1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*
* sshkeygen.h: routines used internally to key generation.
*/
/* ----------------------------------------------------------------------
* A table of all the primes that fit in a 16-bit integer. Call
* init_primes_array to make sure it's been initialised.
*/
#define NSMALLPRIMES 6542 /* number of primes < 65536 */
extern const unsigned short *const smallprimes;
void init_smallprimes(void);
/* ----------------------------------------------------------------------
* A system for making up random candidate integers during prime
* generation. This unconditionally ensures that the numbers have the
* right number of bits and are not divisible by any prime in the
* smallprimes[] array above. It can also impose further constraints,
* as documented below.
*/
typedef struct PrimeCandidateSource PrimeCandidateSource;
/*
* pcs_new: you say how many bits you want the prime to have (with the
* usual semantics that an n-bit number is in the range [2^{n-1},2^n))
* and also optionally specify what you want its topmost 'nfirst' bits
* to be.
*
* (The 'first' system is used for RSA keys, where you need to arrange
* that the product of your two primes is in a more tightly
* constrained range than the factor of 4 you'd get by just generating
* two (n/2)-bit primes and multiplying them.)
*/
PrimeCandidateSource *pcs_new(unsigned bits);
PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
unsigned first, unsigned nfirst);
/* Insist that generated numbers must be congruent to 'res' mod 'mod' */
void pcs_require_residue(PrimeCandidateSource *s, mp_int *mod, mp_int *res);
/* Convenience wrapper for the common case where res = 1 */
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod);
/* Same as pcs_require_residue_1, but also records that the modulus is
* known to be prime */
void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod);
/* Insist that generated numbers must _not_ be congruent to 'res' mod
* 'mod'. This is used to avoid being 1 mod the RSA public exponent,
* which is small, so it only needs ordinary integer parameters. */
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res);
/* Exclude any prime that has no chance of being a Sophie Germain prime. */
void pcs_try_sophie_germain(PrimeCandidateSource *s);
/* Mark a PrimeCandidateSource as one-shot, so that the prime generation
* function will return NULL if an attempt fails, rather than looping. */
void pcs_set_oneshot(PrimeCandidateSource *s);
/* Prepare a PrimeCandidateSource to actually generate numbers. This
* function does last-minute computation that has to be delayed until
* all constraints have been input. */
void pcs_ready(PrimeCandidateSource *s);
/* Actually generate a candidate integer. You must free the result, of
* course. */
mp_int *pcs_generate(PrimeCandidateSource *s);
/* Free a PrimeCandidateSource. */
void pcs_free(PrimeCandidateSource *s);
/* Return some internal fields of the PCS. Used by testcrypt for
* unit-testing this system. */
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out);
/* Query functions for primegen to use */
unsigned pcs_get_bits(PrimeCandidateSource *pcs);
unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs);
mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs);
mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout);
/* ----------------------------------------------------------------------
* A system for doing Miller-Rabin probabilistic primality tests.
* These benefit from having set up some context beforehand, if you're
* going to do more than one of them on the same candidate prime, so
* we declare an object type here to store that context.
*/
typedef struct MillerRabin MillerRabin;
/* Make and free a Miller-Rabin context. */
MillerRabin *miller_rabin_new(mp_int *p);
void miller_rabin_free(MillerRabin *mr);
/* Perform a single Miller-Rabin test, using a specified witness value.
* Used in the test suite. */
struct mr_result {
unsigned passed;
unsigned potential_primitive_root;
};
struct mr_result miller_rabin_test(MillerRabin *mr, mp_int *w);
/* Perform a single Miller-Rabin test, using a random witness value. */
bool miller_rabin_test_random(MillerRabin *mr);
/* Suggest how many tests are needed to make it sufficiently unlikely
* that a composite number will pass them all */
unsigned miller_rabin_checks_needed(unsigned bits);
/* An extension to the M-R test, which iterates until it either finds
* a witness value that is potentially a primitive root, or one
* that proves the number to be composite. */
mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr);
/* ----------------------------------------------------------------------
* A system for proving numbers to be prime, using the Pocklington
* test, which requires knowing a partial factorisation of p-1
* (specifically, factors whose product is at least cbrt(p)) and a
* primitive root.
