cm, am, bm, 1)
                self.assertEqual(int(cm), (ai-bi) & mp_mask(am))

                maxbits = max(mp_max_bits(am), mp_max_bits(bm))
                cm = mp_new(maxbits)
                dm = mp_new(maxbits)
                mp_copy_into(cm, am)
                mp_copy_into(dm, bm)

                self.assertEqual(int(cm), ai)
                self.assertEqual(int(dm), bi)
                mp_cond_swap(cm, dm, 0)
                self.assertEqual(int(cm), ai)
                self.assertEqual(int(dm), bi)
                mp_cond_swap(cm, dm, 1)
                self.assertEqual(int(cm), bi)
                self.assertEqual(int(dm), ai)

                if bi != 0:
                    mp_cond_clear(cm, 0)
                    self.assertEqual(int(cm), bi)
                    mp_cond_clear(cm, 1)
                    self.assertEqual(int(cm), 0)

    def testBasicArithmetic(self):
        testnumbers = list(fibonacci_scattered(5))
        testnumbers.extend([1 << (1 << i) for i in range(3,10)])
        testnumbers.extend([(1 << (1 << i)) - 1 for i in range(3,10)])

        testnumbers = [(mp_copy(n),n) for n in testnumbers]

        for am, ai in testnumbers:
            for bm, bi in testnumbers:
                self.assertEqual(int(mp_add(am, bm)), ai + bi)
                self.assertEqual(int(mp_mul(am, bm)), ai * bi)
                # Cope with underflow in subtraction
                diff = mp_sub(am, bm)
                self.assertEqual(int(diff), (ai - bi) & mp_mask(diff))

                for bits in range(64, 512, 64):
                    cm = mp_new(bits)
                    mp_add_into(cm, am, bm)
                    self.assertEqual(int(cm), (ai + bi) & mp_mask(cm))
                    mp_mul_into(cm, am, bm)
                    self.assertEqual(int(cm), (ai * bi) & mp_mask(cm))
                    mp_sub_into(cm, am, bm)
                    self.assertEqual(int(cm), (ai - bi) & mp_mask(cm))

        # A test cherry-picked from the old bignum test script,
        # involving two numbers whose product has a single 1 bit miles
        # in the air and then all 0s until a bunch of cruft at the
        # bottom, the aim being to test that carry propagation works
        # all the way up.
        ai, bi = 0xb4ff6ed2c633847562087ed9354c5c17be212ac83b59c10c316250f50b7889e5b058bf6bfafd12825225ba225ede0cba583ffbd0882de88c9e62677385a6dbdedaf81959a273eb7909ebde21ae5d12e2a584501a6756fe50ccb93b93f0d6ee721b6052a0d88431e62f410d608532868cdf3a6de26886559e94cc2677eea9bd797918b70e2717e95b45918bd1f86530cb9989e68b632c496becff848aa1956cd57ed46676a65ce6dd9783f230c8796909eef5583fcfe4acbf9c8b4ea33a08ec3fd417cf7175f434025d032567a00fc329aee154ca20f799b961fbab8f841cb7351f561a44aea45746ceaf56874dad99b63a7d7af2769d2f185e2d1c656cc6630b5aba98399fa57, 0xb50a77c03ac195225021dc18d930a352f27c0404742f961ca828c972737bad3ada74b1144657ab1d15fe1b8aefde8784ad61783f3c8d4584aa5f22a4eeca619f90563ae351b5da46770df182cf348d8e23b25fda07670c6609118e916a57ce4043608752c91515708327e36f5bb5ebd92cd4cfb39424167a679870202b23593aa524bac541a3ad322c38102a01e9659b06a4335c78d50739a51027954ac2bf03e500f975c2fa4d0ab5dd84cc9334f219d2ae933946583e384ed5dbf6498f214480ca66987b867df0f69d92e4e14071e4b8545212dd5e29ff0248ed751e168d78934da7930bcbe10e9a212128a68de5d749c61f5e424cf8cf6aa329674de0cf49c6f9b4c8b8cc3
        am = mp_copy(ai)
        bm = mp_copy(bi)
        self.assertEqual(int(mp_mul(am, bm)), ai * bi)

        # A regression test for a bug that came up during development
        # of mpint.c, relating to an intermediate value overflowing
        # its container.
        ai, bi = (2**8512 * 2 // 3), (2**4224 * 11 // 15)
        am = mp_copy(ai)
        bm = mp_copy(bi)
        self.assertEqual(int(mp_mul(am, bm)), ai * bi)

    def testAddInteger(self):
        initial = mp_copy(4444444444444444444444444)

        x = mp_new(mp_max_bits(initial) + 64)

        # mp_{add,sub}_integer_into should be able to cope with any
        # uintmax_t. Test a number that requires more than 32 bits.
        mp_add_integer_into(x, initial, 123123123123123)
        self.assertEqual(int(x), 4444444444567567567567567)
        mp_sub_integer_into(x, initial, 123123123123123)
        self.assertEqual(int(x), 4444444444321321321321321)

        # mp_mul_integer_into only takes a uint16_t integer input
        mp_mul_integer_into(x, initial, 10001)
        self.assertEqual(int(x), 44448888888888888888888884444)

    def testDivision(self):
        divisors = [1, 2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
                    141421356237309504880168872420969807856967187537694807]
        quotients = [0, 1, 2, 2**64-1, 2**64, 2**64+1, 17320508075688772935]
        for d in divisors:
            for q in quotients:
                remainders = {0, 1, d-1, 2*d//3}
                for r in sorted(remainders):
                    if r >= d:
                        continue # silly cases with tiny divisors
                    n = q*d + r
                    mq = mp_new(max(nbits(q), 1))
                    mr = mp_new(max(nbits(r), 1))
                    mp_divmod_into(n, d, mq, mr)
                    self.assertEqual(int(mq), q)
                    self.assertEqual(int(mr), r)
                    self.assertEqual(int(mp_div(n, d)), q)
                    self.assertEqual(int(mp_mod(n, d)), r)

    def testBitwise(self):
        p = 0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e
        e = 0x2b7e151628aed2a6abf7158809cf4f3c762e7160f38b4da56a784d9045190
        x = mp_new(nbits(p))

        mp_and_into(x, p, e)
        self.assertEqual(int(x), p & e)

        mp_or_into(x, p, e)
        self.assertEqual(int(x), p | e)

        mp_xor_into(x, p, e)
        self.assertEqual(int(x), p ^ e)

        mp_bic_into(x, p, e)
        self.assertEqual(int(x), p & ~e)

    def testInversion(self):
        # Test mp_invert_mod_2to.
        testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()
                       if n & 1]
        for power2 in [1, 2, 3, 5, 13, 32, 64, 127, 128, 129]:
            for am, ai in testnumbers:
                bm = mp_invert_mod_2to(am, power2)
                bi = int(bm)
                self.assertEqual(((ai * bi) & ((1 << power2) - 1)), 1)

                # mp_reduce_mod_2to is a much simpler function, but
                # this is as good a place as any to test it.
                rm = mp_copy(am)
                mp_reduce_mod_2to(rm, power2)
                self.assertEqual(int(rm), ai & ((1 << power2) - 1))

        # Test mp_invert proper.
        moduli = [2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
                  141421356237309504880168872420969807856967187537694807,
                  2**128-1]
        for m in moduli:
            # Prepare a MontyContext for the monty_invert test below
            # (unless m is even, in which case we can't)
            mc = monty_new(m) if m & 1 else None

            to_invert = {1, 2, 3, 7, 19, m-1, 5*m//17, (m-1)//2, (m+1)//2}
            for x in sorted(to_invert):
                if gcd(x, m) != 1:
                    continue # filter out non-invertible cases
                inv = int(mp_invert(x, m))
                assert x * inv % m == 1

                # Test monty_invert too, while we're here
                if mc is not None:
                    self.assertEqual(
                        int(monty_invert(mc, monty_import(mc, x))),
                        int(monty_import(mc, inv)))

    def testMonty(self):
        moduli = [5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
                  293828847201107461142630006802421204703,
                  113064788724832491560079164581712332614996441637880086878209969852674997069759]

        for m in moduli:
            mc = monty_new(m)

            # Import some numbers
            inputs = [(monty_import(mc, n), n)
                      for n in sorted({0, 1, 2, 3, 2*m//3, m-1})]

            # Check modulus and identity
            self.assertEqual(int(monty_modulus(mc)), m)
            self.assertEqual(int(monty_identity(mc)), int(inputs[1][0]))

            # Check that all those numbers export OK
            for mn, n in inputs:
                self.assertEqual(int(monty_export(mc, mn)), n)

            for ma, a in inputs:
                for mb, b in inputs:
                    xprod = int(monty_export(mc, monty_mul(mc, ma, mb)))
                    self.assertEqual(xprod, a*b % m)

                    xsum = int(monty_export(mc, monty_add(mc, ma, mb)))
                    self.assertEqual(xsum, (a+b) % m)

                    xdiff = int(monty_export(mc, monty_sub(mc, ma, mb)))
                    self.assertEqual(xdiff, (a-b) % m)

                    # Test the ordinary mp_mod{add,sub,mul} at the
                    # same time, even though those don't do any
                    # montying at all

                    xprod = int(mp_modmul(a, b, m))
                    self.assertEqual(xprod, a*b % m)

                    xsum = int(mp_modadd(a, b, m))
                    self.assertEqual(xsum, (a+b) % m)

                    xdiff = int(mp_modsub(a, b, m))
                    self.assertEqual(xdiff, (a-b) % m)

            for ma, a in inputs:
                # Compute a^0, a^1, a^1, a^2, a^3, a^5, ...
                indices = list(fibonacci())
                powers = [int(monty_export(mc, monty_pow(mc, ma, power)))
                          for power in indices]
                # Check the first two make sense
                self.assertEqual(powers[0], 1)
                self.assertEqual(powers[1], a)
                # Check the others using the Fibonacci identity:
                # F_n + F_{n+1} = F_{n+2}, so a^{F_n} a^{F_{n+1}} = a^{F_{n+2}}
                for p0, p1, p2 in adjtuples(powers, 3):
                    self.assertEqual(p2, p0 * p1 % m)

                # Test the ordinary mp_modpow here as well, while
                # we've got the machinery available
                for index, power in zip(indices, powers):
                    self.assertEqual(int(mp_modpow(a, index, m)), power)

        # A regression test for a bug I encountered during initial
        # development of mpint.c, in which an incomplete reduction
        # happened somewhere in an intermediate value.
        b, e, m = 0x2B5B93812F253FF91F56B3B4DAD01CA2884B6A80719B0DA4E2159A230C6009EDA97C5C8FD4636B324F9594706EE3AD444831571BA5E17B1B2DFA92DEA8B7E, 0x25, 0xC8FCFD0FD7371F4FE8D0150EFC124E220581569587CCD8E50423FA8D41E0B2A0127E100E92501E5EE3228D12EA422A568C17E0AD2E5C5FCC2AE9159D2B7FB8CB
        assert(int(mp_modpow(b, e, m)) == pow(b, e, m))

        # Make sure mp_modpow can handle a base larger than the
        # modulus, by pre-reducing it
        assert(int(mp_modpow(1<<877, 907, 999979)) == pow(2, 877*907, 999979))

    def testModsqrt(self):
        moduli = [
            5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
            293828847201107461142630006802421204703,
            113064788724832491560079164581712332614996441637880086878209969852674997069759,
            0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6FFFFFFFF00000001]
        for p in moduli:
            # Count the factors of 2 in the group. (That is, we want
            # p-1 to be an odd multiple of 2^{factors_of_2}.)
            factors_of_2 = nbits((p-1) & (1-p)) - 1
            assert (p & ((2 << factors_of_2)-1)) == ((1 << factors_of_2)+1)

            z = find_non_square_mod(p)

            sc = modsqrt_new(p, z)

            def ptest(x):
                root, success = mp_modsqrt(sc, x)
                r = int(root)
                self.assertTrue(success)
                self.assertEqual((r * r - x) % p, 0)

            def ntest(x):
                root, success = mp_modsqrt(sc, x)
                self.assertFalse(success)

            # Make up some more or less random values mod p to square
            v1 = pow(3, nbits(p), p)
            v2 = pow(5, v1, p)
            test_roots = [0, 1, 2, 3, 4, 3*p//4, v1, v2, v1+1, 12873*v1, v1*v2]
            known_squares = {r*r % p for r in test_roots}
            for s in known_squares:
                ptest(s)
                if s != 0:
                    ntest(z*s % p)

            # Make sure we've tested a value that is in each of the
            # subgroups of order (p-1)/2^k but not in the next one
            # (with the exception of k=0, which just means 'have we
            # tested a non-square?', which we have in the above loop).
            #
            # We do this by starting with a known non-square; then
            # squaring it (factors_of_2) times will return values
            # nested deeper and deeper in those subgroups.
            vbase = z
            for k in range(factors_of_2):
                # Adjust vbase by an arbitrary odd power of
                # z, so that it won't look too much like the previous
                # value.
                vbase = vbase * pow(z, (vbase + v1 + v2) | 1, p) % p

                # Move vbase into the next smaller group by squaring
                # it.
                vbase = pow(vbase, 2, p)

                ptest(vbase)

    def testShifts(self):
        x = ((1<<900) // 9949) | 1
        for i in range(2049):
            mp = mp_copy(x)

            mp_lshift_fixed_into(mp, mp, i)
            self.assertEqual(int(mp), (x << i) & mp_mask(mp))

            mp_copy_into(mp, x)
            mp_rshift_fixed_into(mp, mp, i)
            self.assertEqual(int(mp), x >> i)
            self.assertEqual(int(mp_rshift_fixed(x, i)), x >> i)
            self.assertEqual(int(mp_rshift_safe(x, i)), x >> i)

    def testRandom(self):
        # Test random_bits to ensure it correctly masks the return
        # value, and uses exactly as many random bytes as we expect it
        # to.
        for bits in range(512):
            bytes_needed = (bits + 7) // 8
            with queued_random_data(bytes_needed, "random_bits test"):
                mp = mp_random_bits(bits)
                self.assertTrue(int(mp) < (1 << bits))
                self.assertEqual(random_queue_len(), 0)

