1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
|
/*
* Implementation of OpenSSH 9.x's hybrid key exchange protocol
* sntrup761x25519-sha512@openssh.com .
*
* This consists of the 'Streamlined NTRU Prime' quantum-resistant
* cryptosystem, run in parallel with ordinary Curve25519 to generate
* a shared secret combining the output of both systems.
*
* (Hence, even if you don't trust this newfangled NTRU Prime thing at
* all, it's at least no _less_ secure than the kex you were using
* already.)
*
* References for the NTRU Prime cryptosystem, up to and including
* binary encodings of public and private keys and the exact preimages
* of the hashes used in key exchange:
*
* https://ntruprime.cr.yp.to/
* https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
*
* The SSH protocol layer is not documented anywhere I could find (as
* of 2022-04-15, not even in OpenSSH's PROTOCOL.* files). I had to
* read OpenSSH's source code to find out how it worked, and the
* answer is as follows:
*
* This hybrid kex method is treated for SSH purposes as a form of
* elliptic-curve Diffie-Hellman, and shares the same SSH message
* sequence: client sends SSH2_MSG_KEX_ECDH_INIT containing its public
* half, server responds with SSH2_MSG_KEX_ECDH_REPLY containing _its_
* public half plus the host key and signature on the shared secret.
*
* (This is a bit of a fudge, because unlike actual ECDH, this kex
* method is asymmetric: one side sends a public key, and the other
* side encrypts something with it and sends the ciphertext back. So
* while the normal ECDH implementations can compute the two sides
* independently in parallel, this system reusing the same messages
* has to be serial. But the order of the messages _is_ firmly
* specified in SSH ECDH, so it works anyway.)
*
* For this kex method, SSH2_MSG_KEX_ECDH_INIT still contains a single
* SSH 'string', which consists of the concatenation of a Streamlined
* NTRU Prime public key with the Curve25519 public value. (Both of
* these have fixed length in bytes, so there's no ambiguity in the
* concatenation.)
*
* SSH2_MSG_KEX_ECDH_REPLY is mostly the same as usual. The only
* string in the packet that varies is the second one, which would
* normally contain the server's public elliptic curve point. Instead,
* it now contains the concatenation of
*
* - a Streamlined NTRU Prime ciphertext
* - the 'confirmation hash' specified in ntruprime-20201007.pdf,
* hashing the plaintext of that ciphertext together with the
* public key
* - the Curve25519 public point as usual.
*
* Again, all three of those elements have fixed lengths.
*
* The client decrypts the ciphertext, checks the confirmation hash,
* and if successful, generates the 'session hash' specified in
* ntruprime-20201007.pdf, which is 32 bytes long and is the ultimate
* output of the Streamlined NTRU Prime key exchange.
*
* The output of the hybrid kex method as a whole is an SSH 'string'
* of length 64 containing the SHA-512 hash of the concatenatio of
*
* - the Streamlined NTRU Prime session hash (32 bytes)
* - the Curve25519 shared secret (32 bytes).
*
* That string is included directly into the SSH exchange hash and key
* derivation hashes, in place of the mpint that comes out of most
* other kex methods.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "putty.h"
#include "ssh.h"
#include "mpint.h"
#include "ntru.h"
#include "smallmoduli.h"
/* Invert x mod q, assuming it's nonzero. (For time-safety, no check
* is made for zero; it just returns 0.)
*
* Expects qrecip == reciprocal_for_reduction(q). (But it's passed in
* as a parameter to save recomputing it, on the theory that the
* caller will have had it lying around already in most cases.) */
static uint16_t invert(uint16_t x, uint16_t q, uint64_t qrecip)
{
/* Fermat inversion: compute x^(q-2), since x^(q-1) == 1. */
uint32_t sq = x, bit = 1, acc = 1, exp = q-2;
while (1) {
if (exp & bit) {
acc = reduce(acc * sq, q, qrecip);
exp &= ~bit;
if (!exp)
return acc;
}
sq = reduce(sq * sq, q, qrecip);
bit <<= 1;
}
}
/* Check whether x == 0, time-safely, and return 1 if it is or 0 otherwise. */
static unsigned iszero(uint16_t x)
{
return 1 & ~((x + 0xFFFF) >> 16);
}
/*
* Handy macros to cut down on all those extra function parameters. In
* the common case where a function is working mod the same modulus
* throughout (and has called it q), you can just write 'SETUP;' at
* the top and then call REDUCE(...) and INVERT(...) without having to
* write out q and qrecip every time.
