1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
  
     | 
    
      /*
 * handle-io.c: Module to give Windows front ends the general
 * ability to deal with consoles, pipes, serial ports, or any other
 * type of data stream accessed through a Windows API HANDLE rather
 * than a WinSock SOCKET.
 *
 * We do this by spawning a subthread to continuously try to read
 * from the handle. Every time a read successfully returns some
 * data, the subthread sets an event object which is picked up by
 * the main thread, and the main thread then sets an event in
 * return to instruct the subthread to resume reading.
 *
 * Output works precisely the other way round, in a second
 * subthread. The output subthread should not be attempting to
 * write all the time, because it hasn't always got data _to_
 * write; so the output thread waits for an event object notifying
 * it to _attempt_ a write, and then it sets an event in return
 * when one completes.
 *
 * (It's terribly annoying having to spawn a subthread for each
 * direction of each handle. Technically it isn't necessary for
 * serial ports, since we could use overlapped I/O within the main
 * thread and wait directly on the event objects in the OVERLAPPED
 * structures. However, we can't use this trick for some types of
 * file handle at all - for some reason Windows restricts use of
 * OVERLAPPED to files which were opened with the overlapped flag -
 * and so we must use threads for those. This being the case, it's
 * simplest just to use threads for everything rather than trying
 * to keep track of multiple completely separate mechanisms.)
 */
#include <assert.h>
#include "putty.h"
/* ----------------------------------------------------------------------
 * Generic definitions.
 */
typedef struct handle_list_node handle_list_node;
struct handle_list_node {
    handle_list_node *next, *prev;
};
static void add_to_ready_list(handle_list_node *node);
/*
 * Maximum amount of backlog we will allow to build up on an input
 * handle before we stop reading from it.
 */
#define MAX_BACKLOG 32768
struct handle_generic {
    /*
     * Initial fields common to both handle_input and handle_output
     * structures.
     *
     * The three HANDLEs are set up at initialisation time and are
     * thereafter read-only to both main thread and subthread.
     * `moribund' is only used by the main thread; `done' is
     * written by the main thread before signalling to the
     * subthread. `defunct' and `busy' are used only by the main
     * thread.
     */
    HANDLE h;                          /* the handle itself */
    handle_list_node ready_node;       /* for linking on to the ready list */
    HANDLE ev_from_main;               /* event used to signal back to us */
    bool moribund;                     /* are we going to kill this soon? */
    bool done;                         /* request subthread to terminate */
    bool defunct;                      /* has the subthread already gone? */
    bool busy;                         /* operation currently in progress? */
    void *privdata;                    /* for client to remember who they are */
};
typedef enum { HT_INPUT, HT_OUTPUT } HandleType;
/* ----------------------------------------------------------------------
 * Input threads.
 */
/*
 * Data required by an input thread.
 */
struct handle_input {
    /*
     * Copy of the handle_generic structure.
     */
    HANDLE h;                          /* the handle itself */
    handle_list_node ready_node;       /* for linking on to the ready list */
    HANDLE ev_from_main;               /* event used to signal back to us */
    bool moribund;                     /* are we going to kill this soon? */
    bool done;                         /* request subthread to terminate */
    bool defunct;                      /* has the subthread already gone? */
    bool busy;                         /* operation currently in progress? */
    void *privdata;                    /* for client to remember who they are */
    /*
     * Data set at initialisation and then read-only.
     */
    int flags;
    /*
     * Data set by the input thread before marking the handle ready,
     * and read by the main thread after receiving that signal.
     */
    char buffer[4096];                 /* the data read from the handle */
    DWORD len;                         /* how much data that was */
    int readerr;                       /* lets us know about read errors */
    /*
     * Callback function called by this module when data arrives on
     * an input handle.
     */
    handle_inputfn_t gotdata;
};
/*
 * The actual thread procedure for an input thread.