        # Test mp_random_in_range to ensure it returns things in the
        # right range.
        for rangesize in [2, 3, 19, 35]:
            for lo in [0, 1, 0x10001, 1<<512]:
                hi = lo + rangesize
                bytes_needed = mp_max_bytes(hi) + 16
                for trial in range(rangesize*3):
                    with queued_random_data(
                            bytes_needed,
                            "random_in_range {:d}".format(trial)):
                        v = int(mp_random_in_range(lo, hi))
                        self.assertTrue(lo <= v < hi)

class ecc(MyTestBase):
    def testWeierstrassSimple(self):
        # Simple tests using a Weierstrass curve I made up myself,
        # which (unlike the ones used for serious crypto) is small
        # enough that you can fit all the coordinates for a curve on
        # to your retina in one go.

        p = 3141592661
        a, b = -3 % p, 12345
        rc = WeierstrassCurve(p, a, b)
        wc = ecc_weierstrass_curve(p, a, b, None)

        def check_point(wp, rp):
            self.assertTrue(ecc_weierstrass_point_valid(wp))
            is_id = ecc_weierstrass_is_identity(wp)
            x, y = ecc_weierstrass_get_affine(wp)
            if rp.infinite:
                self.assertEqual(is_id, 1)
            else:
                self.assertEqual(is_id, 0)
                self.assertEqual(int(x), int(rp.x))
                self.assertEqual(int(y), int(rp.y))

        def make_point(x, y):
            wp = ecc_weierstrass_point_new(wc, x, y)
            rp = rc.point(x, y)
            check_point(wp, rp)
            return wp, rp

        # Some sample points, including the identity and also a pair
        # of mutual inverses.
        wI, rI = ecc_weierstrass_point_new_identity(wc), rc.point()
        wP, rP = make_point(102, 387427089)
        wQ, rQ = make_point(1000, 546126574)
        wmP, rmP = make_point(102, p - 387427089)

        # Check the simple arithmetic functions.
        check_point(ecc_weierstrass_add(wP, wQ), rP + rQ)
        check_point(ecc_weierstrass_add(wQ, wP), rP + rQ)
        check_point(ecc_weierstrass_double(wP), rP + rP)
        check_point(ecc_weierstrass_double(wQ), rQ + rQ)

        # Check all the special cases with add_general:
        # Adding two finite unequal non-mutually-inverse points
        check_point(ecc_weierstrass_add_general(wP, wQ), rP + rQ)
        # Doubling a finite point
        check_point(ecc_weierstrass_add_general(wP, wP), rP + rP)
        check_point(ecc_weierstrass_add_general(wQ, wQ), rQ + rQ)
        # Adding the identity to a point (both ways round)
        check_point(ecc_weierstrass_add_general(wI, wP), rP)
        check_point(ecc_weierstrass_add_general(wI, wQ), rQ)
        check_point(ecc_weierstrass_add_general(wP, wI), rP)
        check_point(ecc_weierstrass_add_general(wQ, wI), rQ)
        # Doubling the identity
        check_point(ecc_weierstrass_add_general(wI, wI), rI)
        # Adding a point to its own inverse, giving the identity.
        check_point(ecc_weierstrass_add_general(wmP, wP), rI)
        check_point(ecc_weierstrass_add_general(wP, wmP), rI)

        # Verify that point_valid fails if we pass it nonsense.
        bogus = ecc_weierstrass_point_new(wc, int(rP.x), int(rP.y * 3))
        self.assertFalse(ecc_weierstrass_point_valid(bogus))

        # Re-instantiate the curve with the ability to take square
        # roots, and check that we can reconstruct P and Q from their
        # x coordinate and y parity only.
        wc = ecc_weierstrass_curve(p, a, b, find_non_square_mod(p))

        x, yp = int(rP.x), (int(rP.y) & 1)
        check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rP)
        check_point(ecc_weierstrass_point_new_from_x(wc, x, yp ^ 1), rmP)
        x, yp = int(rQ.x), (int(rQ.y) & 1)
        check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rQ)

    def testMontgomerySimple(self):
        p, a, b = 3141592661, 0xabc, 0xde

        rc = MontgomeryCurve(p, a, b)
        mc = ecc_montgomery_curve(p, a, b)

        rP = rc.cpoint(0x1001)
        rQ = rc.cpoint(0x20001)
        rdiff = rP - rQ
        rsum = rP + rQ

        def make_mpoint(rp):
            return ecc_montgomery_point_new(mc, int(rp.x))

        mP = make_mpoint(rP)
        mQ = make_mpoint(rQ)
        mdiff = make_mpoint(rdiff)
        msum = make_mpoint(rsum)

        def check_point(mp, rp):
            x = ecc_montgomery_get_affine(mp)
            self.assertEqual(int(x), int(rp.x))

        check_point(ecc_montgomery_diff_add(mP, mQ, mdiff), rsum)
        check_point(ecc_montgomery_diff_add(mQ, mP, mdiff), rsum)
        check_point(ecc_montgomery_diff_add(mP, mQ, msum), rdiff)
        check_point(ecc_montgomery_diff_add(mQ, mP, msum), rdiff)
        check_point(ecc_montgomery_double(mP), rP + rP)
        check_point(ecc_montgomery_double(mQ), rQ + rQ)

    def testEdwardsSimple(self):
        p, d, a = 3141592661, 2688750488, 367934288

        rc = TwistedEdwardsCurve(p, d, a)
        ec = ecc_edwards_curve(p, d, a, None)

        def check_point(ep, rp):
            x, y = ecc_edwards_get_affine(ep)
            self.assertEqual(int(x), int(rp.x))
            self.assertEqual(int(y), int(rp.y))

        def make_point(x, y):
            ep = ecc_edwards_point_new(ec, x, y)
            rp = rc.point(x, y)
            check_point(ep, rp)
            return ep, rp

        # Some sample points, including the identity and also a pair
        # of mutual inverses.
        eI, rI = make_point(0, 1)
        eP, rP = make_point(196270812, 1576162644)
        eQ, rQ = make_point(1777630975, 2717453445)
        emP, rmP = make_point(p - 196270812, 1576162644)

        # Check that the ordinary add function handles all the special
        # cases.

        # Adding two finite unequal non-mutually-inverse points
        check_point(ecc_edwards_add(eP, eQ), rP + rQ)
        check_point(ecc_edwards_add(eQ, eP), rP + rQ)
        # Doubling a finite point
        check_point(ecc_edwards_add(eP, eP), rP + rP)
        check_point(ecc_edwards_add(eQ, eQ), rQ + rQ)
        # Adding the identity to a point (both ways round)
        check_point(ecc_edwards_add(eI, eP), rP)
        check_point(ecc_edwards_add(eI, eQ), rQ)
        check_point(ecc_edwards_add(eP, eI), rP)
        check_point(ecc_edwards_add(eQ, eI), rQ)
        # Doubling the identity
        check_point(ecc_edwards_add(eI, eI), rI)
        # Adding a point to its own inverse, giving the identity.
        check_point(ecc_edwards_add(emP, eP), rI)
        check_point(ecc_edwards_add(eP, emP), rI)

        # Re-instantiate the curve with the ability to take square
        # roots, and check that we can reconstruct P and Q from their
        # y coordinate and x parity only.
        ec = ecc_edwards_curve(p, d, a, find_non_square_mod(p))

        y, xp = int(rP.y), (int(rP.x) & 1)
        check_point(ecc_edwards_point_new_from_y(ec, y, xp), rP)
        check_point(ecc_edwards_point_new_from_y(ec, y, xp ^ 1), rmP)
        y, xp = int(rQ.y), (int(rQ.x) & 1)
        check_point(ecc_edwards_point_new_from_y(ec, y, xp), rQ)

    # For testing point multiplication, let's switch to the full-sized
    # standard curves, because I want to have tested those a bit too.

    def testWeierstrassMultiply(self):
        wc = ecc_weierstrass_curve(p256.p, int(p256.a), int(p256.b), None)
        wG = ecc_weierstrass_point_new(wc, int(p256.G.x), int(p256.G.y))
        self.assertTrue(ecc_weierstrass_point_valid(wG))

        ints = set(i % p256.p for i in fibonacci_scattered(10))
        ints.remove(0) # the zero multiple isn't expected to work
        for i in sorted(ints):
            wGi = ecc_weierstrass_multiply(wG, i)
            x, y = ecc_weierstrass_get_affine(wGi)
            rGi = p256.G * i
            self.assertEqual(int(x), int(rGi.x))
            self.assertEqual(int(y), int(rGi.y))

    def testMontgomeryMultiply(self):
        mc = ecc_montgomery_curve(
            curve25519.p, int(curve25519.a), int(curve25519.b))
        mG = ecc_montgomery_point_new(mc, int(curve25519.G.x))

        ints = set(i % p256.p for i in fibonacci_scattered(10))
        ints.remove(0) # the zero multiple isn't expected to work
        for i in sorted(ints):
            mGi = ecc_montgomery_multiply(mG, i)
            x = ecc_montgomery_get_affine(mGi)
            rGi = curve25519.G * i
            self.assertEqual(int(x), int(rGi.x))

    def testEdwardsMultiply(self):
        ec = ecc_edwards_curve(ed25519.p, int(ed25519.d), int(ed25519.a), None)
        eG = ecc_edwards_point_new(ec, int(ed25519.G.x), int(ed25519.G.y))

        ints = set(i % ed25519.p for i in fibonacci_scattered(10))
        ints.remove(0) # the zero multiple isn't expected to work
        for i in sorted(ints):
            eGi = ecc_edwards_multiply(eG, i)
            x, y = ecc_edwards_get_affine(eGi)
            rGi = ed25519.G * i
            self.assertEqual(int(x), int(rGi.x))
            self.assertEqual(int(y), int(rGi.y))

class crypt(MyTestBase):
    def testSSH1Fingerprint(self):
        # Example key and reference fingerprint value generated by
        # OpenSSH 6.7 ssh-keygen
        rsa = rsa_bare(65537, 984185866443261798625575612408956568591522723900235822424492423996716524817102482330189709310179009158443944785704183009867662230534501187034891091310377917105259938712348098594526746211645472854839799025154390701673823298369051411)
        fp = rsa_ssh1_fingerprint(rsa)
        self.assertEqual(
            fp, b"768 96:12:c8:bc:e6:03:75:86:e8:c7:b9:af:d8:0c:15:75")

    def testAES(self):
        # My own test cases, generated by a mostly independent
        # reference implementation of AES in Python. ('Mostly'
        # independent in that it was written by me.)

        def vector(cipher, key, iv, plaintext, ciphertext):
            for suffix in "hw", "sw":
                c = ssh_cipher_new("{}_{}".format(cipher, suffix))
                if c is None: return # skip test if HW AES not available
                ssh_cipher_setkey(c, key)
                ssh_cipher_setiv(c, iv)
                self.assertEqualBin(
                    ssh_cipher_encrypt(c, plaintext), ciphertext)
                ssh_cipher_setiv(c, iv)
                self.assertEqualBin(
                    ssh_cipher_decrypt(c, ciphertext), plaintext)

        # Tests of CBC mode.

        key = unhex(
            '98483c6eb40b6c31a448c22a66ded3b5e5e8d5119cac8327b655c8b5c4836489')
        iv = unhex('38f87b0b9b736160bfc0cbd8447af6ee')
        plaintext = unhex('''
        ee16271827b12d828f61d56fddccc38ccaa69601da2b36d3af1a34c51947b71a
        362f05e07bf5e7766c24599799b252ad2d5954353c0c6ca668c46779c2659c94
        8df04e4179666e335470ff042e213c8bcff57f54842237fbf9f3c7e6111620ac
        1c007180edd25f0e337c2a49d890a7173f6b52d61e3d2a21ddc8e41513a0e825
        afd5932172270940b01014b5b7fb8495946151520a126518946b44ea32f9b2a9
        ''')

        vector('aes128_cbc', key[:16], iv, plaintext, unhex('''
        547ee90514cb6406d5bb00855c8092892c58299646edda0b4e7c044247795c8d
        3c3eb3d91332e401215d4d528b94a691969d27b7890d1ae42fe3421b91c989d5
        113fefa908921a573526259c6b4f8e4d90ea888e1d8b7747457ba3a43b5b79b9
        34873ebf21102d14b51836709ee85ed590b7ca618a1e884f5c57c8ea73fe3d0d
        6bf8c082dd602732bde28131159ed0b6e9cf67c353ffdd010a5a634815aaa963'''))

        vector('aes192_cbc', key[:24], iv, plaintext, unhex('''
        e3dee5122edd3fec5fab95e7db8c784c0cb617103e2a406fba4ae3b4508dd608
        4ff5723a670316cc91ed86e413c11b35557c56a6f5a7a2c660fc6ee603d73814
        73a287645be0f297cdda97aef6c51faeb2392fec9d33adb65138d60f954babd9
        8ee0daab0d1decaa8d1e07007c4a3c7b726948025f9fb72dd7de41f74f2f36b4
        23ac6a5b4b6b39682ec74f57d9d300e547f3c3e467b77f5e4009923b2f94c903'''))

        vector('aes256_cbc', key[:32], iv, plaintext, unhex('''
        088c6d4d41997bea79c408925255266f6c32c03ea465a5f607c2f076ec98e725
        7e0beed79609b3577c16ebdf17d7a63f8865278e72e859e2367de81b3b1fe9ab
        8f045e1d008388a3cfc4ff87daffedbb47807260489ad48566dbe73256ce9dd4
        ae1689770a883b29695928f5983f33e8d7aec4668f64722e943b0b671c365709
        dfa86c648d5fb00544ff11bd29121baf822d867e32da942ba3a0d26299bcee13'''))

        # Tests of SDCTR mode, one with a random IV and one with an IV
        # about to wrap round. More vigorous tests of IV carry and
        # wraparound behaviour are in the testAESSDCTR method.