*/
#define SETUP uint64_t qrecip = reciprocal_for_reduction(q)
#define REDUCE(x) reduce(x, q, qrecip)
#define INVERT(x) invert(x, q, qrecip)
/* ----------------------------------------------------------------------
* Quotient-ring functions.
*
* NTRU Prime works with two similar but different quotient rings:
*
* Z_q[x] / <x^p-x-1> where p,q are the prime parameters of the system
* Z_3[x] / <x^p-x-1> with the same p, but coefficients mod 3.
*
* The former is a field (every nonzero element is invertible),
* because the system parameters are chosen such that x^p-x-1 is
* invertible over Z_q. The latter is not a field (or not necessarily,
* and in particular, not for the value of p we use here).
*
* In these core functions, you pass in the modulus you want as the
* parameter q, which is either the 'real' q specified in the system
* parameters, or 3 if you're doing one of the mod-3 parts of the
* algorithm.
*/
/*
* Multiply two elements of a quotient ring.
*
* 'a' and 'b' are arrays of exactly p coefficients, with constant
* term first. 'out' is an array the same size to write the inverse
* into.
*/
void ntru_ring_multiply(uint16_t *out, const uint16_t *a, const uint16_t *b,
unsigned p, unsigned q)
{
SETUP;
/*
* Strategy: just compute the full product with 2p coefficients,
* and then reduce it mod x^p-x-1 by working downwards from the
* top coefficient replacing x^{p+k} with (x+1)x^k for k = ...,1,0.
*
* Possibly some speed could be gained here by doing the recursive
* Karatsuba optimisation for the initial multiplication? But I
* haven't tried it.
*/
uint32_t *unreduced = snewn(2*p, uint32_t);
for (unsigned i = 0; i < 2*p; i++)
unreduced[i] = 0;
for (unsigned i = 0; i < p; i++)
for (unsigned j = 0; j < p; j++)
unreduced[i+j] = REDUCE(unreduced[i+j] + a[i] * b[j]);
for (unsigned i = 2*p - 1; i >= p; i--) {
unreduced[i-p] += unreduced[i];
unreduced[i-p+1] += unreduced[i];
unreduced[i] = 0;
}
for (unsigned i = 0; i < p; i++)
out[i] = REDUCE(unreduced[i]);
smemclr(unreduced, 2*p * sizeof(*unreduced));
sfree(unreduced);
}
/*
* Invert an element of the quotient ring.
*
* 'in' is an array of exactly p coefficients, with constant term
* first. 'out' is an array the same size to write the inverse into.
*
* Method: essentially Stein's gcd algorithm, taking the gcd of the
* input (regarded as an element of Z_q[x] proper) and x^p-x-1. Given
* two polynomials over a field which are not both divisible by x, you
* can find their gcd by iterating the following procedure:
*
* - if one is divisible by x, divide off x
* - otherwise, subtract from the higher-degree one whatever scalar
* multiple of the lower-degree one will make it divisible by x,
* and _then_ divide off x
*
* Neither of these types of step changes the gcd of the two
* polynomials.
*
* Each step reduces the sum of the two polynomials' degree by at
* least one, as long as at least one of the degrees is positive.
* (Maybe more than one if all the stars align in the second case, if
* the subtraction cancels the leading term as well as the constant
* term.) So in at most deg A + deg B steps, we must have reached the
* situation where both polys are constants; in one more step after
* that, one of them will be zero; and in one step after _that_, the
* zero one will reliably be the one we're dividing by x. Or rather,
* that's what happens in the case where A,B are coprime; if not, then
* one hits zero while the other is still nonzero.
*
* In a normal gcd algorithm, you'd track a linear combination of the
* two original polynomials that yields each working value, and end up
* with a linear combination of the inputs that yields the gcd. In
* this algorithm, the 'divide off x' step makes that awkward - but we
* can solve that by instead multiplying by the inverse of x in the
* ring that we want our answer to be valid in! And since the modulus
* polynomial of the ring is x^p-x-1, the inverse of x is easy to
* calculate, because it's always just x^{p-1} - 1, which is also very
* easy to multiply by.