 */
static DWORD WINAPI handle_input_threadfunc(void *param)
{
    struct handle_input *ctx = (struct handle_input *) param;
    OVERLAPPED ovl, *povl;
    HANDLE oev;
    bool readret, finished;
    int readlen;
    if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
        povl = &ovl;
        oev = CreateEvent(NULL, true, false, NULL);
    } else {
        povl = NULL;
    }
    if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
        readlen = 1;
    else
        readlen = sizeof(ctx->buffer);
    while (1) {
        if (povl) {
            memset(povl, 0, sizeof(OVERLAPPED));
            povl->hEvent = oev;
        }
        readret = ReadFile(ctx->h, ctx->buffer,readlen, &ctx->len, povl);
        if (!readret)
            ctx->readerr = GetLastError();
        else
            ctx->readerr = 0;
        if (povl && !readret && ctx->readerr == ERROR_IO_PENDING) {
            WaitForSingleObject(povl->hEvent, INFINITE);
            readret = GetOverlappedResult(ctx->h, povl, &ctx->len, false);
            if (!readret)
                ctx->readerr = GetLastError();
            else
                ctx->readerr = 0;
        }
        if (!readret) {
            /*
             * Windows apparently sends ERROR_BROKEN_PIPE when a
             * pipe we're reading from is closed normally from the
             * writing end. This is ludicrous; if that situation
             * isn't a natural EOF, _nothing_ is. So if we get that
             * particular error, we pretend it's EOF.
             */
            if (ctx->readerr == ERROR_BROKEN_PIPE)
                ctx->readerr = 0;
            ctx->len = 0;
        }
        if (readret && ctx->len == 0 &&
            (ctx->flags & HANDLE_FLAG_IGNOREEOF))
            continue;
        /*
         * If we just set ctx->len to 0, that means the read operation
         * has returned end-of-file. Telling that to the main thread
         * will cause it to set its 'defunct' flag and dispose of the
         * handle structure at the next opportunity, in which case we
         * mustn't touch ctx at all after the SetEvent. (Hence we do
         * even _this_ check before the SetEvent.)
         */
        finished = (ctx->len == 0);
        add_to_ready_list(&ctx->ready_node);
        if (finished)
            break;
        WaitForSingleObject(ctx->ev_from_main, INFINITE);
        if (ctx->done) {
            /*
             * The main thread has asked us to shut down. Send back an
             * event indicating that we've done so. Hereafter we must
             * not touch ctx at all, because the main thread might
             * have freed it.
             */
            add_to_ready_list(&ctx->ready_node);
            break;
        }
    }
    if (povl)
        CloseHandle(oev);
    return 0;
}
/*
 * This is called after a successful read, or from the
 * `unthrottle' function. It decides whether or not to begin a new
 * read operation.
 */
static void handle_throttle(struct handle_input *ctx, int backlog)
{
    if (ctx->defunct)
        return;
    /*
     * If there's a read operation already in progress, do nothing:
     * when that completes, we'll come back here and be in a
     * position to make a better decision.
     */
    if (ctx->busy)
        return;
    /*
     * Otherwise, we must decide whether to start a new read based
     * on the size of the backlog.
     */
    if (backlog < MAX_BACKLOG) {
        SetEvent(ctx->ev_from_main);
        ctx->busy = true;
    }
}
/* ----------------------------------------------------------------------
 * Output threads.
 */
/*
 * Data required by an output thread.
 */
struct handle_output {
    /*
     * Copy of the handle_generic structure.
     */
    HANDLE h;                          /* the handle itself */
    handle_list_node ready_node;       /* for linking on to the ready list */
    HANDLE ev_from_main;               /* event used to signal back to us */
    bool moribund;                     /* are we going to kill this soon? */
    bool done;                         /* request subthread to terminate */
    bool defunct;                      /* has the subthread already gone? */
    bool busy;                         /* operation currently in progress? */
    void *privdata;                    /* for client to remember who they are */
    /*
     * Data set at initialisation and then read-only.
     */
    int flags;
    /*
     * Data set by the main thread before signalling ev_from_main,
     * and read by the input thread after receiving that signal.
     */
    const char *buffer;                /* the data to write */
    DWORD len;                         /* how much data there is */
    /*
     * Data set by the input thread before marking this handle as
     * ready, and read by the main thread after receiving that signal.
     */
    DWORD lenwritten;                  /* how much data we actually wrote */
    int writeerr;                      /* return value from WriteFile */
    /*
     * Data only ever read or written by the main thread.