        sdctrIVs = [
            unhex('38f87b0b9b736160bfc0cbd8447af6ee'),
            unhex('fffffffffffffffffffffffffffffffe'),
        ]

        vector('aes128_ctr', key[:16], sdctrIVs[0], plaintext[:64], unhex('''
        d0061d7b6e8c4ef4fe5614b95683383f46cdd2766e66b6fb0b0f0b3a24520b2d
        15d869b06cbf685ede064bcf8fb5fb6726cfd68de7016696a126e9e84420af38'''))
        vector('aes128_ctr', key[:16], sdctrIVs[1], plaintext[:64], unhex('''
        49ac67164fd9ce8701caddbbc9a2b06ac6524d4aa0fdac95253971974b8f3bc2
        bb8d7c970f6bcd79b25218cc95582edf7711aae2384f6cf91d8d07c9d9b370bc'''))

        vector('aes192_ctr', key[:24], sdctrIVs[0], plaintext[:64], unhex('''
        0baa86acbe8580845f0671b7ebad4856ca11b74e5108f515e34e54fa90f87a9a
        c6eee26686253c19156f9be64957f0dbc4f8ecd7cabb1f4e0afefe33888faeec'''))
        vector('aes192_ctr', key[:24], sdctrIVs[1], plaintext[:64], unhex('''
        2da1791250100dc0d1461afe1bbfad8fa0320253ba5d7905d837386ba0a3a41f
        01965c770fcfe01cf307b5316afb3981e0e4aa59a6e755f0a5784d9accdc52be'''))

        vector('aes256_ctr', key[:32], sdctrIVs[0], plaintext[:64], unhex('''
        49c7b284222d408544c770137b6ef17ef770c47e24f61fa66e7e46cae4888882
        f980a0f2446956bf47d2aed55ebd2e0694bfc46527ed1fd33efe708fec2f8b1f'''))
        vector('aes256_ctr', key[:32], sdctrIVs[1], plaintext[:64], unhex('''
        f1d013c3913ccb4fc0091e25d165804480fb0a1d5c741bf012bba144afda6db2
        c512f3942018574bd7a8fdd88285a73d25ef81e621aebffb6e9b8ecc8e2549d4'''))

    def testAESSDCTR(self):
        # A thorough test of the IV-incrementing component of SDCTR
        # mode. We set up an AES-SDCTR cipher object with the given
        # input IV; we encrypt two all-zero blocks, expecting the
        # return values to be the AES-ECB encryptions of the input IV
        # and the incremented version. Then we decrypt each of them by
        # feeding them to an AES-CBC cipher object with its IV set to
        # zero.

        def increment(keylen, suffix, iv):
            key = b'\xab' * (keylen//8)
            sdctr = ssh_cipher_new("aes{}_ctr_{}".format(keylen, suffix))
            if sdctr is None: return # skip test if HW AES not available
            ssh_cipher_setkey(sdctr, key)
            cbc = ssh_cipher_new("aes{}_cbc_{}".format(keylen, suffix))
            ssh_cipher_setkey(cbc, key)

            ssh_cipher_setiv(sdctr, iv)
            ec0 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
            ec1 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
            ssh_cipher_setiv(cbc, b'\x00' * 16)
            dc0 = ssh_cipher_decrypt(cbc, ec0)
            ssh_cipher_setiv(cbc, b'\x00' * 16)
            dc1 = ssh_cipher_decrypt(cbc, ec1)
            self.assertEqualBin(iv, dc0)
            return dc1

        def test(keylen, suffix, ivInteger):
            mask = (1 << 128) - 1
            ivInteger &= mask
            ivBinary = unhex("{:032x}".format(ivInteger))
            ivIntegerInc = (ivInteger + 1) & mask
            ivBinaryInc = unhex("{:032x}".format((ivIntegerInc)))
            actualResult = increment(keylen, suffix, ivBinary)
            if actualResult is not None:
                self.assertEqualBin(actualResult, ivBinaryInc)

        # Check every input IV you can make by gluing together 32-bit
        # pieces of the form 0, 1 or -1. This should test all the
        # places where carry propagation within the 128-bit integer
        # can go wrong.
        #
        # We also test this at all three AES key lengths, in case the
        # core cipher routines are written separately for each one.

        for suffix in "hw", "sw":
            for keylen in [128, 192, 256]:
                hexTestValues = ["00000000", "00000001", "ffffffff"]
                for ivHexBytes in itertools.product(*([hexTestValues] * 4)):
                    ivInteger = int("".join(ivHexBytes), 16)
                    test(keylen, suffix, ivInteger)

    def testAESParallelism(self):
        # Since at least one of our implementations of AES works in
        # parallel, here's a test that CBC decryption works the same
        # way no matter how the input data is divided up.

        # A pile of conveniently available random-looking test data.
        test_ciphertext = ssh2_mpint(last(fibonacci_scattered(14)))
        test_ciphertext += b"x" * (15 & -len(test_ciphertext)) # pad to a block

        # Test key and IV.
        test_key = b"foobarbazquxquuxFooBarBazQuxQuux"
        test_iv = b"FOOBARBAZQUXQUUX"

        for keylen in [128, 192, 256]:
            decryptions = []

            for suffix in "hw", "sw":
                c = ssh_cipher_new("aes{:d}_cbc_{}".format(keylen, suffix))
                if c is None: continue
                ssh_cipher_setkey(c, test_key[:keylen//8])
                for chunklen in range(16, 16*12, 16):
                    ssh_cipher_setiv(c, test_iv)
                    decryption = b""
                    for pos in range(0, len(test_ciphertext), chunklen):
                        chunk = test_ciphertext[pos:pos+chunklen]
                        decryption += ssh_cipher_decrypt(c, chunk)
                    decryptions.append(decryption)

            for d in decryptions:
                self.assertEqualBin(d, decryptions[0])

    def testCRC32(self):
        # Check the effect of every possible single-byte input to
        # crc32_update. In the traditional implementation with a
        # 256-word lookup table, this exercises every table entry; in
        # _any_ implementation which iterates over the input one byte
        # at a time, it should be a similarly exhaustive test. (But if
        # a more optimised implementation absorbed _more_ than 8 bits
        # at a time, then perhaps this test wouldn't be enough...)

        # It would be nice if there was a functools.iterate() which
        # would apply a function n times. Failing that, making shift1
        # accept and ignore a second argument allows me to iterate it
        # 8 times using functools.reduce.
        shift1 = lambda x, dummy=None: (x >> 1) ^ (0xEDB88320 * (x & 1))
        shift8 = lambda x: functools.reduce(shift1, [None]*8, x)

        # A small selection of choices for the other input to
        # crc32_update, just to check linearity.
        test_prior_values = [0, 0xFFFFFFFF, 0x45CC1F6A, 0xA0C4ADCF, 0xD482CDF1]

        for prior in test_prior_values:
            prior_shifted = shift8(prior)
            for i in range(256):
                exp = shift8(i) ^ prior_shifted
                self.assertEqual(crc32_update(prior, struct.pack("B", i)), exp)

                # Check linearity of the _reference_ implementation, while
                # we're at it!
                self.assertEqual(shift8(i ^ prior), exp)

    def testCRCDA(self):
        def pattern(badblk, otherblks, pat):
            # Arrange copies of the bad block in a pattern
            # corresponding to the given bit string.
            retstr = b""
            while pat != 0:
                retstr += (badblk if pat & 1 else next(otherblks))
                pat >>= 1
            return retstr

        def testCases(pat):
            badblock = b'muhahaha' # the block we'll maliciously repeat

            # Various choices of the other blocks, including all the
            # same, all different, and all different but only in the
            # byte at one end.
            for otherblocks in [
                    itertools.repeat(b'GoodData'),
                    (struct.pack('>Q', i) for i in itertools.count()),
                    (struct.pack('<Q', i) for i in itertools.count())]:
                yield pattern(badblock, otherblocks, pat)

        def positiveTest(pat):
            for data in testCases(pat):
                self.assertTrue(crcda_detect(data, ""))
                self.assertTrue(crcda_detect(data[8:], data[:8]))

        def negativeTest(pat):
            for data in testCases(pat):
                self.assertFalse(crcda_detect(data, ""))
                self.assertFalse(crcda_detect(data[8:], data[:8]))

        # Tests of successful attack detection, derived by taking
        # multiples of the CRC polynomial itself.
        #
        # (The CRC32 polynomial is usually written as 0xEDB88320.
        # That's in bit-reversed form, but then, that's the form we
        # need anyway for these patterns. But it's also missing the
        # leading term - really, 0xEDB88320 is the value you get by
        # reducing X^32 modulo the real poly, i.e. the value you put
        # back in to the CRC to compensate for an X^32 that's just
        # been shifted out. If you put that bit back on - at the
        # bottom, because of the bit-reversal - you get the less
        # familiar-looking 0x1db710641.)
        positiveTest(0x1db710641) # the CRC polynomial P itself
        positiveTest(0x26d930ac3) # (X+1) * P
        positiveTest(0xbdbdf21cf) # (X^3+X^2+X+1) * P
        positiveTest(0x3a66a39b653f6889d)
        positiveTest(0x170db3167dd9f782b9765214c03e71a18f685b7f3)
        positiveTest(0x1751997d000000000000000000000000000000001)
        positiveTest(0x800000000000000000000000000000000f128a2d1)

        # Tests of non-detection.
        negativeTest(0x1db711a41)
        negativeTest(0x3a66a39b453f6889d)
        negativeTest(0x170db3167dd9f782b9765214c03e71b18f685b7f3)
        negativeTest(0x1751997d000000000000000000000001000000001)
        negativeTest(0x800000000000002000000000000000000f128a2d1)

    def testAuxEncryptFns(self):
        # Test helper functions such as aes256_encrypt_pubkey. The
        # test cases are all just things I made up at random, and the
        # expected outputs are generated by running PuTTY's own code;
        # this doesn't independently check them against any other
        # implementation, but it at least means we're protected
        # against code reorganisations changing the behaviour from
        # what it was before.

        p = b'three AES blocks, or six DES, of arbitrary input'

        k = b'thirty-two-byte aes-256 test key'
        c = unhex('7b112d00c0fc95bc13fcdacfd43281bf'
                  'de9389db1bbcfde79d59a303d41fd2eb'
                  '0955c9477ae4ee3a4d6c1fbe474c0ef6')
        self.assertEqualBin(aes256_encrypt_pubkey(k, p), c)
        self.assertEqualBin(aes256_decrypt_pubkey(k, c), p)

        k = b'3des with keys distinct.'
        iv = b'randomIV'
        c = unhex('be81ff840d885869a54d63b03d7cd8db'
                  'd39ab875e5f7b9da1081f8434cb33c47'
                  'dee5bcd530a3f6c13a9fc73e321a843a')
        self.assertEqualBin(des3_encrypt_pubkey_ossh(k, iv, p), c)
        self.assertEqualBin(des3_decrypt_pubkey_ossh(k, iv, c), p)

        k = b'3des, 2keys only'
        c = unhex('0b845650d73f615cf16ee3ed20535b5c'
                  'd2a8866ee628547bbdad916e2b4b9f19'
                  '67c15bde33c5b03ff7f403b4f8cf2364')
        self.assertEqualBin(des3_encrypt_pubkey(k, p), c)
        self.assertEqualBin(des3_decrypt_pubkey(k, c), p)

        k = b'7 bytes'
        c = unhex('5cac9999cffc980a1d1184d84b71c8cb'
                  '313d12a1d25a7831179aeb11edaca5ad'
                  '9482b224105a61c27137587620edcba8')
        self.assertEqualBin(des_encrypt_xdmauth(k, p), c)
        self.assertEqualBin(des_decrypt_xdmauth(k, c), p)

    def testSSHCiphers(self):
        # Test all the SSH ciphers we support, on the same principle
        # as testAuxCryptFns that we should have test cases to verify
        # that things still work the same today as they did yesterday.

        p = b'64 bytes of test input data, enough to check any cipher mode xyz'
        k = b'sixty-four bytes of test key data, enough to key any cipher pqrs'
        iv = b'16 bytes of IV w'

