1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#!/usr/bin/env python3
import sys
import string
from collections import namedtuple
assert sys.version_info[:2] >= (3,0), "This is Python 3 code"
class Multiprecision(object):
def __init__(self, target, minval, maxval, words):
self.target = target
self.minval = minval
self.maxval = maxval
self.words = words
assert 0 <= self.minval
assert self.minval <= self.maxval
assert self.target.nwords(self.maxval) == len(words)
def getword(self, n):
return self.words[n] if n < len(self.words) else "0"
def __add__(self, rhs):
newmin = self.minval + rhs.minval
newmax = self.maxval + rhs.maxval
nwords = self.target.nwords(newmax)
words = []
addfn = self.target.add
for i in range(nwords):
words.append(addfn(self.getword(i), rhs.getword(i)))
addfn = self.target.adc
return Multiprecision(self.target, newmin, newmax, words)
def __mul__(self, rhs):
newmin = self.minval * rhs.minval
newmax = self.maxval * rhs.maxval
nwords = self.target.nwords(newmax)
words = []
# There are basically two strategies we could take for
# multiplying two multiprecision integers. One is to enumerate
# the space of pairs of word indices in lexicographic order,
# essentially computing a*b[i] for each i and adding them
# together; the other is to enumerate in diagonal order,
# computing everything together that belongs at a particular
# output word index.
#
# For the moment, I've gone for the former.
sprev = []
for i, sword in enumerate(self.words):
rprev = None
sthis = sprev[:i]
for j, rword in enumerate(rhs.words):
prevwords = []
if i+j < len(sprev):
prevwords.append(sprev[i+j])
if rprev is not None:
prevwords.append(rprev)
vhi, vlo = self.target.muladd(sword, rword, *prevwords)
sthis.append(vlo)
rprev = vhi
sthis.append(rprev)
sprev = sthis
# Remove unneeded words from the top of the output, if we can
# prove by range analysis that they'll always be zero.
sprev = sprev[:self.target.nwords(newmax)]
return Multiprecision(self.target, newmin, newmax, sprev)
def extract_bits(self, start, bits=None):
if bits is None:
bits = (self.maxval >> start).bit_length()
# Overly thorough range analysis: if min and max have the same
# *quotient* by 2^bits, then the result of reducing anything
# in the range [min,max] mod 2^bits has to fall within the
# obvious range. But if they have different quotients, then
# you can wrap round the modulus and so any value mod 2^bits
# is possible.
newmin = self.minval >> start
newmax = self.maxval >> start
if (newmin >> bits) != (newmax >> bits):
newmin = 0
newmax = (1 << bits) - 1
nwords = self.target.nwords(newmax)
words = []
for i in range(nwords):
srcpos = i * self.target.bits + start
maxbits = min(self.target.bits, start + bits - srcpos)
wordindex = srcpos // self.target.bits
if srcpos % self.target.bits == 0:
word = self.getword(srcpos // self.target.bits)
elif (wordindex+1 >= len(self.words) or
srcpos % self.target.bits + maxbits < self.target.bits):
word = self.target.new_value(
"(%%s) >> %d" % (srcpos % self.target.bits),
self.getword(srcpos // self.target.bits))
else:
word = self.target.new_value(
"((%%s) >> %d) | ((%%s) << %d)" % (
srcpos % self.target.bits,
self.target.bits - (srcpos % self.target.bits)),
self.getword(srcpos // self.target.bits),
self.getword(srcpos // self.target.bits + 1))
if maxbits < self.target.bits and maxbits < bits:
word = self.target.new_value(
"(%%s) & ((((BignumInt)1) << %d)-1)" % maxbits,
word)
words.append(word)
return Multiprecision(self.target, newmin, newmax, words)