     */
    bufchain queued_data;              /* data still waiting to be written */
    enum { EOF_NO, EOF_PENDING, EOF_SENT } outgoingeof;
    /*
     * Callback function called when the backlog in the bufchain
     * drops.
     */
    handle_outputfn_t sentdata;
    struct handle *sentdata_param;
};
static DWORD WINAPI handle_output_threadfunc(void *param)
{
    struct handle_output *ctx = (struct handle_output *) param;
    OVERLAPPED ovl, *povl;
    HANDLE oev;
    bool writeret;
    if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
        povl = &ovl;
        oev = CreateEvent(NULL, true, false, NULL);
    } else {
        povl = NULL;
    }
    while (1) {
        WaitForSingleObject(ctx->ev_from_main, INFINITE);
        if (ctx->done) {
            /*
             * The main thread has asked us to shut down. Send back an
             * event indicating that we've done so. Hereafter we must
             * not touch ctx at all, because the main thread might
             * have freed it.
             */
            add_to_ready_list(&ctx->ready_node);
            break;
        }
        if (povl) {
            memset(povl, 0, sizeof(OVERLAPPED));
            povl->hEvent = oev;
        }
        writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
                             &ctx->lenwritten, povl);
        if (!writeret)
            ctx->writeerr = GetLastError();
        else
            ctx->writeerr = 0;
        if (povl && !writeret && GetLastError() == ERROR_IO_PENDING) {
            writeret = GetOverlappedResult(ctx->h, povl,
                                           &ctx->lenwritten, true);
            if (!writeret)
                ctx->writeerr = GetLastError();
            else
                ctx->writeerr = 0;
        }
        add_to_ready_list(&ctx->ready_node);
        if (!writeret) {
            /*
             * The write operation has suffered an error. Telling that
             * to the main thread will cause it to set its 'defunct'
             * flag and dispose of the handle structure at the next
             * opportunity, so we must not touch ctx at all after
             * this.
             */
            break;
        }
    }
    if (povl)
        CloseHandle(oev);
    return 0;
}
static void handle_try_output(struct handle_output *ctx)
{
    if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
        ptrlen data = bufchain_prefix(&ctx->queued_data);
        ctx->buffer = data.ptr;
        ctx->len = min(data.len, ~(DWORD)0);
        SetEvent(ctx->ev_from_main);
        ctx->busy = true;
    } else if (!ctx->busy && bufchain_size(&ctx->queued_data) == 0 &&
               ctx->outgoingeof == EOF_PENDING) {
        ctx->sentdata(ctx->sentdata_param, 0, 0, true);
        ctx->h = INVALID_HANDLE_VALUE;
        ctx->outgoingeof = EOF_SENT;
    }
}
/* ----------------------------------------------------------------------
 * Unified code handling both input and output threads.
 */
struct handle {
    HandleType type;
    union {
        struct handle_generic g;
        struct handle_input i;
        struct handle_output o;
    } u;
};
/*
 * Linked list storing the current list of handles ready to have
 * something done to them by the main thread.
 */
static handle_list_node ready_head[1];
static CRITICAL_SECTION ready_critsec[1];
/*
 * Event object used by all subthreads to signal that they've just put
 * something on the ready list, i.e. that the ready list is non-empty.
 */
static HANDLE ready_event = INVALID_HANDLE_VALUE;
static void add_to_ready_list(handle_list_node *node)
{
    /*
     * Called from subthreads, when their handle has done something
     * that they need the main thread to respond to. We append the
     * given list node to the end of the ready list, and set
     * ready_event to signal to the main thread that the ready list is
     * now non-empty.
     */
    EnterCriticalSection(ready_critsec);
    node->next = ready_head;
    node->prev = ready_head->prev;
    node->next->prev = node->prev->next = node;
    SetEvent(ready_event);
    LeaveCriticalSection(ready_critsec);
}
static void remove_from_ready_list(handle_list_node *node)
{
    /*
     * Called from the main thread, just before destroying a 'struct
     * handle' completely: as a precaution, we make absolutely sure
     * it's not linked on the ready list, just in case somehow it
     * still was.