        ciphers = [
            ("3des_ctr",      24,    8, False, unhex('83c17a29250d3d4fa81250fc0362c54e40456936445b77709a30fccf8b983d57129a969c59070d7c2977f3d25dd7d71163687c7b3cd2edb0d07514e6c77479f5')),
            ("3des_ssh2",     24,    8, True,  unhex('d5f1cc25b8fbc62decc74b432344de674f7249b2e38871f764411eaae17a1097396bd97b66a1e4d49f08c219acaef2a483198ce837f75cc1ef67b37c2432da3e')),
            ("3des_ssh1",     24,    8, False, unhex('d5f1cc25b8fbc62de63590b9b92344adf6dd72753273ff0fb32d4dbc6af858529129f34242f3d557eed3a5c84204eb4f868474294964cf70df5d8f45dfccfc45')),
            ("des_cbc",        8,    8, True,  unhex('051524e77fb40e109d9fffeceacf0f28c940e2f8415ddccc117020bdd2612af5036490b12085d0e46129919b8e499f51cb82a4b341d7a1a1ea3e65201ef248f6')),
            ("aes256_ctr",    32,   16, False, unhex('b87b35e819f60f0f398a37b05d7bcf0b04ad4ebe570bd08e8bfa8606bafb0db2cfcd82baf2ccceae5de1a3c1ae08a8b8fdd884fdc5092031ea8ce53333e62976')),
            ("aes256_ctr_hw", 32,   16, False, unhex('b87b35e819f60f0f398a37b05d7bcf0b04ad4ebe570bd08e8bfa8606bafb0db2cfcd82baf2ccceae5de1a3c1ae08a8b8fdd884fdc5092031ea8ce53333e62976')),
            ("aes256_ctr_sw", 32,   16, False, unhex('b87b35e819f60f0f398a37b05d7bcf0b04ad4ebe570bd08e8bfa8606bafb0db2cfcd82baf2ccceae5de1a3c1ae08a8b8fdd884fdc5092031ea8ce53333e62976')),
            ("aes256_cbc",    32,   16, True,  unhex('381cbb2fbcc48118d0094540242bd990dd6af5b9a9890edd013d5cad2d904f34b9261c623a452f32ea60e5402919a77165df12862742f1059f8c4a862f0827c5')),
            ("aes256_cbc_hw", 32,   16, True,  unhex('381cbb2fbcc48118d0094540242bd990dd6af5b9a9890edd013d5cad2d904f34b9261c623a452f32ea60e5402919a77165df12862742f1059f8c4a862f0827c5')),
            ("aes256_cbc_sw", 32,   16, True,  unhex('381cbb2fbcc48118d0094540242bd990dd6af5b9a9890edd013d5cad2d904f34b9261c623a452f32ea60e5402919a77165df12862742f1059f8c4a862f0827c5')),
            ("aes192_ctr",    24,   16, False, unhex('06bcfa7ccf075d723e12b724695a571a0fad67c56287ea609c410ac12749c51bb96e27fa7e1c7ea3b14792bbbb8856efb0617ebec24a8e4a87340d820cf347b8')),
            ("aes192_ctr_hw", 24,   16, False, unhex('06bcfa7ccf075d723e12b724695a571a0fad67c56287ea609c410ac12749c51bb96e27fa7e1c7ea3b14792bbbb8856efb0617ebec24a8e4a87340d820cf347b8')),
            ("aes192_ctr_sw", 24,   16, False, unhex('06bcfa7ccf075d723e12b724695a571a0fad67c56287ea609c410ac12749c51bb96e27fa7e1c7ea3b14792bbbb8856efb0617ebec24a8e4a87340d820cf347b8')),
            ("aes192_cbc",    24,   16, True,  unhex('ac97f8698170f9c05341214bd7624d5d2efef8311596163dc597d9fe6c868971bd7557389974612cbf49ea4e7cc6cc302d4cc90519478dd88a4f09b530c141f3')),
            ("aes192_cbc_hw", 24,   16, True,  unhex('ac97f8698170f9c05341214bd7624d5d2efef8311596163dc597d9fe6c868971bd7557389974612cbf49ea4e7cc6cc302d4cc90519478dd88a4f09b530c141f3')),
            ("aes192_cbc_sw", 24,   16, True,  unhex('ac97f8698170f9c05341214bd7624d5d2efef8311596163dc597d9fe6c868971bd7557389974612cbf49ea4e7cc6cc302d4cc90519478dd88a4f09b530c141f3')),
            ("aes128_ctr",    16,   16, False, unhex('0ad4ddfd2360ec59d77dcb9a981f92109437c68c5e7f02f92017d9f424f89ab7850473ac0e19274125e740f252c84ad1f6ad138b6020a03bdaba2f3a7378ce1e')),
            ("aes128_ctr_hw", 16,   16, False, unhex('0ad4ddfd2360ec59d77dcb9a981f92109437c68c5e7f02f92017d9f424f89ab7850473ac0e19274125e740f252c84ad1f6ad138b6020a03bdaba2f3a7378ce1e')),
            ("aes128_ctr_sw", 16,   16, False, unhex('0ad4ddfd2360ec59d77dcb9a981f92109437c68c5e7f02f92017d9f424f89ab7850473ac0e19274125e740f252c84ad1f6ad138b6020a03bdaba2f3a7378ce1e')),
            ("aes128_cbc",    16,   16, True,  unhex('36de36917fb7955a711c8b0bf149b29120a77524f393ae3490f4ce5b1d5ca2a0d7064ce3c38e267807438d12c0e40cd0d84134647f9f4a5b11804a0cc5070e62')),
            ("aes128_cbc_hw", 16,   16, True,  unhex('36de36917fb7955a711c8b0bf149b29120a77524f393ae3490f4ce5b1d5ca2a0d7064ce3c38e267807438d12c0e40cd0d84134647f9f4a5b11804a0cc5070e62')),
            ("aes128_cbc_sw", 16,   16, True,  unhex('36de36917fb7955a711c8b0bf149b29120a77524f393ae3490f4ce5b1d5ca2a0d7064ce3c38e267807438d12c0e40cd0d84134647f9f4a5b11804a0cc5070e62')),
            ("blowfish_ctr",  32,    8, False, unhex('079daf0f859363ccf72e975764d709232ec48adc74f88ccd1f342683f0bfa89ca0e8dbfccc8d4d99005d6b61e9cc4e6eaa2fd2a8163271b94bf08ef212129f01')),
            ("blowfish_ssh2", 16,    8, True,  unhex('e986b7b01f17dfe80ee34cac81fa029b771ec0f859ae21ae3ec3df1674bc4ceb54a184c6c56c17dd2863c3e9c068e76fd9aef5673465995f0d648b0bb848017f')),
            ("blowfish_ssh1", 32,    8, True,  unhex('d44092a9035d895acf564ba0365d19570fbb4f125d5a4fd2a1812ee6c8a1911a51bb181fbf7d1a261253cab71ee19346eb477b3e7ecf1d95dd941e635c1a4fbf')),
            ("arcfour256",    32, None, False, unhex('db68db4cd9bbc1d302cce5919ff3181659272f5d38753e464b3122fc69518793fe15dd0fbdd9cd742bd86c5e8a3ae126c17ecc420bd2d5204f1a24874d00fda3')),
            ("arcfour128",    16, None, False, unhex('fd4af54c5642cb29629e50a15d22e4944e21ffba77d0543b27590eafffe3886686d1aefae0484afc9e67edc0e67eb176bbb5340af1919ea39adfe866d066dd05')),
        ]

        for alg, keylen, ivlen, simple_cbc, c in ciphers:
            cipher = ssh_cipher_new(alg)
            if cipher is None:
                continue # hardware-accelerated cipher not available

            ssh_cipher_setkey(cipher, k[:keylen])
            if ivlen is not None:
                ssh_cipher_setiv(cipher, iv[:ivlen])
            self.assertEqualBin(ssh_cipher_encrypt(cipher, p), c)

            ssh_cipher_setkey(cipher, k[:keylen])
            if ivlen is not None:
                ssh_cipher_setiv(cipher, iv[:ivlen])
            self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)

            if simple_cbc:
                # CBC ciphers (other than the three-layered CBC used
                # by SSH-1 3DES) have more specific semantics for
                # their IV than 'some kind of starting state for the
                # cipher mode': the IV is specifically supposed to
                # represent the previous block of ciphertext. So we
                # can check that, by supplying the IV _as_ a
                # ciphertext block via a call to decrypt(), and seeing
                # if that causes our test ciphertext to decrypt the
                # same way as when we provided the same IV via
                # setiv().
                ssh_cipher_setkey(cipher, k[:keylen])
                ssh_cipher_decrypt(cipher, iv[:ivlen])
                self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)

    def testRSAKex(self):
        # Round-trip test of the RSA key exchange functions, plus a
        # hardcoded plain/ciphertext pair to guard against the
        # behaviour accidentally changing.
        def blobs(n, e, d, p, q, iqmp):
            # For RSA kex, the public blob is formatted exactly like
            # any other SSH-2 RSA public key. But there's no private
            # key blob format defined by the protocol, so for the
            # purposes of making a test RSA private key, we borrow the
            # function we already had that decodes one out of the wire
            # format used in the SSH-1 agent protocol.
            pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
            privblob = (ssh_uint32(nbits(n)) + ssh1_mpint(n) + ssh1_mpint(e) +
                        ssh1_mpint(d) + ssh1_mpint(iqmp) +
                        ssh1_mpint(q) + ssh1_mpint(p))
            return pubblob, privblob

        # Parameters for a test key.
        p = 0xf49e4d21c1ec3d1c20dc8656cc29aadb2644a12c98ed6c81a6161839d20d398d
        q = 0xa5f0bc464bf23c4c83cf17a2f396b15136fbe205c07cb3bb3bdb7ed357d1cd13
        n = p*q
        e = 37
        d = int(mp_invert(e, (p-1)*(q-1)))
        iqmp = int(mp_invert(q, p))
        assert iqmp * q % p == 1
        assert d * e % (p-1) == 1
        assert d * e % (q-1) == 1

        pubblob, privblob = blobs(n, e, d, p, q, iqmp)

        pubkey = ssh_rsakex_newkey(pubblob)
        privkey = get_rsa_ssh1_priv_agent(privblob)

        plain = 0x123456789abcdef
        hashalg = 'md5'
        with queued_random_data(64, "rsakex encrypt test"):
            cipher = ssh_rsakex_encrypt(pubkey, hashalg, ssh2_mpint(plain))
        decoded = ssh_rsakex_decrypt(privkey, hashalg, cipher)
        self.assertEqual(int(decoded), plain)
        self.assertEqualBin(cipher, unhex(
            '34277d1060dc0a434d98b4239de9cec59902a4a7d17a763587cdf8c25d57f51a'
            '7964541892e7511798e61dd78429358f4d6a887a50d2c5ebccf0e04f48fc665c'
        ))

    def testPRNG(self):
        hashalg = 'sha256'
        seed = b"hello, world"
        entropy = b'1234567890' * 100
        rev = lambda s: valbytes(reversed(bytevals(s)))

        # Replicate the generation of some random numbers. to ensure
        # they really are the hashes of what they're supposed to be.
        pr = prng_new(hashalg)
        prng_seed_begin(pr)
        prng_seed_update(pr, seed)
        prng_seed_finish(pr)
        data1 = prng_read(pr, 128)
        data2 = prng_read(pr, 127) # a short read shouldn't confuse things
        prng_add_entropy(pr, 0, entropy) # forces a reseed
        data3 = prng_read(pr, 128)

        key1 = hash_str(hashalg, b'R' + seed)
        expected_data1 = b''.join(
            rev(hash_str(hashalg, key1 + b'G' + ssh2_mpint(counter)))
            for counter in range(4))
        # After prng_read finishes, we expect the PRNG to have
        # automatically reseeded itself, so that if its internal state
        # is revealed then the previous output can't be reconstructed.
        key2 = hash_str(hashalg, key1 + b'R')
        expected_data2 = b''.join(
            rev(hash_str(hashalg, key2 + b'G' + ssh2_mpint(counter)))
            for counter in range(4,8))
        # There will have been another reseed after the second
        # prng_read, and then another due to the entropy.
        key3 = hash_str(hashalg, key2 + b'R')
        key4 = hash_str(hashalg, key3 + b'R' + hash_str(hashalg, entropy))
        expected_data3 = b''.join(
            rev(hash_str(hashalg, key4 + b'G' + ssh2_mpint(counter)))
            for counter in range(8,12))

        self.assertEqualBin(data1, expected_data1)
        self.assertEqualBin(data2, expected_data2[:127])
        self.assertEqualBin(data3, expected_data3)

    def testHashPadding(self):
        # A consistency test for hashes that use MD5/SHA-1/SHA-2 style
        # padding of the message into a whole number of fixed-size
        # blocks. We test-hash a message of every length up to twice
        # the block length, to make sure there's no off-by-1 error in
        # the code that decides how much padding to put on.

        # Source: generated using Python hashlib as an independent
        # implementation. The function below will do it, called with
        # parameters such as (hashlib.sha256,128).
        #
        # def gen_testcase(hashclass, maxlen):
        #    return hashclass(b''.join(hashclass(text[:i]).digest()
        #             for i in range(maxlen))).hexdigest()

        text = """
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
        """.replace('\n', ' ').strip()

        def test(hashname, maxlen, expected):
            assert len(text) >= maxlen
            buf = b''.join(hash_str(hashname, text[:i])
                           for i in range(maxlen))
            self.assertEqualBin(hash_str(hashname, buf), unhex(expected))

        test('md5', 128, '8169d766cc3b8df182b3ce756ae19a15')
        test('sha1', 128, '3691759577deb3b70f427763a9c15acb9dfc0259')
        test('sha256', 128, 'ec539c4d678412c86c13ee4eb9452232'
             '35d4eed3368d876fdf10c9df27396640')
        test('sha512', 256,
             'cb725b4b4ec0ac1174d69427b4d97848b7db4fc01181f99a8049a4d721862578'
             'f91e026778bb2d389a9dd88153405189e6ba438b213c5387284103d2267fd055'
        )

    def testDSA(self):
        p = 0xe93618c54716992ffd54e79df6e1b0edd517f7bbe4a49d64631eb3efe8105f676e8146248cfb4f05720862533210f0c2ab0f9dd61dbc0e5195200c4ebd95364b
        q = 0xf3533bcece2e164ca7c5ce64bc1e395e9a15bbdd
        g = 0x5ac9d0401c27d7abfbc5c17cdc1dc43323cd0ef18b79e1909bdace6d17af675a10d37dde8bd8b70e72a8666592216ccb00614629c27e870e4fbf393b812a9f05
        y = 0xac3ddeb22d65a5a2ded4a28418b2a748d8e5e544ba5e818c137d7b042ef356b0ef6d66cfca0b3ab5affa2969522e7b07bee60562fa4869829a5afce0ad0c4cd0
        x = 0x664f8250b7f1a5093047fe0c7fe4b58e46b73295
        pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('dsa', pubblob)
        privkey = ssh_key_new_priv('dsa', pubblob, privblob)

        sig = ssh_key_sign(privkey, b"hello, world", 0)
        self.assertTrue(ssh_key_verify(pubkey, sig, b"hello, world"))
        self.assertFalse(ssh_key_verify(pubkey, sig, b"hello, again"))

        badsig0 = unhex('{:040x}{:040x}'.format(1, 0))
        badsigq = unhex('{:040x}{:040x}'.format(1, q))
        self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, world"))
        self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, world"))
        self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again"))
        self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again"))

    def testRFC6979(self):
        # The test case described in detail in RFC 6979 section A.1.
        # We can't actually do the _signature_ for this, because it's
        # based on ECDSA over a finite field of characteristic 2, and
        # we only support prime-order fields. But we don't need to do
        # full ECDSA, only generate the same deterministic nonce that
        # the test case expects.
        k = rfc6979('sha256',
                    0x4000000000000000000020108A2E0CC0D99F8A5EF,
                    0x09A4D6792295A7F730FC3F2B49CBC0F62E862272F, "sample")
        self.assertEqual(int(k), 0x23AF4074C90A02B3FE61D286D5C87F425E6BDD81B)

        # Selected test cases from the rest of Appendix A.
        #
        # We can only use test cases for which we have the appropriate
        # hash function, so I've left out the test cases based on
        # SHA-224. (We could easily implement that, but I don't think
        # it's worth it just for adding further tests of this one
        # function.) Similarly, I've omitted test cases relating to
        # ECDSA curves we don't implement: P192, P224, and all the
        # curves over power-of-2 finite fields.
        #
        # Where possible, we also test the actual signature algorithm,
        # to make sure it delivers the same entire signature as the
        # test case. This demonstrates that the rfc6979() function is
        # being called in the right way and the results are being used
        # as they should be. Here I've had to cut down the test cases
        # even further, because the RFC specifies test cases with a
        # cross product of DSA group and hash function, whereas we
        # have a fixed hash (specified by SSH) for each signature
        # algorithm. And the RFC is clear that you use the same hash
        # for nonce generation and actual signing.