*/
unsigned ntru_ring_invert(uint16_t *out, const uint16_t *in,
unsigned p, unsigned q)
{
SETUP;
/* Size of the polynomial arrays we'll work with */
const size_t SIZE = p+1;
/* Number of steps of the algorithm is the max possible value of
* deg A + deg B + 2, where deg A <= p-1 and deg B = p */
const size_t STEPS = 2*p + 1;
/* Our two working polynomials */
uint16_t *A = snewn(SIZE, uint16_t);
uint16_t *B = snewn(SIZE, uint16_t);
/* Coefficient of the input value in each one */
uint16_t *Ac = snewn(SIZE, uint16_t);
uint16_t *Bc = snewn(SIZE, uint16_t);
/* Initialise A to the input, and Ac correspondingly to 1 */
memcpy(A, in, p*sizeof(uint16_t));
A[p] = 0;
Ac[0] = 1;
for (size_t i = 1; i < SIZE; i++)
Ac[i] = 0;
/* Initialise B to the quotient polynomial of the ring, x^p-x-1
* And Bc = 0 */
B[0] = B[1] = q-1;
for (size_t i = 2; i < p; i++)
B[i] = 0;
B[p] = 1;
for (size_t i = 0; i < SIZE; i++)
Bc[i] = 0;
/* Run the gcd-finding algorithm. */
for (size_t i = 0; i < STEPS; i++) {
/*
* First swap round so that A is the one we'll be dividing by x.
*
* In the case where one of the two polys has a zero constant
* term, it's that one. In the other case, it's the one of
* smaller degree. We must compute both, and choose between
* them in a side-channel-safe way.
*/
unsigned x_divides_A = iszero(A[0]);
unsigned x_divides_B = iszero(B[0]);
unsigned B_is_bigger = 0;
{
unsigned not_seen_top_term_of_A = 1, not_seen_top_term_of_B = 1;
for (size_t j = SIZE; j-- > 0 ;) {
not_seen_top_term_of_A &= iszero(A[j]);
not_seen_top_term_of_B &= iszero(B[j]);
B_is_bigger |= (~not_seen_top_term_of_B &
not_seen_top_term_of_A);
}
}
unsigned need_swap = x_divides_B | (~x_divides_A & B_is_bigger);
uint16_t swap_mask = -need_swap;
for (size_t j = 0; j < SIZE; j++) {
uint16_t diff = (A[j] ^ B[j]) & swap_mask;
A[j] ^= diff;
B[j] ^= diff;
}
for (size_t j = 0; j < SIZE; j++) {
uint16_t diff = (Ac[j] ^ Bc[j]) & swap_mask;
Ac[j] ^= diff;
Bc[j] ^= diff;
}
/*
* Replace A with a linear combination of both A and B that
* has constant term zero, which we do by calculating
*
* (constant term of B) * A - (constant term of A) * B
*
* In one of the two cases, A's constant term is already zero,
* so the coefficient of B will be zero too; hence, this will
* do nothing useful (it will merely scale A by some scalar
* value), but it will take the same length of time as doing
* something, which is just what we want.
*/
uint16_t Amult = B[0], Bmult = q - A[0];
for (size_t j = 0; j < SIZE; j++)
A[j] = REDUCE(Amult * A[j] + Bmult * B[j]);
/* And do the same transformation to Ac */
for (size_t j = 0; j < SIZE; j++)
Ac[j] = REDUCE(Amult * Ac[j] + Bmult * Bc[j]);
/*
* Now divide A by x, and compensate by multiplying Ac by
* x^{p-1}-1 mod x^p-x-1.
*
* That multiplication is particularly easy, precisely because
* x^{p-1}-1 is the multiplicative inverse of x! Each x^n term
* for n>0 just moves down to the x^{n-1} term, and only the
* constant term has to be dealt with in an interesting way.
*/
for (size_t j = 1; j < SIZE; j++)
A[j-1] = A[j];
A[SIZE-1] = 0;
uint16_t Ac0 = Ac[0];
for (size_t j = 1; j < p; j++)
Ac[j-1] = Ac[j];
Ac[p-1] = Ac0;
Ac[0] = REDUCE(Ac[0] + q - Ac0);
}
/*
* Now we expect that A is 0, and B is a constant. If so, then
* they are coprime, and we're going to return success. If not,
* they have a common factor.
*/
unsigned success = iszero(A[0]) & (1 ^ iszero(B[0]));
for (size_t j = 1; j < SIZE; j++)
success &= iszero(A[j]) & iszero(B[j]);
/*
* So we're going to return Bc, but first, scale it by the
* multiplicative inverse of the constant we ended up with in
* B[0].