     */
    EnterCriticalSection(ready_critsec);
    node->next->prev = node->prev;
    node->prev->next = node->next;
    node->next = node->prev = node;
    LeaveCriticalSection(ready_critsec);
}
static void handle_ready(struct handle *h); /* process one handle (below) */
static void handle_ready_callback(void *vctx)
{
    /*
     * Called when the main thread detects ready_event, indicating
     * that at least one handle is on the ready list. We empty the
     * whole list and process the handles one by one.
     *
     * It's possible that other handles may be destroyed, and hence
     * taken _off_ the ready list, during this processing. That
     * shouldn't cause a deadlock, because according to the API docs,
     * it's safe to call EnterCriticalSection twice in the same thread
     * - the second call will return immediately because that thread
     * already owns the critsec. (And then it takes two calls to
     * LeaveCriticalSection to release it again, which is just what we
     * want here.)
     */
    EnterCriticalSection(ready_critsec);
    while (ready_head->next != ready_head) {
        handle_list_node *node = ready_head->next;
        node->prev->next = node->next;
        node->next->prev = node->prev;
        node->next = node->prev = node;
        handle_ready(container_of(node, struct handle, u.g.ready_node));
    }
    LeaveCriticalSection(ready_critsec);
}
static inline void ensure_ready_event_setup(void)
{
    if (ready_event == INVALID_HANDLE_VALUE) {
        ready_head->prev = ready_head->next = ready_head;
        InitializeCriticalSection(ready_critsec);
        ready_event = CreateEvent(NULL, false, false, NULL);
        add_handle_wait(ready_event, handle_ready_callback, NULL);
    }
}
struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
                                void *privdata, int flags)
{
    struct handle *h = snew(struct handle);
    DWORD in_threadid; /* required for Win9x */
    h->type = HT_INPUT;
    h->u.i.h = handle;
    h->u.i.ev_from_main = CreateEvent(NULL, false, false, NULL);
    h->u.i.gotdata = gotdata;
    h->u.i.defunct = false;
    h->u.i.moribund = false;
    h->u.i.done = false;
    h->u.i.privdata = privdata;
    h->u.i.flags = flags;
    ensure_ready_event_setup();
    HANDLE hThread = CreateThread(NULL, 0, handle_input_threadfunc,
                                  &h->u.i, 0, &in_threadid);
    if (hThread)
        CloseHandle(hThread);          /* we don't need the thread handle */
    h->u.i.busy = true;
    return h;
}
struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
                                 void *privdata, int flags)
{
    struct handle *h = snew(struct handle);
    DWORD out_threadid; /* required for Win9x */
    h->type = HT_OUTPUT;
    h->u.o.h = handle;
    h->u.o.ev_from_main = CreateEvent(NULL, false, false, NULL);
    h->u.o.busy = false;
    h->u.o.defunct = false;
    h->u.o.moribund = false;
    h->u.o.done = false;
    h->u.o.privdata = privdata;
    bufchain_init(&h->u.o.queued_data);
    h->u.o.outgoingeof = EOF_NO;
    h->u.o.sentdata = sentdata;
    h->u.o.sentdata_param = h;
    h->u.o.flags = flags;
    ensure_ready_event_setup();
    HANDLE hThread = CreateThread(NULL, 0, handle_output_threadfunc,
                                  &h->u.o, 0, &out_threadid);
    if (hThread)
        CloseHandle(hThread);          /* we don't need the thread handle */
    return h;
}
size_t handle_write(struct handle *h, const void *data, size_t len)
{
    assert(h->type == HT_OUTPUT);
    assert(h->u.o.outgoingeof == EOF_NO);
    bufchain_add(&h->u.o.queued_data, data, len);
    handle_try_output(&h->u.o);
    return bufchain_size(&h->u.o.queued_data);
}
void handle_write_eof(struct handle *h)
{
    /*
     * This function is called when we want to proactively send an
     * end-of-file notification on the handle. We can only do this by
     * actually closing the handle - so never call this on a
     * bidirectional handle if we're still interested in its incoming
     * direction!