        # A.2.1: 1024-bit DSA
        q = 0x996F967F6C8E388D9E28D01E205FBA957A5698B1
        x = 0x411602CB19A6CCC34494D79D98EF1E7ED5AF25F7
        k = rfc6979('sha1', q, x, "sample")
        self.assertEqual(int(k), 0x7BDB6B0FF756E1BB5D53583EF979082F9AD5BD5B)
        k = rfc6979('sha256', q, x, "sample")
        self.assertEqual(int(k), 0x519BA0546D0C39202A7D34D7DFA5E760B318BCFB)
        k = rfc6979('sha384', q, x, "sample")
        self.assertEqual(int(k), 0x95897CD7BBB944AA932DBC579C1C09EB6FCFC595)
        k = rfc6979('sha512', q, x, "sample")
        self.assertEqual(int(k), 0x09ECE7CA27D0F5A4DD4E556C9DF1D21D28104F8B)
        k = rfc6979('sha1', q, x, "test")
        self.assertEqual(int(k), 0x5C842DF4F9E344EE09F056838B42C7A17F4A6433)
        k = rfc6979('sha256', q, x, "test")
        self.assertEqual(int(k), 0x5A67592E8128E03A417B0484410FB72C0B630E1A)
        k = rfc6979('sha384', q, x, "test")
        self.assertEqual(int(k), 0x220156B761F6CA5E6C9F1B9CF9C24BE25F98CD89)
        k = rfc6979('sha512', q, x, "test")
        self.assertEqual(int(k), 0x65D2C2EEB175E370F28C75BFCDC028D22C7DBE9C)
        # The rest of the public key, for signature testing
        p = 0x86F5CA03DCFEB225063FF830A0C769B9DD9D6153AD91D7CE27F787C43278B447E6533B86B18BED6E8A48B784A14C252C5BE0DBF60B86D6385BD2F12FB763ED8873ABFD3F5BA2E0A8C0A59082EAC056935E529DAF7C610467899C77ADEDFC846C881870B7B19B2B58F9BE0521A17002E3BDD6B86685EE90B3D9A1B02B782B1779
        g = 0x07B0F92546150B62514BB771E2A0C0CE387F03BDA6C56B505209FF25FD3C133D89BBCD97E904E09114D9A7DEFDEADFC9078EA544D2E401AEECC40BB9FBBF78FD87995A10A1C27CB7789B594BA7EFB5C4326A9FE59A070E136DB77175464ADCA417BE5DCE2F40D10A46A3A3943F26AB7FD9C0398FF8C76EE0A56826A8A88F1DBD
        y = 0x5DF5E01DED31D0297E274E1691C192FE5868FEF9E19A84776454B100CF16F65392195A38B90523E2542EE61871C0440CB87C322FC4B4D2EC5E1E7EC766E1BE8D4CE935437DC11C3C8FD426338933EBFE739CB3465F4D3668C5E473508253B1E682F65CBDC4FAE93C2EA212390E54905A86E2223170B44EAA7DA5DD9FFCFB7F3B
        pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('dsa', pubblob)
        privkey = ssh_key_new_priv('dsa', pubblob, privblob)
        sig = ssh_key_sign(privkey, b"sample", 0)
        # Expected output using SHA-1 as the hash in nonce
        # construction.
        r = 0x2E1A0C2562B2912CAAF89186FB0F42001585DA55
        s = 0x29EFB6B0AFF2D7A68EB70CA313022253B9A88DF5
        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
            be_integer(r, 160) + be_integer(s, 160))
        self.assertEqual(sig, ref_sig)
        # And the other test string.
        sig = ssh_key_sign(privkey, b"test", 0)
        r = 0x42AB2052FD43E123F0607F115052A67DCD9C5C77
        s = 0x183916B0230D45B9931491D4C6B0BD2FB4AAF088
        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
            be_integer(r, 160) + be_integer(s, 160))
        self.assertEqual(sig, ref_sig)

        # A.2.2: 2048-bit DSA
        q = 0xF2C3119374CE76C9356990B465374A17F23F9ED35089BD969F61C6DDE9998C1F
        x = 0x69C7548C21D0DFEA6B9A51C9EAD4E27C33D3B3F180316E5BCAB92C933F0E4DBC
        k = rfc6979('sha1', q, x, "sample")
        self.assertEqual(int(k), 0x888FA6F7738A41BDC9846466ABDB8174C0338250AE50CE955CA16230F9CBD53E)
        k = rfc6979('sha256', q, x, "sample")
        self.assertEqual(int(k), 0x8926A27C40484216F052F4427CFD5647338B7B3939BC6573AF4333569D597C52)
        k = rfc6979('sha384', q, x, "sample")
        self.assertEqual(int(k), 0xC345D5AB3DA0A5BCB7EC8F8FB7A7E96069E03B206371EF7D83E39068EC564920)
        k = rfc6979('sha512', q, x, "sample")
        self.assertEqual(int(k), 0x5A12994431785485B3F5F067221517791B85A597B7A9436995C89ED0374668FC)
        k = rfc6979('sha1', q, x, "test")
        self.assertEqual(int(k), 0x6EEA486F9D41A037B2C640BC5645694FF8FF4B98D066A25F76BE641CCB24BA4F)
        k = rfc6979('sha256', q, x, "test")
        self.assertEqual(int(k), 0x1D6CE6DDA1C5D37307839CD03AB0A5CBB18E60D800937D67DFB4479AAC8DEAD7)
        k = rfc6979('sha384', q, x, "test")
        self.assertEqual(int(k), 0x206E61F73DBE1B2DC8BE736B22B079E9DACD974DB00EEBBC5B64CAD39CF9F91C)
        k = rfc6979('sha512', q, x, "test")
        self.assertEqual(int(k), 0xAFF1651E4CD6036D57AA8B2A05CCF1A9D5A40166340ECBBDC55BE10B568AA0AA)
        # The rest of the public key, for signature testing
        p = 0x9DB6FB5951B66BB6FE1E140F1D2CE5502374161FD6538DF1648218642F0B5C48C8F7A41AADFA187324B87674FA1822B00F1ECF8136943D7C55757264E5A1A44FFE012E9936E00C1D3E9310B01C7D179805D3058B2A9F4BB6F9716BFE6117C6B5B3CC4D9BE341104AD4A80AD6C94E005F4B993E14F091EB51743BF33050C38DE235567E1B34C3D6A5C0CEAA1A0F368213C3D19843D0B4B09DCB9FC72D39C8DE41F1BF14D4BB4563CA28371621CAD3324B6A2D392145BEBFAC748805236F5CA2FE92B871CD8F9C36D3292B5509CA8CAA77A2ADFC7BFD77DDA6F71125A7456FEA153E433256A2261C6A06ED3693797E7995FAD5AABBCFBE3EDA2741E375404AE25B
        g = 0x5C7FF6B06F8F143FE8288433493E4769C4D988ACE5BE25A0E24809670716C613D7B0CEE6932F8FAA7C44D2CB24523DA53FBE4F6EC3595892D1AA58C4328A06C46A15662E7EAA703A1DECF8BBB2D05DBE2EB956C142A338661D10461C0D135472085057F3494309FFA73C611F78B32ADBB5740C361C9F35BE90997DB2014E2EF5AA61782F52ABEB8BD6432C4DD097BC5423B285DAFB60DC364E8161F4A2A35ACA3A10B1C4D203CC76A470A33AFDCBDD92959859ABD8B56E1725252D78EAC66E71BA9AE3F1DD2487199874393CD4D832186800654760E1E34C09E4D155179F9EC0DC4473F996BDCE6EED1CABED8B6F116F7AD9CF505DF0F998E34AB27514B0FFE7
        y = 0x667098C654426C78D7F8201EAC6C203EF030D43605032C2F1FA937E5237DBD949F34A0A2564FE126DC8B715C5141802CE0979C8246463C40E6B6BDAA2513FA611728716C2E4FD53BC95B89E69949D96512E873B9C8F8DFD499CC312882561ADECB31F658E934C0C197F2C4D96B05CBAD67381E7B768891E4DA3843D24D94CDFB5126E9B8BF21E8358EE0E0A30EF13FD6A664C0DCE3731F7FB49A4845A4FD8254687972A2D382599C9BAC4E0ED7998193078913032558134976410B89D2C171D123AC35FD977219597AA7D15C1A9A428E59194F75C721EBCBCFAE44696A499AFA74E04299F132026601638CB87AB79190D4A0986315DA8EEC6561C938996BEADF
        pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('dsa', pubblob)
        privkey = ssh_key_new_priv('dsa', pubblob, privblob)
        sig = ssh_key_sign(privkey, b"sample", 0)
        # Expected output using SHA-1 as the hash in nonce
        # construction, which is how SSH does things. RFC6979 lists
        # the following 256-bit values for r and s, but we end up only
        # using the low 160 bits of each.
        r = 0x3A1B2DBD7489D6ED7E608FD036C83AF396E290DBD602408E8677DAABD6E7445A
        s = 0xD26FCBA19FA3E3058FFC02CA1596CDBB6E0D20CB37B06054F7E36DED0CDBBCCF
        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
            be_integer(r, 160) + be_integer(s, 160))
        self.assertEqual(sig, ref_sig)
        # And the other test string.
        sig = ssh_key_sign(privkey, b"test", 0)
        r = 0xC18270A93CFC6063F57A4DFA86024F700D980E4CF4E2CB65A504397273D98EA0
        s = 0x414F22E5F31A8B6D33295C7539C1C1BA3A6160D7D68D50AC0D3A5BEAC2884FAA
        ref_sig = ssh_string(b"ssh-dss") + ssh_string(
            be_integer(r, 160) + be_integer(s, 160))
        self.assertEqual(sig, ref_sig)

        # A.2.5: ECDSA with NIST P256
        q = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
        x = 0xC9AFA9D845BA75166B5C215767B1D6934E50C3DB36E89B127B8A622B120F6721
        k = rfc6979('sha1', q, x, "sample")
        self.assertEqual(int(k), 0x882905F1227FD620FBF2ABF21244F0BA83D0DC3A9103DBBEE43A1FB858109DB4)
        k = rfc6979('sha256', q, x, "sample")
        self.assertEqual(int(k), 0xA6E3C57DD01ABE90086538398355DD4C3B17AA873382B0F24D6129493D8AAD60)
        k = rfc6979('sha384', q, x, "sample")
        self.assertEqual(int(k), 0x09F634B188CEFD98E7EC88B1AA9852D734D0BC272F7D2A47DECC6EBEB375AAD4)
        k = rfc6979('sha512', q, x, "sample")
        self.assertEqual(int(k), 0x5FA81C63109BADB88C1F367B47DA606DA28CAD69AA22C4FE6AD7DF73A7173AA5)
        k = rfc6979('sha1', q, x, "test")
        self.assertEqual(int(k), 0x8C9520267C55D6B980DF741E56B4ADEE114D84FBFA2E62137954164028632A2E)
        k = rfc6979('sha256', q, x, "test")
        self.assertEqual(int(k), 0xD16B6AE827F17175E040871A1C7EC3500192C4C92677336EC2537ACAEE0008E0)
        k = rfc6979('sha384', q, x, "test")
        self.assertEqual(int(k), 0x16AEFFA357260B04B1DD199693960740066C1A8F3E8EDD79070AA914D361B3B8)
        k = rfc6979('sha512', q, x, "test")
        self.assertEqual(int(k), 0x6915D11632ACA3C40D5D51C08DAF9C555933819548784480E93499000D9F0B7F)
        # The public key, for signature testing
        Ux = 0x60FED4BA255A9D31C961EB74C6356D68C049B8923B61FA6CE669622E60F29FB6
        Uy = 0x7903FE1008B8BC99A41AE9E95628BC64F2F1B20C2D7E9F5177A3C294D4462299
        pubblob = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(b"nistp256") + ssh_string(b'\x04' + be_integer(Ux, 256) + be_integer(Uy, 256))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('p256', pubblob)
        privkey = ssh_key_new_priv('p256', pubblob, privblob)
        sig = ssh_key_sign(privkey, b"sample", 0)
        # Expected output using SHA-256
        r = 0xEFD48B2AACB6A8FD1140DD9CD45E81D69D2C877B56AAF991C34D0EA84EAF3716
        s = 0xF7CB1C942D657C41D436C7A1B6E29F65F3E900DBB9AFF4064DC4AB2F843ACDA8
        ref_sig = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
        self.assertEqual(sig, ref_sig)
        # And the other test string
        sig = ssh_key_sign(privkey, b"test", 0)
        r = 0xF1ABB023518351CD71D881567B1EA663ED3EFCF6C5132B354F28D3B0B7D38367
        s = 0x019F4113742A2B14BD25926B49C649155F267E60D3814B4C0CC84250E46F0083
        ref_sig = ssh_string(b"ecdsa-sha2-nistp256") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
        self.assertEqual(sig, ref_sig)