*/
uint16_t scale = INVERT(B[0]);
for (size_t i = 0; i < p; i++)
out[i] = REDUCE(scale * Bc[i]);
smemclr(A, SIZE * sizeof(*A));
sfree(A);
smemclr(B, SIZE * sizeof(*B));
sfree(B);
smemclr(Ac, SIZE * sizeof(*Ac));
sfree(Ac);
smemclr(Bc, SIZE * sizeof(*Bc));
sfree(Bc);
return success;
}
/*
* Given an array of values mod q, convert each one to its
* minimum-absolute-value representative, and then reduce mod 3.
*
* Output values are 0, 1 and 0xFFFF, representing -1.
*
* (Normally our arrays of uint16_t are in 'minimal non-negative
* residue' form, so the output of this function is unusual. But it's
* useful to have it in this form so that it can be reused by
* ntru_round3. You can put it back to the usual representation using
* ntru_normalise, below.)
*/
void ntru_mod3(uint16_t *out, const uint16_t *in, unsigned p, unsigned q)
{
uint64_t qrecip = reciprocal_for_reduction(q);
uint64_t recip3 = reciprocal_for_reduction(3);
unsigned bias = q/2;
uint16_t adjust = 3 - reduce(bias-1, 3, recip3);
for (unsigned i = 0; i < p; i++) {
uint16_t val = reduce(in[i] + bias, q, qrecip);
uint16_t residue = reduce(val + adjust, 3, recip3);
out[i] = residue - 1;
}
}
/*
* Given an array of values mod q, round each one to the nearest
* multiple of 3 to its minimum-absolute-value representative.
*
* Output values are signed integers coerced to uint16_t, so again,
* use ntru_normalise afterwards to put them back to normal.
*/
void ntru_round3(uint16_t *out, const uint16_t *in, unsigned p, unsigned q)
{
SETUP;
unsigned bias = q/2;
ntru_mod3(out, in, p, q);
for (unsigned i = 0; i < p; i++)
out[i] = REDUCE(in[i] + bias) - bias - out[i];
}
/*
* Given an array of signed integers coerced to uint16_t in the range
* [-q/2,+q/2], normalise them back to mod q values.
*/
static void ntru_normalise(uint16_t *out, const uint16_t *in,
unsigned p, unsigned q)
{
for (unsigned i = 0; i < p; i++)
out[i] = in[i] + q * (in[i] >> 15);
}
/*
* Given an array of values mod q, add a constant to each one.
*/
void ntru_bias(uint16_t *out, const uint16_t *in, unsigned bias,
unsigned p, unsigned q)
{
SETUP;
for (unsigned i = 0; i < p; i++)
out[i] = REDUCE(in[i] + bias);
}
/*
* Given an array of values mod q, multiply each one by a constant.
*/
void ntru_scale(uint16_t *out, const uint16_t *in, uint16_t scale,
unsigned p, unsigned q)
{
SETUP;
for (unsigned i = 0; i < p; i++)
out[i] = REDUCE(in[i] * scale);
}
/*
* Given an array of values mod 3, convert them to values mod q in a
* way that maps -1,0,+1 to -1,0,+1.
*/
static void ntru_expand(
uint16_t *out, const uint16_t *in, unsigned p, unsigned q)
{
for (size_t i = 0; i < p; i++) {
uint16_t v = in[i];
/* Map 2 to q-1, and leave 0 and 1 unchanged */
v += (v >> 1) * (q-3);
out[i] = v;
}
}
/* ----------------------------------------------------------------------
* Implement the binary encoding from ntruprime-20201007.pdf, which is
* used to encode public keys and ciphertexts (though not plaintexts,
* which are done in a much simpler way).
*
* The general idea is that your encoder takes as input a list of
* small non-negative integers (r_i), and a sequence of limits (m_i)
* such that 0 <= r_i < m_i, and emits a sequence of bytes that encode
* all of these as tightly as reasonably possible.
*
* That's more general than is really needed, because in both the
* actual uses of this encoding, the input m_i are all the same! But
* the array of (r_i,m_i) pairs evolves during encoding, so they don't
* _stay_ all the same, so you still have to have all the generality.
*
* The encoding process makes a number of passes along the list of
* inputs. In each step, pairs of adjacent numbers are combined into
* one larger one by turning (r_i,m_i) and (r_{i+1},m_{i+1}) into the
* pair (r_i + m_i r_{i+1}, m_i m_{i+1}), i.e. so that the original
* numbers could be recovered by taking the quotient and remaiinder of
* the new r value by m_i. Then, if the new m_i is at least 2^14, we
* emit the low 8 bits of r_i to the output stream and reduce r_i and
* its limit correspondingly. So at the end of the pass, we've got
* half as many numbers still to encode, they're all still not too
* big, and we've emitted some amount of data into the output. Then do
* another pass, keep going until there's only one number left, and
* emit it little-endian.