*
* The API consists of instantiating a 'Pockle' object, which
* internally stores a list of numbers you've already convinced it is
* prime, and can accept further primes if you give a satisfactory
* certificate of their primality based on primes it already knows
* about.
*/
typedef struct Pockle Pockle;
/* In real use, you only really need to know whether the Pockle
* successfully accepted your prime. But for testcrypt, it's useful to
* expose many different failure modes so we can try to provoke them
* all in unit tests and check they're working. */
#define POCKLE_STATUSES(X) \
X(POCKLE_OK) \
X(POCKLE_SMALL_PRIME_NOT_SMALL) \
X(POCKLE_SMALL_PRIME_NOT_PRIME) \
X(POCKLE_PRIME_SMALLER_THAN_2) \
X(POCKLE_FACTOR_NOT_KNOWN_PRIME) \
X(POCKLE_FACTOR_NOT_A_FACTOR) \
X(POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL) \
X(POCKLE_FERMAT_TEST_FAILED) \
X(POCKLE_DISCRIMINANT_IS_SQUARE) \
X(POCKLE_WITNESS_POWER_IS_1) \
X(POCKLE_WITNESS_POWER_NOT_COPRIME) \
/* end of list */
#define DEFINE_ENUM(id) id,
typedef enum PockleStatus { POCKLE_STATUSES(DEFINE_ENUM) } PockleStatus;
#undef DEFINE_ENUM
/* Make a new empty Pockle, containing no primes. */
Pockle *pockle_new(void);
/* Insert a prime below 2^32 into the Pockle. No evidence is required:
* Pockle will check it itself. */
PockleStatus pockle_add_small_prime(Pockle *pockle, mp_int *p);
/* Insert a general prime into the Pockle. You must provide a list of
* prime factors of p-1, whose product exceeds the cube root of p, and
* also a primitive root mod p. */
PockleStatus pockle_add_prime(Pockle *pockle, mp_int *p,
mp_int **factors, size_t nfactors,
mp_int *primitive_root);
/* If you call pockle_mark, and later pass the returned value to
* pockle_release, it will free all the primes that were added to the
* Pockle between those two calls. Useful in recursive algorithms, to
* stop the Pockle growing unboundedly if the recursion keeps having
* to backtrack. */
size_t pockle_mark(Pockle *pockle);
void pockle_release(Pockle *pockle, size_t mark);
/* Free a Pockle. */
void pockle_free(Pockle *pockle);
/* Generate a certificate of primality for a prime already known to
* the Pockle, in a format acceptable to Math::Prime::Util. */
strbuf *pockle_mpu(Pockle *pockle, mp_int *p);
/* ----------------------------------------------------------------------
* Callback API that allows key generation to report progress to its
* caller.