        # A.2.5: ECDSA with NIST P384
        q = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973
        x = 0x6B9D3DAD2E1B8C1C05B19875B6659F4DE23C3B667BF297BA9AA47740787137D896D5724E4C70A825F872C9EA60D2EDF5
        k = rfc6979('sha1', q, x, "sample")
        self.assertEqual(int(k), 0x4471EF7518BB2C7C20F62EAE1C387AD0C5E8E470995DB4ACF694466E6AB096630F29E5938D25106C3C340045A2DB01A7)
        k = rfc6979('sha256', q, x, "sample")
        self.assertEqual(int(k), 0x180AE9F9AEC5438A44BC159A1FCB277C7BE54FA20E7CF404B490650A8ACC414E375572342863C899F9F2EDF9747A9B60)
        k = rfc6979('sha384', q, x, "sample")
        self.assertEqual(int(k), 0x94ED910D1A099DAD3254E9242AE85ABDE4BA15168EAF0CA87A555FD56D10FBCA2907E3E83BA95368623B8C4686915CF9)
        k = rfc6979('sha512', q, x, "sample")
        self.assertEqual(int(k), 0x92FC3C7183A883E24216D1141F1A8976C5B0DD797DFA597E3D7B32198BD35331A4E966532593A52980D0E3AAA5E10EC3)
        k = rfc6979('sha1', q, x, "test")
        self.assertEqual(int(k), 0x66CC2C8F4D303FC962E5FF6A27BD79F84EC812DDAE58CF5243B64A4AD8094D47EC3727F3A3C186C15054492E30698497)
        k = rfc6979('sha256', q, x, "test")
        self.assertEqual(int(k), 0x0CFAC37587532347DC3389FDC98286BBA8C73807285B184C83E62E26C401C0FAA48DD070BA79921A3457ABFF2D630AD7)
        k = rfc6979('sha384', q, x, "test")
        self.assertEqual(int(k), 0x015EE46A5BF88773ED9123A5AB0807962D193719503C527B031B4C2D225092ADA71F4A459BC0DA98ADB95837DB8312EA)
        k = rfc6979('sha512', q, x, "test")
        self.assertEqual(int(k), 0x3780C4F67CB15518B6ACAE34C9F83568D2E12E47DEAB6C50A4E4EE5319D1E8CE0E2CC8A136036DC4B9C00E6888F66B6C)
        # The public key, for signature testing
        Ux = 0xEC3A4E415B4E19A4568618029F427FA5DA9A8BC4AE92E02E06AAE5286B300C64DEF8F0EA9055866064A254515480BC13
        Uy = 0x8015D9B72D7D57244EA8EF9AC0C621896708A59367F9DFB9F54CA84B3F1C9DB1288B231C3AE0D4FE7344FD2533264720
        pubblob = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(b"nistp384") + ssh_string(b'\x04' + be_integer(Ux, 384) + be_integer(Uy, 384))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('p384', pubblob)
        privkey = ssh_key_new_priv('p384', pubblob, privblob)
        sig = ssh_key_sign(privkey, b"sample", 0)
        # Expected output using SHA-384
        r = 0x94EDBB92A5ECB8AAD4736E56C691916B3F88140666CE9FA73D64C4EA95AD133C81A648152E44ACF96E36DD1E80FABE46
        s = 0x99EF4AEB15F178CEA1FE40DB2603138F130E740A19624526203B6351D0A3A94FA329C145786E679E7B82C71A38628AC8
        ref_sig = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
        self.assertEqual(sig, ref_sig)
        # And the other test string
        sig = ssh_key_sign(privkey, b"test", 0)
        r = 0x8203B63D3C853E8D77227FB377BCF7B7B772E97892A80F36AB775D509D7A5FEB0542A7F0812998DA8F1DD3CA3CF023DB
        s = 0xDDD0760448D42D8A43AF45AF836FCE4DE8BE06B485E9B61B827C2F13173923E06A739F040649A667BF3B828246BAA5A5
        ref_sig = ssh_string(b"ecdsa-sha2-nistp384") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
        self.assertEqual(sig, ref_sig)

        # A.2.6: ECDSA with NIST P521
        q = 0x1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409
        x = 0x0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538
        k = rfc6979('sha1', q, x, "sample")
        self.assertEqual(int(k), 0x089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9)
        k = rfc6979('sha256', q, x, "sample")
        self.assertEqual(int(k), 0x0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0)
        k = rfc6979('sha384', q, x, "sample")
        self.assertEqual(int(k), 0x1546A108BC23A15D6F21872F7DED661FA8431DDBD922D0DCDB77CC878C8553FFAD064C95A920A750AC9137E527390D2D92F153E66196966EA554D9ADFCB109C4211)
        k = rfc6979('sha512', q, x, "sample")
        self.assertEqual(int(k), 0x1DAE2EA071F8110DC26882D4D5EAE0621A3256FC8847FB9022E2B7D28E6F10198B1574FDD03A9053C08A1854A168AA5A57470EC97DD5CE090124EF52A2F7ECBFFD3)
        k = rfc6979('sha1', q, x, "test")
        self.assertEqual(int(k), 0x0BB9F2BF4FE1038CCF4DABD7139A56F6FD8BB1386561BD3C6A4FC818B20DF5DDBA80795A947107A1AB9D12DAA615B1ADE4F7A9DC05E8E6311150F47F5C57CE8B222)
        k = rfc6979('sha256', q, x, "test")
        self.assertEqual(int(k), 0x01DE74955EFAABC4C4F17F8E84D881D1310B5392D7700275F82F145C61E843841AF09035BF7A6210F5A431A6A9E81C9323354A9E69135D44EBD2FCAA7731B909258)
        k = rfc6979('sha384', q, x, "test")
        self.assertEqual(int(k), 0x1F1FC4A349A7DA9A9E116BFDD055DC08E78252FF8E23AC276AC88B1770AE0B5DCEB1ED14A4916B769A523CE1E90BA22846AF11DF8B300C38818F713DADD85DE0C88)
        k = rfc6979('sha512', q, x, "test")
        self.assertEqual(int(k), 0x16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D)
        # The public key, for signature testing
        Ux = 0x1894550D0785932E00EAA23B694F213F8C3121F86DC97A04E5A7167DB4E5BCD371123D46E45DB6B5D5370A7F20FB633155D38FFA16D2BD761DCAC474B9A2F5023A4
        Uy = 0x0493101C962CD4D2FDDF782285E64584139C2F91B47F87FF82354D6630F746A28A0DB25741B5B34A828008B22ACC23F924FAAFBD4D33F81EA66956DFEAA2BFDFCF5
        pubblob = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(b"nistp521") + ssh_string(b'\x04' + be_integer(Ux, 528) + be_integer(Uy, 528))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('p521', pubblob)
        privkey = ssh_key_new_priv('p521', pubblob, privblob)
        sig = ssh_key_sign(privkey, b"sample", 0)
        # Expected output using SHA-512
        r = 0x0C328FAFCBD79DD77850370C46325D987CB525569FB63C5D3BC53950E6D4C5F174E25A1EE9017B5D450606ADD152B534931D7D4E8455CC91F9B15BF05EC36E377FA
        s = 0x0617CCE7CF5064806C467F678D3B4080D6F1CC50AF26CA209417308281B68AF282623EAA63E5B5C0723D8B8C37FF0777B1A20F8CCB1DCCC43997F1EE0E44DA4A67A
        ref_sig = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
        self.assertEqual(sig, ref_sig)
        # And the other test string
        sig = ssh_key_sign(privkey, b"test", 0)
        r = 0x13E99020ABF5CEE7525D16B69B229652AB6BDF2AFFCAEF38773B4B7D08725F10CDB93482FDCC54EDCEE91ECA4166B2A7C6265EF0CE2BD7051B7CEF945BABD47EE6D
        s = 0x1FBD0013C674AA79CB39849527916CE301C66EA7CE8B80682786AD60F98F7E78A19CA69EFF5C57400E3B3A0AD66CE0978214D13BAF4E9AC60752F7B155E2DE4DCE3
        ref_sig = ssh_string(b"ecdsa-sha2-nistp521") + ssh_string(ssh2_mpint(r) + ssh2_mpint(s))
        self.assertEqual(sig, ref_sig)

    def testRSAVerify(self):
        def blobs(n, e, d, p, q, iqmp):
            pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
            privblob = (ssh2_mpint(d) + ssh2_mpint(p) +
                        ssh2_mpint(q) + ssh2_mpint(iqmp))
            return pubblob, privblob

        def failure_test(*args):
            pubblob, privblob = blobs(*args)
            key = ssh_key_new_priv('rsa', pubblob, privblob)
            self.assertEqual(key, None)

        def success_test(*args):
            pubblob, privblob = blobs(*args)
            key = ssh_key_new_priv('rsa', pubblob, privblob)
            self.assertNotEqual(key, None)

        # Parameters for a (trivially small) test key.
        n = 0xb5d545a2f6423eabd55ffede53e21628d5d4491541482e10676d9d6f2783b9a5
        e = 0x25
        d = 0x6733db6a546ac99fcc21ba2b28b0c077156e8a705976205a955c6d9cef98f419
        p = 0xe30ebd7348bf10dca72b36f2724dafa7
        q = 0xcd02c87a7f7c08c4e9dc80c9b9bad5d3
        iqmp = 0x60a129b30db9227910efe1608976c513

        # Check the test key makes sense unmodified.
        success_test(n, e, d, p, q, iqmp)

        # Try modifying the values one by one to ensure they are
        # rejected, except iqmp, which sshrsa.c regenerates anyway so
        # it won't matter at all.
        failure_test(n+1, e, d, p, q, iqmp)
        failure_test(n, e+1, d, p, q, iqmp)
        failure_test(n, e, d+1, p, q, iqmp)
        failure_test(n, e, d, p+1, q, iqmp)
        failure_test(n, e, d, p, q+1, iqmp)
        success_test(n, e, d, p, q, iqmp+1)

        # The key should also be accepted with p,q reversed. (Again,
        # iqmp gets regenerated, so it won't matter if that's wrong.)
        success_test(n, e, d, q, p, iqmp)

        # Replace each of p and q with 0, and with 1. These should
        # still fail validation (obviously), but the point is that the
        # validator should also avoid trying to divide by zero in the
        # process.
        failure_test(n, e, d, 0, q, iqmp)
        failure_test(n, e, d, p, 0, iqmp)
        failure_test(n, e, d, 1, q, iqmp)
        failure_test(n, e, d, p, 1, iqmp)

    def testKeyMethods(self):
        # Exercise all the methods of the ssh_key trait on all key
        # types, and ensure that they're consistent with each other.
        # No particular test is done on the rightness of the
        # signatures by any objective standard, only that the output
        # from our signing method can be verified by the corresponding
        # verification method.
        #
        # However, we do include the expected signature text in each
        # case, which checks determinism in the sense of being
        # independent of any random numbers, and also in the sense of
        # tomorrow's change to the code not having accidentally
        # changed the behaviour.

        test_message = b"Message to be signed by crypt.testKeyMethods\n"

        test_keys = [
            ('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]),
            ('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIFrd1bjr4GHfWsM9RNJ+y4Z0eVwpRRv3IvNE2moaA1x3AAAAIFWcwwCE69kS4oybMFEUP4r7qFAY8tSb1o8ItSFcSe2+')]),
            ('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABoAAAAMFqCJ+gBP4GGc7yCy9F5e4EjkDlvYBYsYWMYFg3Md/ml7Md8pIrN7I0+8bFb99rZjQAAADAsM2kI+QOcgK+oVDaP0qkLRRbWDO1dSU5I2YfETyHVLYFNdRmgdWo6002XTO9jAsk=')]),
            ('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACLAAAAQVBkbaCKivgvc+68CULCdPayjzRUYZdj1G2pLyiPWTdmJKVKF/W1oDAtjMZlP53tqCpGxDdrLoJH2A39k6g5MgNjAAAAQgGrNcesPBw/HMopBQ1JqOG1cSlAzjiFT34FvM68ZhdIjbQ0eHFuYs97RekQ8dpxmkuM88e63ATbZy4yDX06pKgmuQ==')]),
            ('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAoyCVHLG2QqdMx7NiCWaThx6tDA5mf7UGl+8By0IzmSldBujsGKNs20g==')]),
            ('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]),
        ]

        for alg, pubb64, privb64, bits, cachestr, siglist in test_keys:
            # Decode the blobs in the above test data.
            pubblob = base64decode(pubb64.encode('ASCII'))
            privblob = base64decode(privb64.encode('ASCII'))

            # Check the method that examines a public blob directly
            # and returns an integer showing the key size.
            self.assertEqual(ssh_key_public_bits(alg, pubblob), bits)

            # Make a public-only and a full ssh_key object.
            pubkey = ssh_key_new_pub(alg, pubblob)
            privkey = ssh_key_new_priv(alg, pubblob, privblob)

            # Test that they re-export the public and private key
            # blobs unchanged.
            self.assertEqual(ssh_key_public_blob(pubkey), pubblob)
            self.assertEqual(ssh_key_public_blob(privkey), pubblob)
            self.assertEqual(ssh_key_private_blob(privkey), privblob)

            # Round-trip through the OpenSSH wire encoding used by the
            # agent protocol (and the newer OpenSSH key file format),
            # and check the result still exports all the same blobs.
            osshblob = ssh_key_openssh_blob(privkey)
            privkey2 = ssh_key_new_priv_openssh(alg, osshblob)
            self.assertEqual(ssh_key_public_blob(privkey2), pubblob)
            self.assertEqual(ssh_key_private_blob(privkey2), privblob)
            self.assertEqual(ssh_key_openssh_blob(privkey2), osshblob)

            # Test that the string description used in the host key
            # cache is as expected.
            for key in [pubkey, privkey, privkey2]:
                self.assertEqual(ssh_key_cache_str(key), cachestr)

            # Now test signatures, separately for each provided flags
            # value.
            for flags, sigb64 in siglist:
                # Decode the signature blob from the test data.
                sigblob = base64decode(sigb64.encode('ASCII'))

                # Sign our test message, and check it produces exactly
                # the expected signature blob.
                #
                # We do this with both the original private key and
                # the one we round-tripped through OpenSSH wire
                # format, just in case that round trip made some kind
                # of a mess that didn't show up in the re-extraction
                # of the blobs.
                for key in [privkey, privkey2]:
                    self.assertEqual(ssh_key_sign(
                        key, test_message, flags), sigblob)

                if flags != 0:
                    # Currently we only support _generating_
                    # signatures with flags != 0, not verifying them.
                    continue

                # Check the signature verifies successfully, with all
                # three of the key objects we have.
                for key in [pubkey, privkey, privkey2]:
                    self.assertTrue(ssh_key_verify(key, sigblob, test_message))

                # A crude check that at least _something_ doesn't
                # verify successfully: flip a bit of the signature
                # and expect it to fail.
                #
                # We do this twice, at the 1/3 and 2/3 points along
                # the signature's length, so that in the case of
                # signatures in two parts (DSA-like) we try perturbing
                # both parts. Other than that, we don't do much to
                # make this a rigorous cryptographic test.
                for n, d in [(1,3),(2,3)]:
                    sigbytes = list(bytevals(sigblob))
                    bit = 8 * len(sigbytes) * n // d
                    sigbytes[bit // 8] ^= 1 << (bit % 8)
                    badsig = valbytes(sigbytes)
                    for key in [pubkey, privkey, privkey2]:
                        self.assertFalse(ssh_key_verify(
                            key, badsig, test_message))

class standard_test_vectors(MyTestBase):
    def testAES(self):
        def vector(cipher, key, plaintext, ciphertext):
            for suffix in "hw", "sw":
                c = ssh_cipher_new("{}_{}".format(cipher, suffix))
                if c is None: return # skip test if HW AES not available
                ssh_cipher_setkey(c, key)

                # The AES test vectors are implicitly in ECB mode,
                # because they're testing the cipher primitive rather
                # than any mode layered on top of it. We fake this by
                # using PuTTY's CBC setting, and clearing the IV to
                # all zeroes before each operation.