*
* That's all very well, but how do you decode it again? DJB exhibits
* a pair of recursive functions that are supposed to be mutually
* inverse, but I didn't have any confidence that I'd be able to debug
* them sensibly if they turned out not to be (or rather, if I
* implemented one of them wrong). So I came up with my own strategy
* instead.
*
* In my strategy, we start by processing just the (m_i) into an
* 'encoding schedule' consisting of a sequence of simple
* instructions. The instructions operate on a FIFO queue of numbers,
* initialised to the original (r_i). The three instruction types are:
*
* - 'COMBINE': consume two numbers a,b from the head of the queue,
* combine them by calculating a + m*b for some specified m, and
* push the result on the tail of the queue.
*
* - 'BYTE': divide the tail element of the queue by 2^8 and emit the
* low bits into the output stream.
*
* - 'COPY': pop a number from the head of the queue and push it
* straight back on the tail. (Used for handling the leftover
* element at the end of a pass if the input to the pass was a list
* of odd length.)
*
* So we effectively implement DJB's encoding process in simulation,
* and instead of actually processing a set of (r_i), we 'compile' the
* process into a sequence of instructions that can be handed just the
* (r_i) later and encode them in the right way. At the end of the
* instructions, the queue is expected to have been reduced to length
* 1 and contain the single integer 0.
*
* The nice thing about this system is that each of those three
* instructions is easy to reverse. So you can also use the same
* instructions for decoding: start with a queue containing 0, and
* process the instructions in reverse order and reverse sense. So
* BYTE means to _consume_ a byte from the encoded data (starting from
* the rightmost end) and use it to make a queue element bigger; and
* COMBINE run in reverse pops a single element from one end of the
* queue, divides it by m, and pushes the quotient and remainder on
* the other end.
*
* (So it's easy to debug, because the queue passes through the exact
* same sequence of states during decoding that it did during
* encoding, just in reverse order.)
*
* Also, the encoding schedule comes with information about the
* expected size of the encoded data, because you can find that out
* easily by just counting the BYTE commands.
*/
enum {
/*
* Command values appearing in the 'ops' array. ENC_COPY and
* ENC_BYTE are single values; values of the form
* (ENC_COMBINE_BASE + m) represent a COMBINE command with
* parameter m.
*/
ENC_COPY, ENC_BYTE, ENC_COMBINE_BASE
};
struct NTRUEncodeSchedule {
/*
* Object representing a compiled set of encoding instructions.
*
* 'nvals' is the number of r_i we expect to encode. 'nops' is the
* number of encoding commands in the 'ops' list; 'opsize' is the
* physical size of the array, used during construction.
*
* 'endpos' is used to avoid a last-minute faff during decoding.
* We implement our FIFO of integers as a ring buffer of size
* 'nvals'. Encoding cycles round it some number of times, and the
* final 0 element ends up at some random location in the array.
* If we know _where_ the 0 ends up during encoding, we can put
* the initial 0 there at the start of decoding, and then when we
* finish reversing all the instructions, we'll end up with the
* output numbers already arranged at their correct positions, so
* that there's no need to rotate the array at the last minute.
*/
size_t nvals, endpos, nops, opsize;
uint32_t *ops;
};
static inline void sched_append(NTRUEncodeSchedule *sched, uint16_t op)
{
/* Helper function to append an operation to the schedule, and
* update endpos. */
sgrowarray(sched->ops, sched->opsize, sched->nops);
sched->ops[sched->nops++] = op;
if (op != ENC_BYTE)
sched->endpos = (sched->endpos + 1) % sched->nvals;
}
/*
* Take in the list of limit values (m_i) and compute the encoding
* schedule.
*/
NTRUEncodeSchedule *ntru_encode_schedule(const uint16_t *ms_in, size_t n)
{
NTRUEncodeSchedule *sched = snew(NTRUEncodeSchedule);
sched->nvals = n;
sched->endpos = n-1;
sched->nops = sched->opsize = 0;
sched->ops = NULL;
assert(n != 0);
/*
* 'ms' is the list of (m_i) on input to the current pass.
* 'ms_new' is the list output from the current pass. After each
* pass we swap the arrays round.