     */
    assert(h->type == HT_OUTPUT);
    if (h->u.o.outgoingeof == EOF_NO) {
        h->u.o.outgoingeof = EOF_PENDING;
        handle_try_output(&h->u.o);
    }
}
static void handle_destroy(struct handle *h)
{
    if (h->type == HT_OUTPUT)
        bufchain_clear(&h->u.o.queued_data);
    CloseHandle(h->u.g.ev_from_main);
    remove_from_ready_list(&h->u.g.ready_node);
    sfree(h);
}
void handle_free(struct handle *h)
{
    assert(h && !h->u.g.moribund);
    if (h->u.g.busy) {
        /*
         * If the handle is currently busy, we cannot immediately free
         * it, because its subthread is in the middle of something.
         * (Exception: foreign handles don't have a subthread.)
         *
         * Instead we must wait until it's finished its current
         * operation, because otherwise the subthread will write to
         * invalid memory after we free its context from under it. So
         * we set the moribund flag, which will be noticed next time
         * an operation completes.
         */
        h->u.g.moribund = true;
    } else if (h->u.g.defunct) {
        /*
         * There isn't even a subthread; we can go straight to
         * handle_destroy.
         */
        handle_destroy(h);
    } else {
        /*
         * The subthread is alive but not busy, so we now signal it
         * to die. Set the moribund flag to indicate that it will
         * want destroying after that.
         */
        h->u.g.moribund = true;
        h->u.g.done = true;
        h->u.g.busy = true;
        SetEvent(h->u.g.ev_from_main);
    }
}
static void handle_ready(struct handle *h)
{
    if (h->u.g.moribund) {
        /*
         * A moribund handle is one which we have either already
         * signalled to die, or are waiting until its current I/O op
         * completes to do so. Either way, it's treated as already
         * dead from the external user's point of view, so we ignore
         * the actual I/O result. We just signal the thread to die if
         * we haven't yet done so, or destroy the handle if not.
         */
        if (h->u.g.done) {
            handle_destroy(h);
        } else {
            h->u.g.done = true;
            h->u.g.busy = true;
            SetEvent(h->u.g.ev_from_main);
        }
        return;
    }
    switch (h->type) {
        int backlog;
      case HT_INPUT:
        h->u.i.busy = false;
        /*
         * A signal on an input handle means data has arrived.
         */
        if (h->u.i.len == 0) {
            /*
             * EOF, or (nearly equivalently) read error.
             */
            h->u.i.defunct = true;
            h->u.i.gotdata(h, NULL, 0, h->u.i.readerr);
        } else {
            backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len, 0);
            handle_throttle(&h->u.i, backlog);
        }
        break;
      case HT_OUTPUT:
        h->u.o.busy = false;
        /*
         * A signal on an output handle means we have completed a
         * write. Call the callback to indicate that the output
         * buffer size has decreased, or to indicate an error.
         */
        if (h->u.o.writeerr) {
            /*
             * Write error. Send a negative value to the callback,
             * and mark the thread as defunct (because the output
             * thread is terminating by now).
             */
            h->u.o.defunct = true;
            h->u.o.sentdata(h, 0, h->u.o.writeerr, false);
        } else {
            bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
            noise_ultralight(NOISE_SOURCE_IOLEN, h->u.o.lenwritten);
            h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data), 0, false);
            handle_try_output(&h->u.o);
        }
        break;
    }
}
void handle_unthrottle(struct handle *h, size_t backlog)
{
    assert(h->type == HT_INPUT);
    handle_throttle(&h->u.i, backlog);
}
size_t handle_backlog(struct handle *h)
{
    assert(h->type == HT_OUTPUT);
    return bufchain_size(&h->u.o.queued_data);
}
void *handle_get_privdata(struct handle *h)
{
    return h->u.g.privdata;
}
static void handle_sink_write(BinarySink *bs, const void *data, size_t len)
{
    handle_sink *sink = BinarySink_DOWNCAST(bs, handle_sink);
    handle_write(sink->h, data, len);
}
void handle_sink_init(handle_sink *sink, struct handle *h)
{
    sink->h = h;
    BinarySink_INIT(sink, handle_sink_write);
}
 
     |