                ssh_cipher_setiv(c, b'\x00' * 16)
                self.assertEqualBin(
                    ssh_cipher_encrypt(c, plaintext), ciphertext)

                ssh_cipher_setiv(c, b'\x00' * 16)
                self.assertEqualBin(
                    ssh_cipher_decrypt(c, ciphertext), plaintext)

        # The test vector from FIPS 197 appendix B. (This is also the
        # same key whose key setup phase is shown in detail in
        # appendix A.)
        vector('aes128_cbc',
               unhex('2b7e151628aed2a6abf7158809cf4f3c'),
               unhex('3243f6a8885a308d313198a2e0370734'),
               unhex('3925841d02dc09fbdc118597196a0b32'))

        # The test vectors from FIPS 197 appendix C: the key bytes go
        # 00 01 02 03 ... for as long as needed, and the plaintext
        # bytes go 00 11 22 33 ... FF.
        fullkey = struct.pack("B"*32, *range(32))
        plaintext = struct.pack("B"*16, *[0x11*i for i in range(16)])
        vector('aes128_cbc', fullkey[:16], plaintext,
               unhex('69c4e0d86a7b0430d8cdb78070b4c55a'))
        vector('aes192_cbc', fullkey[:24], plaintext,
               unhex('dda97ca4864cdfe06eaf70a0ec0d7191'))
        vector('aes256_cbc', fullkey[:32], plaintext,
               unhex('8ea2b7ca516745bfeafc49904b496089'))

    def testDES(self):
        c = ssh_cipher_new("des_cbc")
        def vector(key, plaintext, ciphertext):
            key = unhex(key)
            plaintext = unhex(plaintext)
            ciphertext = unhex(ciphertext)

            # Similarly to above, we fake DES ECB by using DES CBC and
            # resetting the IV to zero all the time
            ssh_cipher_setkey(c, key)
            ssh_cipher_setiv(c, b'\x00' * 8)
            self.assertEqualBin(ssh_cipher_encrypt(c, plaintext), ciphertext)
            ssh_cipher_setiv(c, b'\x00' * 8)
            self.assertEqualBin(ssh_cipher_decrypt(c, ciphertext), plaintext)

        # Source: FIPS SP PUB 500-20

        # 'Initial permutation and expansion tests': key fixed at 8
        # copies of the byte 01, but ciphertext and plaintext in turn
        # run through all possible values with exactly 1 bit set.
        # Expected plaintexts and ciphertexts (respectively) listed in
        # the arrays below.
        ipe_key = '01' * 8
        ipe_plaintexts = [
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
        ]
        ipe_ciphertexts = [
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
        ]
        ipe_single_bits = ["{:016x}".format(1 << bit) for bit in range(64)]
        for plaintext, ciphertext in zip(ipe_plaintexts, ipe_single_bits):
            vector(ipe_key, plaintext, ciphertext)
        for plaintext, ciphertext in zip(ipe_single_bits, ipe_ciphertexts):
            vector(ipe_key, plaintext, ciphertext)

        # 'Key permutation tests': plaintext fixed at all zeroes, key
        # is a succession of tweaks of the previous key made by
        # replacing each 01 byte in turn with one containing a
        # different single set bit (e.g. 01 20 01 01 01 01 01 01).
        # Expected ciphertexts listed.
        kp_ciphertexts = [
'95A8D72813DAA94D', '0EEC1487DD8C26D5', '7AD16FFB79C45926', 'D3746294CA6A6CF3',
'809F5F873C1FD761', 'C02FAFFEC989D1FC', '4615AA1D33E72F10', '2055123350C00858',
'DF3B99D6577397C8', '31FE17369B5288C9', 'DFDD3CC64DAE1642', '178C83CE2B399D94',
'50F636324A9B7F80', 'A8468EE3BC18F06D', 'A2DC9E92FD3CDE92', 'CAC09F797D031287',
'90BA680B22AEB525', 'CE7A24F350E280B6', '882BFF0AA01A0B87', '25610288924511C2',
'C71516C29C75D170', '5199C29A52C9F059', 'C22F0A294A71F29F', 'EE371483714C02EA',
'A81FBD448F9E522F', '4F644C92E192DFED', '1AFA9A66A6DF92AE', 'B3C1CC715CB879D8',
'19D032E64AB0BD8B', '3CFAA7A7DC8720DC', 'B7265F7F447AC6F3', '9DB73B3C0D163F54',
'8181B65BABF4A975', '93C9B64042EAA240', '5570530829705592', '8638809E878787A0',
'41B9A79AF79AC208', '7A9BE42F2009A892', '29038D56BA6D2745', '5495C6ABF1E5DF51',
'AE13DBD561488933', '024D1FFA8904E389', 'D1399712F99BF02E', '14C1D7C1CFFEC79E',
'1DE5279DAE3BED6F', 'E941A33F85501303', 'DA99DBBC9A03F379', 'B7FC92F91D8E92E9',
'AE8E5CAA3CA04E85', '9CC62DF43B6EED74', 'D863DBB5C59A91A0', 'A1AB2190545B91D7',
'0875041E64C570F7', '5A594528BEBEF1CC', 'FCDB3291DE21F0C0', '869EFD7F9F265A09',
        ]
        kp_key_repl_bytes = ["{:02x}".format(0x80>>i) for i in range(7)]
        kp_keys = ['01'*j + b + '01'*(7-j)
                   for j in range(8) for b in kp_key_repl_bytes]
        kp_plaintext = '0' * 16
        for key, ciphertext in zip(kp_keys, kp_ciphertexts):
            vector(key, kp_plaintext, ciphertext)

        # 'Data permutation test': plaintext fixed at all zeroes,
        # pairs of key and expected ciphertext listed below.
        dp_keys_and_ciphertexts = [
'1046913489980131:88D55E54F54C97B4', '1007103489988020:0C0CC00C83EA48FD',
'10071034C8980120:83BC8EF3A6570183', '1046103489988020:DF725DCAD94EA2E9',
'1086911519190101:E652B53B550BE8B0', '1086911519580101:AF527120C485CBB0',
'5107B01519580101:0F04CE393DB926D5', '1007B01519190101:C9F00FFC74079067',
'3107915498080101:7CFD82A593252B4E', '3107919498080101:CB49A2F9E91363E3',
'10079115B9080140:00B588BE70D23F56', '3107911598080140:406A9A6AB43399AE',
'1007D01589980101:6CB773611DCA9ADA', '9107911589980101:67FD21C17DBB5D70',
'9107D01589190101:9592CB4110430787', '1007D01598980120:A6B7FF68A318DDD3',
'1007940498190101:4D102196C914CA16', '0107910491190401:2DFA9F4573594965',
'0107910491190101:B46604816C0E0774', '0107940491190401:6E7E6221A4F34E87',
'19079210981A0101:AA85E74643233199', '1007911998190801:2E5A19DB4D1962D6',
'10079119981A0801:23A866A809D30894', '1007921098190101:D812D961F017D320',
'100791159819010B:055605816E58608F', '1004801598190101:ABD88E8B1B7716F1',
'1004801598190102:537AC95BE69DA1E1', '1004801598190108:AED0F6AE3C25CDD8',
'1002911498100104:B3E35A5EE53E7B8D', '1002911598190104:61C79C71921A2EF8',
'1002911598100201:E2F5728F0995013C', '1002911698100101:1AEAC39A61F0A464',
        ]
        dp_plaintext = '0' * 16
        for key_and_ciphertext in dp_keys_and_ciphertexts:
            key, ciphertext = key_and_ciphertext.split(":")
            vector(key, dp_plaintext, ciphertext)

        # Tests intended to select every entry in every S-box. Full
        # arbitrary triples (key, plaintext, ciphertext).
        sb_complete_tests = [
            '7CA110454A1A6E57:01A1D6D039776742:690F5B0D9A26939B',
            '0131D9619DC1376E:5CD54CA83DEF57DA:7A389D10354BD271',
            '07A1133E4A0B2686:0248D43806F67172:868EBB51CAB4599A',
            '3849674C2602319E:51454B582DDF440A:7178876E01F19B2A',
            '04B915BA43FEB5B6:42FD443059577FA2:AF37FB421F8C4095',
            '0113B970FD34F2CE:059B5E0851CF143A:86A560F10EC6D85B',
            '0170F175468FB5E6:0756D8E0774761D2:0CD3DA020021DC09',
            '43297FAD38E373FE:762514B829BF486A:EA676B2CB7DB2B7A',
            '07A7137045DA2A16:3BDD119049372802:DFD64A815CAF1A0F',
            '04689104C2FD3B2F:26955F6835AF609A:5C513C9C4886C088',
            '37D06BB516CB7546:164D5E404F275232:0A2AEEAE3FF4AB77',
            '1F08260D1AC2465E:6B056E18759F5CCA:EF1BF03E5DFA575A',
            '584023641ABA6176:004BD6EF09176062:88BF0DB6D70DEE56',
            '025816164629B007:480D39006EE762F2:A1F9915541020B56',
            '49793EBC79B3258F:437540C8698F3CFA:6FBF1CAFCFFD0556',
            '4FB05E1515AB73A7:072D43A077075292:2F22E49BAB7CA1AC',
            '49E95D6D4CA229BF:02FE55778117F12A:5A6B612CC26CCE4A',
            '018310DC409B26D6:1D9D5C5018F728C2:5F4C038ED12B2E41',
            '1C587F1C13924FEF:305532286D6F295A:63FAC0D034D9F793',
        ]
        for test in sb_complete_tests:
            key, plaintext, ciphertext = test.split(":")
            vector(key, plaintext, ciphertext)

    def testMD5(self):
        MD5 = lambda s: hash_str('md5', s)

        # The test vectors from RFC 1321 section A.5.
        self.assertEqualBin(MD5(""),
                            unhex('d41d8cd98f00b204e9800998ecf8427e'))
        self.assertEqualBin(MD5("a"),
                            unhex('0cc175b9c0f1b6a831c399e269772661'))
        self.assertEqualBin(MD5("abc"),
                            unhex('900150983cd24fb0d6963f7d28e17f72'))
        self.assertEqualBin(MD5("message digest"),
                            unhex('f96b697d7cb7938d525a2f31aaf161d0'))
        self.assertEqualBin(MD5("abcdefghijklmnopqrstuvwxyz"),
                            unhex('c3fcd3d76192e4007dfb496cca67e13b'))
        self.assertEqualBin(MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                                "abcdefghijklmnopqrstuvwxyz0123456789"),
                            unhex('d174ab98d277d9f5a5611c2c9f419d9f'))
        self.assertEqualBin(MD5("1234567890123456789012345678901234567890"
                                "1234567890123456789012345678901234567890"),
                            unhex('57edf4a22be3c955ac49da2e2107b67a'))

    def testHmacMD5(self):
        # The test vectors from the RFC 2104 Appendix.
        self.assertEqualBin(mac_str('hmac_md5', unhex('0b'*16), "Hi There"),
                         unhex('9294727a3638bb1c13f48ef8158bfc9d'))
        self.assertEqualBin(mac_str('hmac_md5', "Jefe",
                                 "what do ya want for nothing?"),
                         unhex('750c783e6ab0b503eaa86e310a5db738'))
        self.assertEqualBin(mac_str('hmac_md5', unhex('aa'*16), unhex('dd'*50)),
                         unhex('56be34521d144c88dbb8c733f0e8b3f6'))

    def testSHA1(self):
        for hashname in ['sha1_sw', 'sha1_hw']:
            if ssh_hash_new(hashname) is None:
                continue # skip testing of unavailable HW implementation

            # Test cases from RFC 6234 section 8.5, omitting the ones
            # whose input is not a multiple of 8 bits
            self.assertEqualBin(hash_str(hashname, "abc"), unhex(
                "a9993e364706816aba3e25717850c26c9cd0d89d"))
            self.assertEqualBin(hash_str(hashname,
                "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"),
                unhex("84983e441c3bd26ebaae4aa1f95129e5e54670f1"))
            self.assertEqualBin(hash_str_iter(hashname,
                ("a" * 1000 for _ in range(1000))), unhex(
                "34aa973cd4c4daa4f61eeb2bdbad27316534016f"))
            self.assertEqualBin(hash_str(hashname,
                "01234567012345670123456701234567" * 20), unhex(
                "dea356a2cddd90c7a7ecedc5ebb563934f460452"))
            self.assertEqualBin(hash_str(hashname, b"\x5e"), unhex(
                "5e6f80a34a9798cafc6a5db96cc57ba4c4db59c2"))
            self.assertEqualBin(hash_str(hashname,
                unhex("9a7dfdf1ecead06ed646aa55fe757146")), unhex(
                "82abff6605dbe1c17def12a394fa22a82b544a35"))
            self.assertEqualBin(hash_str(hashname, unhex(
                "f78f92141bcd170ae89b4fba15a1d59f"
                "3fd84d223c9251bdacbbae61d05ed115"
                "a06a7ce117b7beead24421ded9c32592"
                "bd57edeae39c39fa1fe8946a84d0cf1f"
                "7beead1713e2e0959897347f67c80b04"
                "00c209815d6b10a683836fd5562a56ca"
                "b1a28e81b6576654631cf16566b86e3b"
                "33a108b05307c00aff14a768ed735060"
                "6a0f85e6a91d396f5b5cbe577f9b3880"
                "7c7d523d6d792f6ebc24a4ecf2b3a427"
                "cdbbfb")), unhex(
                "cb0082c8f197d260991ba6a460e76e202bad27b3"))

    def testSHA256(self):
        for hashname in ['sha256_sw', 'sha256_hw']:
            if ssh_hash_new(hashname) is None:
                continue # skip testing of unavailable HW implementation