*/
uint32_t *ms = snewn(n, uint32_t);
uint32_t *msnew = snewn(n, uint32_t);
for (size_t i = 0; i < n; i++)
ms[i] = ms_in[i];
while (n > 1) {
size_t nnew = 0;
for (size_t i = 0; i < n; i += 2) {
if (i+1 == n) {
/*
* Odd element at the end of the input list: just copy
* it unchanged to the output.
*/
sched_append(sched, ENC_COPY);
msnew[nnew++] = ms[i];
break;
}
/*
* Normal case: consume two elements from the input list
* and combine them.
*/
uint32_t m1 = ms[i], m2 = ms[i+1], m = m1*m2;
sched_append(sched, ENC_COMBINE_BASE + m1);
/*
* And then, as long as the combined limit is big enough,
* emit an output byte from the bottom of it.
*/
while (m >= (1<<14)) {
sched_append(sched, ENC_BYTE);
m = (m + 0xFF) >> 8;
}
/*
* Whatever is left after that, we emit into the output
* list and append to the fifo.
*/
msnew[nnew++] = m;
}
/*
* End of pass. The output list of (m_i) now becomes the input
* list.
*/
uint32_t *tmp = ms;
ms = msnew;
n = nnew;
msnew = tmp;
}
/*
* When that loop terminates, it's because there's exactly one
* number left to encode. (Or, technically, _at most_ one - but we
* don't support encoding a completely empty list in this
* implementation, because what would be the point?) That number
* is just emitted little-endian until its limit is 1 (meaning its
* only possible actual value is 0).
*/
assert(n == 1);
uint32_t m = ms[0];
while (m > 1) {
sched_append(sched, ENC_BYTE);
m = (m + 0xFF) >> 8;
}
sfree(ms);
sfree(msnew);
return sched;
}
void ntru_encode_schedule_free(NTRUEncodeSchedule *sched)
{
sfree(sched->ops);
sfree(sched);
}
/*
* Calculate the output length of the encoded data in bytes.
*/
size_t ntru_encode_schedule_length(NTRUEncodeSchedule *sched)
{
size_t len = 0;
for (size_t i = 0; i < sched->nops; i++)
if (sched->ops[i] == ENC_BYTE)
len++;
return len;
}
/*
* Retrieve the number of items encoded. (Used by testcrypt.)
*/
size_t ntru_encode_schedule_nvals(NTRUEncodeSchedule *sched)
{
return sched->nvals;
}
/*
* Actually encode a sequence of (r_i), emitting the output bytes to
* an arbitrary BinarySink.
*/
void ntru_encode(NTRUEncodeSchedule *sched, const uint16_t *rs_in,
BinarySink *bs)
{
size_t n = sched->nvals;
uint32_t *rs = snewn(n, uint32_t);
for (size_t i = 0; i < n; i++)
rs[i] = rs_in[i];
/*
* The head and tail pointers of the queue are both 'full'. That
* is, rs[head] is the first element actually in the queue, and
* rs[tail] is the last element.
*
* So you append to the queue by first advancing 'tail' and then
* writing to rs[tail], whereas you consume from the queue by
* first reading rs[head] and _then_ advancing 'head'.
*
* The more normal thing would be to make 'tail' point to the
* first empty slot instead of the last full one. But then you'd
* have to faff about with modular arithmetic to find the last
* full slot for the BYTE command, so in this case, it's easier to
* do it the less usual way.
*/
size_t head = 0, tail = n-1;
for (size_t i = 0; i < sched->nops; i++) {
uint16_t op = sched->ops[i];
switch (op) {
case ENC_BYTE:
put_byte(bs, rs[tail] & 0xFF);
rs[tail] >>= 8;
break;
case ENC_COPY: {
uint32_t r = rs[head];
head = (head + 1) % n;
tail = (tail + 1) % n;
rs[tail] = r;
break;
}
default: {
uint32_t r1 = rs[head];
head = (head + 1) % n;
uint32_t r2 = rs[head];
head = (head + 1) % n;
tail = (tail + 1) % n;
rs[tail] = r1 + (op - ENC_COMBINE_BASE) * r2;
break;
}
}
}
/*
* Expect that we've ended up with a single zero in the queue, at
* exactly the position that the setup-time analysis predicted it.
*/
assert(head == sched->endpos);
assert(tail == sched->endpos);
assert(rs[head] == 0);
smemclr(rs, n * sizeof(*rs));
sfree(rs);
}
/*
* Decode a ptrlen of binary data into a sequence of (r_i). The data
* is expected to be of exactly the right length (on pain of assertion
* failure).