# Each Statement has a list of variables it reads, and a list of ones
# it writes. 'forms' is a list of multiple actual C statements it
# could be generated as, depending on which of its output variables is
# actually used (e.g. no point calling BignumADC if the generated
# carry in a particular case is unused, or BignumMUL if nobody needs
# the top half). It is indexed by a bitmap whose bits correspond to
# the entries in wvars, with wvars[0] the MSB and wvars[-1] the LSB.
Statement = namedtuple("Statement", "rvars wvars forms")
class CodegenTarget(object):
def __init__(self, bits):
self.bits = bits
self.valindex = 0
self.stmts = []
self.generators = {}
self.bv_words = (130 + self.bits - 1) // self.bits
self.carry_index = 0
def nwords(self, maxval):
return (maxval.bit_length() + self.bits - 1) // self.bits
def stmt(self, stmt, needed=False):
index = len(self.stmts)
self.stmts.append([needed, stmt])
for val in stmt.wvars:
self.generators[val] = index
def new_value(self, formatstr=None, *deps):
name = "v%d" % self.valindex
self.valindex += 1
if formatstr is not None:
self.stmt(Statement(
rvars=deps, wvars=[name],
forms=[None, name + " = " + formatstr % deps]))
return name
def bigval_input(self, name, bits):
words = (bits + self.bits - 1) // self.bits
# Expect not to require an entire extra word
assert words == self.bv_words
return Multiprecision(self, 0, (1<<bits)-1, [
self.new_value("%s->w[%d]" % (name, i)) for i in range(words)])
def const(self, value):
# We only support constants small enough to both fit in a
# BignumInt (of any size supported) _and_ be expressible in C
# with no weird integer literal syntax like a trailing LL.
#
# Supporting larger constants would be possible - you could
# break 'value' up into word-sized pieces on the Python side,
# and generate a legal C expression for each piece by
# splitting it further into pieces within the
# standards-guaranteed 'unsigned long' limit of 32 bits and
# then casting those to BignumInt before combining them with
# shifts. But it would be a lot of effort, and since the
# application for this code doesn't even need it, there's no
# point in bothering.
assert value < 2**16
return Multiprecision(self, value, value, ["%d" % value])
def current_carry(self):
return "carry%d" % self.carry_index
def add(self, a1, a2):
ret = self.new_value()
adcform = "BignumADC(%s, carry, %s, %s, 0)" % (ret, a1, a2)
plainform = "%s = %s + %s" % (ret, a1, a2)
self.carry_index += 1
carryout = self.current_carry()
self.stmt(Statement(
rvars=[a1,a2], wvars=[ret,carryout],
forms=[None, adcform, plainform, adcform]))
return ret
def adc(self, a1, a2):
ret = self.new_value()
adcform = "BignumADC(%s, carry, %s, %s, carry)" % (ret, a1, a2)
plainform = "%s = %s + %s + carry" % (ret, a1, a2)
carryin = self.current_carry()
self.carry_index += 1
carryout = self.current_carry()
self.stmt(Statement(
rvars=[a1,a2,carryin], wvars=[ret,carryout],
forms=[None, adcform, plainform, adcform]))
return ret
def muladd(self, m1, m2, *addends):
rlo = self.new_value()
rhi = self.new_value()
wideform = "BignumMUL%s(%s)" % (
{ 0:"", 1:"ADD", 2:"ADD2" }[len(addends)],
", ".join([rhi, rlo, m1, m2] + list(addends)))
narrowform = " + ".join(["%s = %s * %s" % (rlo, m1, m2)] +
list(addends))
self.stmt(Statement(
rvars=[m1,m2]+list(addends), wvars=[rhi,rlo],
forms=[None, narrowform, wideform, wideform]))
return rhi, rlo
def write_bigval(self, name, val):
for i in range(self.bv_words):
word = val.getword(i)
self.stmt(Statement(
rvars=[word], wvars=[],
forms=["%s->w[%d] = %s" % (name, i, word)]),
needed=True)
def compute_needed(self):
used_vars = set()
self.queue = [stmt for (needed,stmt) in self.stmts if needed]
while len(self.queue) > 0:
stmt = self.queue.pop(0)
deps = []
for var in stmt.rvars:
if var[0] in string.digits:
continue # constant
deps.append(self.generators[var])
used_vars.add(var)
for index in deps:
if not self.stmts[index][0]:
self.stmts[index][0] = True
self.queue.append(self.stmts[index][1])
forms = []
for i, (needed, stmt) in enumerate(self.stmts):
if needed:
formindex = 0
for (j, var) in enumerate(stmt.wvars):
formindex *= 2
if var in used_vars:
formindex += 1
forms.append(stmt.forms[formindex])