            # Test cases from RFC 6234 section 8.5, omitting the ones
            # whose input is not a multiple of 8 bits
            self.assertEqualBin(hash_str(hashname, "abc"),
                                unhex("ba7816bf8f01cfea414140de5dae2223"
                                      "b00361a396177a9cb410ff61f20015ad"))
            self.assertEqualBin(hash_str(hashname,
                "abcdbcdecdefdefgefghfghighijhijk""ijkljklmklmnlmnomnopnopq"),
                                unhex("248d6a61d20638b8e5c026930c3e6039"
                                      "a33ce45964ff2167f6ecedd419db06c1"))
            self.assertEqualBin(
                hash_str_iter(hashname, ("a" * 1000 for _ in range(1000))),
                unhex("cdc76e5c9914fb9281a1c7e284d73e67"
                      "f1809a48a497200e046d39ccc7112cd0"))
            self.assertEqualBin(
                hash_str(hashname, "01234567012345670123456701234567" * 20),
                unhex("594847328451bdfa85056225462cc1d8"
                      "67d877fb388df0ce35f25ab5562bfbb5"))
            self.assertEqualBin(hash_str(hashname, b"\x19"),
                                unhex("68aa2e2ee5dff96e3355e6c7ee373e3d"
                                      "6a4e17f75f9518d843709c0c9bc3e3d4"))
            self.assertEqualBin(
                hash_str(hashname, unhex("e3d72570dcdd787ce3887ab2cd684652")),
                unhex("175ee69b02ba9b58e2b0a5fd13819cea"
                      "573f3940a94f825128cf4209beabb4e8"))
            self.assertEqualBin(hash_str(hashname, unhex(
                "8326754e2277372f4fc12b20527afef0"
                "4d8a056971b11ad57123a7c137760000"
                "d7bef6f3c1f7a9083aa39d810db31077"
                "7dab8b1e7f02b84a26c773325f8b2374"
                "de7a4b5a58cb5c5cf35bcee6fb946e5b"
                "d694fa593a8beb3f9d6592ecedaa66ca"
                "82a29d0c51bcf9336230e5d784e4c0a4"
                "3f8d79a30a165cbabe452b774b9c7109"
                "a97d138f129228966f6c0adc106aad5a"
                "9fdd30825769b2c671af6759df28eb39"
                "3d54d6")), unhex(
                    "97dbca7df46d62c8a422c941dd7e835b"
                    "8ad3361763f7e9b2d95f4f0da6e1ccbc"))

    def testSHA384(self):
        # Test cases from RFC 6234 section 8.5, omitting the ones
        # whose input is not a multiple of 8 bits
        self.assertEqualBin(hash_str('sha384', "abc"), unhex(
            'cb00753f45a35e8bb5a03d699ac65007272c32ab0eded163'
            '1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7'))
        self.assertEqualBin(hash_str('sha384',
            "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
            "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), unhex(
            '09330c33f71147e83d192fc782cd1b4753111b173b3b05d2'
            '2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039'))
        self.assertEqualBin(hash_str_iter('sha384',
            ("a" * 1000 for _ in range(1000))), unhex(
            '9d0e1809716474cb086e834e310a4a1ced149e9c00f24852'
            '7972cec5704c2a5b07b8b3dc38ecc4ebae97ddd87f3d8985'))
        self.assertEqualBin(hash_str('sha384',
            "01234567012345670123456701234567" * 20), unhex(
            '2fc64a4f500ddb6828f6a3430b8dd72a368eb7f3a8322a70'
            'bc84275b9c0b3ab00d27a5cc3c2d224aa6b61a0d79fb4596'))
        self.assertEqualBin(hash_str('sha384', b"\xB9"), unhex(
            'bc8089a19007c0b14195f4ecc74094fec64f01f90929282c'
            '2fb392881578208ad466828b1c6c283d2722cf0ad1ab6938'))
        self.assertEqualBin(hash_str('sha384',
            unhex("a41c497779c0375ff10a7f4e08591739")), unhex(
            'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591'
            '3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7'))
        self.assertEqualBin(hash_str('sha384', unhex(
            "399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621db0f"
            "3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202fc3f5042"
            "e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d52865f25cc22b5e8"
            "7784a12fc961d66cb6e89573199a2ce6565cbdf13dca403832cfcb0e8b7211e8"
            "3af32a11ac17929ff1c073a51cc027aaedeff85aad7c2b7c5a803e2404d96d2a"
            "77357bda1a6daeed17151cb9bc5125a422e941de0ca0fc5011c23ecffefdd096"
            "76711cf3db0a3440720e1615c1f22fbc3c721de521e1b99ba1bd557740864214"
            "7ed096")), unhex(
            '4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf'
            '38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0'))

    def testSHA512(self):
        # Test cases from RFC 6234 section 8.5, omitting the ones
        # whose input is not a multiple of 8 bits
        self.assertEqualBin(hash_str('sha512', "abc"), unhex(
            'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a'
            '2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f'))
        self.assertEqualBin(hash_str('sha512',
            "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
            "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"), unhex(
            '8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018'
            '501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909'))
        self.assertEqualBin(hash_str_iter('sha512',
            ("a" * 1000 for _ in range(1000))), unhex(
            'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa973eb'
            'de0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217ad8cc09b'))
        self.assertEqualBin(hash_str('sha512',
            "01234567012345670123456701234567" * 20), unhex(
            '89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2ba814'
            '1a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f3fb7bae9'))
        self.assertEqualBin(hash_str('sha512', b"\xD0"), unhex(
            '9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4aceee'
            'e50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4ab3fbba15'))
        self.assertEqualBin(hash_str('sha512',
            unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex(
            'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c9828924c3'
            'ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0c95c90f8'))
        self.assertEqualBin(hash_str('sha512', unhex(
            "a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0de1de"
            "6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d03e56ff2"
            "f868002bc3e431edc44df2f0223d4bb3b243586e1a7d924936694fcbbaf88d95"
            "19e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab4981164bbb6dc32f"
            "969087a145b0d9cc9c67c22b763299419cc4128be9a077b3ace634064e6d9928"
            "3513dc06e7515d0d73132e9a0dc6d3b1f8b246f1a98a3fc72941b1e3bb2098e8"
            "bf16f268d64f0b0f4707fe1ea1a1791ba2f3c0c758e5f551863a96c949ad47d7"
            "fb40d2")), unhex(
            'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d487193'
            '77966b957a878e720584779a62825c18da26415e49a7176a894e7510fd1451f5'))

    def testHmacSHA(self):
        # Test cases from RFC 6234 section 8.5.
        def vector(key, message, s1=None, s256=None):
            if s1 is not None:
                self.assertEqualBin(
                    mac_str('hmac_sha1', key, message), unhex(s1))
            if s256 is not None:
                self.assertEqualBin(
                    mac_str('hmac_sha256', key, message), unhex(s256))
        vector(
            unhex("0b"*20), "Hi There",
            "b617318655057264e28bc0b6fb378c8ef146be00",
            "b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7")
        vector(
            "Jefe", "what do ya want for nothing?",
            "effcdf6ae5eb2fa2d27416d5f184df9c259a7c79",
            "5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843")
        vector(
            unhex("aa"*20), unhex('dd'*50),
            "125d7342b9ac11cd91a39af48aa17b4f63f175d3",
            "773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565FE")
        vector(
            unhex("0102030405060708090a0b0c0d0e0f10111213141516171819"),
            unhex("cd"*50),
            "4c9007f4026250c6bc8414f9bf50c86c2d7235da",
            "82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b")
        vector(
            unhex("aa"*80),
            "Test Using Larger Than Block-Size Key - Hash Key First",
            s1="aa4ae5e15272d00e95705637ce8a3b55ed402112")
        vector(
            unhex("aa"*131),
            "Test Using Larger Than Block-Size Key - Hash Key First",
            s256="60e431591ee0b67f0d8a26aacbf5b77f"
            "8e0bc6213728c5140546040f0ee37f54")
        vector(
            unhex("aa"*80),
            "Test Using Larger Than Block-Size Key and "
            "Larger Than One Block-Size Data",
            s1="e8e99d0f45237d786d6bbaa7965c7808bbff1a91")
        vector(
            unhex("aa"*131),
            "This is a test using a larger than block-size key and a "
            "larger than block-size data. The key needs to be hashed "
            "before being used by the HMAC algorithm.",
            s256="9B09FFA71B942FCB27635FBCD5B0E944BFDC63644F0713938A7F51535C3A35E2")

    def testEd25519(self):
        def vector(privkey, pubkey, message, signature):
            x, y = ecc_edwards_get_affine(eddsa_public(
                mp_from_bytes_le(privkey), 'ed25519'))
            self.assertEqual(int(y) | ((int(x) & 1) << 255),
                             int(mp_from_bytes_le(pubkey)))
            pubblob = ssh_string(b"ssh-ed25519") + ssh_string(pubkey)
            privblob = ssh_string(privkey)
            sigblob = ssh_string(b"ssh-ed25519") + ssh_string(signature)
            pubkey = ssh_key_new_pub('ed25519', pubblob)
            self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
            privkey = ssh_key_new_priv('ed25519', pubblob, privblob)
            # By testing that the signature is exactly the one expected in
            # the test vector and not some equivalent one generated with a
            # different nonce, we're verifying in particular that we do
            # our deterministic nonce generation in the manner specified
            # by Ed25519. Getting that wrong would lead to no obvious
            # failure, but would surely turn out to be a bad idea sooner
            # or later...
            self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)

        # A cherry-picked example from DJB's test vector data at
        # https://ed25519.cr.yp.to/python/sign.input, which is too
        # large to copy into here in full.
        privkey = unhex(
            'c89955e0f7741d905df0730b3dc2b0ce1a13134e44fef3d40d60c020ef19df77')
        pubkey = unhex(
            'fdb30673402faf1c8033714f3517e47cc0f91fe70cf3836d6c23636e3fd2287c')
        message = unhex(
            '507c94c8820d2a5793cbf3442b3d71936f35fe3afef316')
        signature = unhex(
            '7ef66e5e86f2360848e0014e94880ae2920ad8a3185a46b35d1e07dea8fa8ae4'
            'f6b843ba174d99fa7986654a0891c12a794455669375bf92af4cc2770b579e0c')
        vector(privkey, pubkey, message, signature)

        # You can get this test program to run the full version of
        # DJB's test vectors by modifying the source temporarily to
        # set this variable to a pathname where you downloaded the
        # file.
        ed25519_test_vector_path = None
        if ed25519_test_vector_path is not None:
            with open(ed25519_test_vector_path) as f:
                for line in iter(f.readline, ""):
                    words = line.split(":")
                    # DJB's test vector input format concatenates a
                    # spare copy of the public key to the end of the
                    # private key, and a spare copy of the message to
                    # the end of the signature. Strip those off.
                    privkey = unhex(words[0])[:32]
                    pubkey = unhex(words[1])
                    message = unhex(words[2])
                    signature = unhex(words[3])[:64]
                    vector(privkey, pubkey, message, signature)

    def testMontgomeryKex(self):
        # Unidirectional tests, consisting of an input random number
        # string and peer public value, giving the expected output
        # shared key. Source: RFC 7748 section 5.2.
        rfc7748s5_2 = [
            ('a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4',
             'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c',
             0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552),
            ('4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d',
             'e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493',
             0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957),
        ]

        for priv, pub, expected in rfc7748s5_2:
            with queued_specific_random_data(unhex(priv)):
                ecdh = ssh_ecdhkex_newkey('curve25519')
            key = ssh_ecdhkex_getkey(ecdh, unhex(pub))
            self.assertEqual(int(key), expected)

        # Bidirectional tests, consisting of the input random number
        # strings for both parties, and the expected public values and
        # shared key. Source: RFC 7748 section 6.1.
        rfc7748s6_1 = [
            ('77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a',
             '8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a',
             '5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb',
             'de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f',
             0x4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742),
        ]

        for apriv, apub, bpriv, bpub, expected in rfc7748s6_1:
            with queued_specific_random_data(unhex(apriv)):
                alice = ssh_ecdhkex_newkey('curve25519')
            with queued_specific_random_data(unhex(bpriv)):
                bob = ssh_ecdhkex_newkey('curve25519')
            self.assertEqualBin(ssh_ecdhkex_getpublic(alice), unhex(apub))
            self.assertEqualBin(ssh_ecdhkex_getpublic(bob), unhex(bpub))
            akey = ssh_ecdhkex_getkey(alice, unhex(bpub))
            bkey = ssh_ecdhkex_getkey(bob, unhex(apub))
            self.assertEqual(int(akey), expected)
            self.assertEqual(int(bkey), expected)

    def testCRC32(self):
        self.assertEqual(crc32_rfc1662("123456789"), 0xCBF43926)
        self.assertEqual(crc32_ssh1("123456789"), 0x2DFD2D88)

        # Source:
        # http://reveng.sourceforge.net/crc-catalogue/17plus.htm#crc.cat.crc-32-iso-hdlc
        # which collected these from various sources.
        reveng_tests = [
            '000000001CDF4421',
            'F20183779DAB24',
            '0FAA005587B2C9B6',
            '00FF55111262A032',
            '332255AABBCCDDEEFF3D86AEB0',
            '926B559BA2DE9C',
            'FFFFFFFFFFFFFFFF',
            'C008300028CFE9521D3B08EA449900E808EA449900E8300102007E649416',
            '6173640ACEDE2D15',
        ]
        for vec in map(unhex, reveng_tests):
            # Each of these test vectors can be read two ways. One
            # interpretation is that the last four bytes are the
            # little-endian encoding of the CRC of the rest. (Because
            # that's how the CRC is attached to a string at the
            # sending end.)
            #
            # The other interpretation is that if you CRC the whole
            # string, _including_ the final four bytes, you expect to
            # get the same value for any correct string (because the
            # little-endian encoding matches the way the rest of the
            # string was interpreted as a polynomial in the first
            # place). That's how a receiver is intended to check
            # things.
            #
            # The expected output value is listed in RFC 1662, and in
            # the reveng.sourceforge.net catalogue, as 0xDEBB20E3. But
            # that's because their checking procedure omits the final
            # complement step that the construction procedure
            # includes. Our crc32_rfc1662 function does do the final
            # complement, so we expect the bitwise NOT of that value,
            # namely 0x2144DF1C.
            expected = struct.unpack("<L", vec[-4:])[0]
            self.assertEqual(crc32_rfc1662(vec[:-4]), expected)
            self.assertEqual(crc32_rfc1662(vec), 0x2144DF1C)

if __name__ == "__main__":
    # Run the tests, suppressing automatic sys.exit and collecting the
    # unittest.TestProgram instance returned by unittest.main instead.
    testprogram = unittest.main(exit=False)

    # If any test failed, just exit with failure status.
    if not testprogram.result.wasSuccessful():
        childprocess.wait_for_exit()
        sys.exit(1)

    # But if no tests failed, we have one last check to do: look at
    # the subprocess's return status, so that if Leak Sanitiser
    # detected any memory leaks, the success return status will turn
    # into a failure at the last minute.
    childprocess.check_return_status()