*/
void ntru_decode(NTRUEncodeSchedule *sched, uint16_t *rs_out, ptrlen data)
{
size_t n = sched->nvals;
const uint8_t *base = (const uint8_t *)data.ptr;
const uint8_t *pos = base + data.len;
/*
* Initialise the queue to a single zero, at the 'endpos' position
* that will mean the final output is correctly aligned.
*
* 'head' and 'tail' have the same meanings as in encoding. So
* 'tail' is the location that BYTE modifies and COPY and COMBINE
* consume from, and 'head' is the location that COPY and COMBINE
* push on to. As in encoding, they both point at the extremal
* full slots in the array.
*/
uint32_t *rs = snewn(n, uint32_t);
size_t head = sched->endpos, tail = head;
rs[tail] = 0;
for (size_t i = sched->nops; i-- > 0 ;) {
uint16_t op = sched->ops[i];
switch (op) {
case ENC_BYTE: {
assert(pos > base);
uint8_t byte = *--pos;
rs[tail] = (rs[tail] << 8) | byte;
break;
}
case ENC_COPY: {
uint32_t r = rs[tail];
tail = (tail + n - 1) % n;
head = (head + n - 1) % n;
rs[head] = r;
break;
}
default: {
uint32_t r = rs[tail];
tail = (tail + n - 1) % n;
uint32_t m = op - ENC_COMBINE_BASE;
uint64_t mrecip = reciprocal_for_reduction(m);
uint32_t r1, r2;
r1 = reduce_with_quot(r, &r2, m, mrecip);
head = (head + n - 1) % n;
rs[head] = r2;
head = (head + n - 1) % n;
rs[head] = r1;
break;
}
}
}
assert(pos == base);
assert(head == 0);
assert(tail == n-1);
for (size_t i = 0; i < n; i++)
rs_out[i] = rs[i];
smemclr(rs, n * sizeof(*rs));
sfree(rs);
}
/* ----------------------------------------------------------------------
* The actual public-key cryptosystem.
*/
struct NTRUKeyPair {
unsigned p, q, w;
uint16_t *h; /* public key */
uint16_t *f3, *ginv; /* private key */
uint16_t *rho; /* for implicit rejection */
};
/* Helper function to free an array of uint16_t containing a ring
* element, clearing it on the way since some of them are sensitive. */
static void ring_free(uint16_t *val, unsigned p)
{
smemclr(val, p*sizeof(*val));
sfree(val);
}
void ntru_keypair_free(NTRUKeyPair *keypair)
{
ring_free(keypair->h, keypair->p);
ring_free(keypair->f3, keypair->p);
ring_free(keypair->ginv, keypair->p);
ring_free(keypair->rho, keypair->p);
sfree(keypair);
}
/* Trivial accessors used by test programs. */
unsigned ntru_keypair_p(NTRUKeyPair *keypair) { return keypair->p; }
const uint16_t *ntru_pubkey(NTRUKeyPair *keypair) { return keypair->h; }
/*
* Generate a value of the class DJB describes as 'Short': it consists
* of p terms that are all either 0 or +1 or -1, and exactly w of them
* are not zero.
*
* Values of this kind are used for several purposes: part of the
* private key, a plaintext, and the 'rho' fake-plaintext value used
* for deliberately returning a duff but non-revealing session hash if
* things go wrong.
*
* -1 is represented as 2 in the output array. So if you want these
* numbers mod 3, then they come out already in the right form.
* Otherwise, use ntru_expand.
*/
void ntru_gen_short(uint16_t *v, unsigned p, unsigned w)
{
/*
* Get enough random data to generate a polynomial all of whose p
* terms are in {0,+1,-1}, and exactly w of them are nonzero.
* We'll do this by making up a completely random sequence of
* {+1,-1} and then setting a random subset of them to 0.
*
* So we'll need p random bits to choose the nonzero values, and
* then (doing it the simplest way) log2(p!) bits to shuffle them,
* plus say 128 bits to ensure any fluctuations in uniformity are
* negligible.
*
* log2(p!) is a pain to calculate, so we'll bound it above by
* p*log2(p), which we bound in turn by p*16.
*/
size_t randbitpos = 17 * p + 128;
mp_int *randdata = mp_resize(mp_random_bits(randbitpos), randbitpos + 32);
/*
* Initial value before zeroing out some terms: p randomly chosen
* values in {1,2}.
*/
for (size_t i = 0; i < p; i++)
v[i] = 1 + mp_get_bit(randdata, --randbitpos);
/*
* Hereafter we're going to extract random bits by multiplication,
* treating randdata as a large fixed-point number.