# Now we must check whether this form of the statement
# also writes some variables we _don't_ actually need
# (e.g. if you only wanted the top half from a mul, or
# only the carry from an adc, you'd be forced to
# generate the other output too). Easiest way to do
# this is to look for an identical statement form
# later in the array.
maxindex = max(i for i in range(len(stmt.forms))
if stmt.forms[i] == stmt.forms[formindex])
extra_vars = maxindex & ~formindex
bitpos = 0
while extra_vars != 0:
if extra_vars & (1 << bitpos):
extra_vars &= ~(1 << bitpos)
var = stmt.wvars[-1-bitpos]
used_vars.add(var)
# Also, write out a cast-to-void for each
# subsequently unused value, to prevent gcc
# warnings when the output code is compiled.
forms.append("(void)" + var)
bitpos += 1
used_carry = any(v.startswith("carry") for v in used_vars)
used_vars = [v for v in used_vars if v.startswith("v")]
used_vars.sort(key=lambda v: int(v[1:]))
return used_carry, used_vars, forms
def text(self):
used_carry, values, forms = self.compute_needed()
ret = ""
while len(values) > 0:
prefix, sep, suffix = " BignumInt ", ", ", ";"
currline = values.pop(0)
while (len(values) > 0 and
len(prefix+currline+sep+values[0]+suffix) < 79):
currline += sep + values.pop(0)
ret += prefix + currline + suffix + "\n"
if used_carry:
ret += " BignumCarry carry;\n"
if ret != "":
ret += "\n"
for stmtform in forms:
ret += " %s;\n" % stmtform
return ret
def gen_add(target):
# This is an addition _without_ reduction mod p, so that it can be
# used both during accumulation of the polynomial and for adding
# on the encrypted nonce at the end (which is mod 2^128, not mod
# p).
#
# Because one of the inputs will have come from our
# not-completely-reducing multiplication function, we expect up to
# 3 extra bits of input.
a = target.bigval_input("a", 133)
b = target.bigval_input("b", 133)
ret = a + b
target.write_bigval("r", ret)
return """\
static void bigval_add(bigval *r, const bigval *a, const bigval *b)
{
%s}
\n""" % target.text()
def gen_mul(target):
# The inputs are not 100% reduced mod p. Specifically, we can get
# a full 130-bit number from the pow5==0 pass, and then a 130-bit
# number times 5 from the pow5==1 pass, plus a possible carry. The
# total of that can be easily bounded above by 2^130 * 8, so we
# need to assume we're multiplying two 133-bit numbers.
a = target.bigval_input("a", 133)
b = target.bigval_input("b", 133)
ab = a * b
ab0 = ab.extract_bits(0, 130)
ab1 = ab.extract_bits(130, 130)
ab2 = ab.extract_bits(260)
ab1_5 = target.const(5) * ab1
ab2_25 = target.const(25) * ab2
ret = ab0 + ab1_5 + ab2_25
target.write_bigval("r", ret)
return """\
static void bigval_mul_mod_p(bigval *r, const bigval *a, const bigval *b)
{
%s}
\n""" % target.text()
def gen_final_reduce(target):
# Given our input number n, n >> 130 is usually precisely the
# multiple of p that needs to be subtracted from n to reduce it to
# strictly less than p, but it might be too low by 1 (but not more
# than 1, given the range of our input is nowhere near the square
# of the modulus). So we add another 5, which will push a carry
# into the 130th bit if and only if that has happened, and then
# use that to decide whether to subtract one more copy of p.
a = target.bigval_input("n", 133)
q = a.extract_bits(130)
adjusted = a.extract_bits(0, 130) + target.const(5) * q
final_subtract = (adjusted + target.const(5)).extract_bits(130)
adjusted2 = adjusted + target.const(5) * final_subtract
ret = adjusted2.extract_bits(0, 130)
target.write_bigval("n", ret)
return """\
static void bigval_final_reduce(bigval *n)
{
%s}
\n""" % target.text()
pp_keyword = "#if"
for bits in [16, 32, 64]:
sys.stdout.write("%s BIGNUM_INT_BITS == %d\n\n" % (pp_keyword, bits))
pp_keyword = "#elif"
sys.stdout.write(gen_add(CodegenTarget(bits)))
sys.stdout.write(gen_mul(CodegenTarget(bits)))
sys.stdout.write(gen_final_reduce(CodegenTarget(bits)))
sys.stdout.write("""#else
#error Add another bit count to contrib/make1305.py and rerun it
#endif
""")
|