*/
typedef struct ProgressReceiverVtable ProgressReceiverVtable;
typedef struct ProgressReceiver ProgressReceiver;
typedef union ProgressPhase ProgressPhase;
union ProgressPhase {
int n;
void *p;
};
struct ProgressReceiver {
const ProgressReceiverVtable *vt;
};
struct ProgressReceiverVtable {
ProgressPhase (*add_linear)(ProgressReceiver *prog, double overall_cost);
ProgressPhase (*add_probabilistic)(ProgressReceiver *prog,
double cost_per_attempt,
double attempt_probability);
void (*ready)(ProgressReceiver *prog);
void (*start_phase)(ProgressReceiver *prog, ProgressPhase phase);
void (*report)(ProgressReceiver *prog, double progress);
void (*report_attempt)(ProgressReceiver *prog);
void (*report_phase_complete)(ProgressReceiver *prog);
};
static inline ProgressPhase progress_add_linear(ProgressReceiver *prog,
double c)
{ return prog->vt->add_linear(prog, c); }
static inline ProgressPhase progress_add_probabilistic(ProgressReceiver *prog,
double c, double p)
{ return prog->vt->add_probabilistic(prog, c, p); }
static inline void progress_ready(ProgressReceiver *prog)
{ prog->vt->ready(prog); }
static inline void progress_start_phase(
ProgressReceiver *prog, ProgressPhase phase)
{ prog->vt->start_phase(prog, phase); }
static inline void progress_report(ProgressReceiver *prog, double progress)
{ prog->vt->report(prog, progress); }
static inline void progress_report_attempt(ProgressReceiver *prog)
{ prog->vt->report_attempt(prog); }
static inline void progress_report_phase_complete(ProgressReceiver *prog)
{ prog->vt->report_phase_complete(prog); }
ProgressPhase null_progress_add_linear(
ProgressReceiver *prog, double c);
ProgressPhase null_progress_add_probabilistic(
ProgressReceiver *prog, double c, double p);
void null_progress_ready(ProgressReceiver *prog);
void null_progress_start_phase(ProgressReceiver *prog, ProgressPhase phase);
void null_progress_report(ProgressReceiver *prog, double progress);
void null_progress_report_attempt(ProgressReceiver *prog);
void null_progress_report_phase_complete(ProgressReceiver *prog);
extern const ProgressReceiverVtable null_progress_vt;
/* A helper function for dreaming up progress cost estimates. */
double estimate_modexp_cost(unsigned bits);
/* ----------------------------------------------------------------------
* The top-level API for generating primes.
*/
typedef struct PrimeGenerationPolicy PrimeGenerationPolicy;
typedef struct PrimeGenerationContext PrimeGenerationContext;
struct PrimeGenerationContext {
const PrimeGenerationPolicy *vt;
};
struct PrimeGenerationPolicy {
ProgressPhase (*add_progress_phase)(const PrimeGenerationPolicy *policy,
ProgressReceiver *prog, unsigned bits);
PrimeGenerationContext *(*new_context)(
const PrimeGenerationPolicy *policy);
void (*free_context)(PrimeGenerationContext *ctx);
mp_int *(*generate)(
PrimeGenerationContext *ctx,
PrimeCandidateSource *pcs, ProgressReceiver *prog);
strbuf *(*mpu_certificate)(PrimeGenerationContext *ctx, mp_int *p);
const void *extra; /* additional data a particular impl might need */
};
static inline ProgressPhase primegen_add_progress_phase(
PrimeGenerationContext *ctx, ProgressReceiver *prog, unsigned bits)
{ return ctx->vt->add_progress_phase(ctx->vt, prog, bits); }
static inline PrimeGenerationContext *primegen_new_context(
const PrimeGenerationPolicy *policy)
{ return policy->new_context(policy); }
static inline void primegen_free_context(PrimeGenerationContext *ctx)
{ ctx->vt->free_context(ctx); }
static inline mp_int *primegen_generate(
PrimeGenerationContext *ctx,
PrimeCandidateSource *pcs, ProgressReceiver *prog)
{ return ctx->vt->generate(ctx, pcs, prog); }
static inline strbuf *primegen_mpu_certificate(
PrimeGenerationContext *ctx, mp_int *p)
{ return ctx->vt->mpu_certificate(ctx, p); }
extern const PrimeGenerationPolicy primegen_probabilistic;
extern const PrimeGenerationPolicy primegen_provable_fast;
extern const PrimeGenerationPolicy primegen_provable_maurer_simple;
extern const PrimeGenerationPolicy primegen_provable_maurer_complex;
/* ----------------------------------------------------------------------
* The overall top-level API for generating entire key pairs.
*/
int rsa_generate(RSAKey *key, int bits, bool strong,
PrimeGenerationContext *pgc, ProgressReceiver *prog);
int dsa_generate(struct dsa_key *key, int bits, PrimeGenerationContext *pgc,
ProgressReceiver *prog);
int ecdsa_generate(struct ecdsa_key *key, int bits);
int eddsa_generate(struct eddsa_key *key, int bits);
|