*/
mp_reduce_mod_2to(randdata, randbitpos);
/*
* Zero out some terms, leaving a randomly selected w of them
* nonzero.
*/
uint32_t nonzeros_left = w;
mp_int *x = mp_new(64);
for (size_t i = p; i-- > 0 ;) {
/*
* Pick a random number out of the number of terms remaning.
*/
mp_mul_integer_into(randdata, randdata, i+1);
mp_rshift_fixed_into(x, randdata, randbitpos);
mp_reduce_mod_2to(randdata, randbitpos);
size_t j = mp_get_integer(x);
/*
* If that's less than nonzeros_left, then we're leaving this
* number nonzero. Otherwise we're zeroing it out.
*/
uint32_t keep = (uint32_t)(j - nonzeros_left) >> 31;
v[i] &= -keep; /* clear this field if keep == 0 */
nonzeros_left -= keep; /* decrement counter if keep == 1 */
}
mp_free(x);
mp_free(randdata);
}
/*
* Make a single attempt at generating a key pair. This involves
* inventing random elements of both our quotient rings and hoping
* they're both invertible.
*
* They may not be, if you're unlucky. The element of Z_q/<x^p-x-1>
* will _almost_ certainly be invertible, because that is a field, so
* invertibility can only fail if you were so unlucky as to choose the
* all-0s element. But the element of Z_3/<x^p-x-1> may fail to be
* invertible because it has a common factor with x^p-x-1 (which, over
* Z_3, is not irreducible).
*
* So we can't guarantee to generate a key pair in constant time,
* because there's no predicting how many retries we'll need. However,
* this isn't a failure of side-channel safety, because we completely
* discard all the random numbers and state from each failed attempt.
* So if there were a side-channel leakage from a failure, the only
* thing it would give away would be a bunch of random numbers that
* turned out not to be used anyway.
*
* But a _successful_ call to this function should execute in a
* secret-independent manner, and this 'make a single attempt'
* function is exposed in the API so that 'testsc' can check that.
*/
NTRUKeyPair *ntru_keygen_attempt(unsigned p, unsigned q, unsigned w)
{
/*
* First invent g, which is the one more likely to fail to invert.
* This is simply a uniformly random polynomial with p terms over
* Z_3. So we need p*log2(3) random bits for it, plus 128 for
* uniformity. It's easiest to bound log2(3) above by 2.
*/
size_t randbitpos = 2 * p + 128;
mp_int *randdata = mp_resize(mp_random_bits(randbitpos), randbitpos + 32);
/*
* Select p random values from {0,1,2}.
*/
uint16_t *g = snewn(p, uint16_t);
mp_int *x = mp_new(64);
for (size_t i = 0; i < p; i++) {
mp_mul_integer_into(randdata, randdata, 3);
mp_rshift_fixed_into(x, randdata, randbitpos);
mp_reduce_mod_2to(randdata, randbitpos);
g[i] = mp_get_integer(x);
}
mp_free(x);
mp_free(randdata);
/*
* Try to invert g over Z_3, and fail if it isn't invertible.
*/
uint16_t *ginv = snewn(p, uint16_t);
if (!ntru_ring_invert(ginv, g, p, 3)) {
ring_free(g, p);
ring_free(ginv, p);
return NULL;
}
/*
* Fine; we have g. Now make up an f, and convert it to a
* polynomial over q.
*/
uint16_t *f = snewn(p, uint16_t);
ntru_gen_short(f, p, w);
ntru_expand(f, f, p, q);
/*
* Multiply f by 3.
*/
uint16_t *f3 = snewn(p, uint16_t);
ntru_scale(f3, f, 3, p, q);
/*
* Invert 3*f over Z_q. This is guaranteed to succeed, since
* Z_q/<x^p-x-1> is a field, so the only non-invertible value is
* 0. And f is nonzero because it came from ntru_gen_short (hence,
* w of its components are nonzero), hence so is 3*f.
*/
uint16_t *f3inv = snewn(p, uint16_t);
bool expect_always_success = ntru_ring_invert(f3inv, f3, p, q);
assert(expect_always_success);
/*
* Make the public key, by converting g to a polynomial over q and
* then multiplying by f3inv.
*/
uint16_t *g_q = snewn(p, uint16_t);
ntru_expand(g_q, g, p, q);
uint16_t *h = snewn(p, uint16_t);
ntru_ring_multiply(h, g_q, f3inv, p, q);
/*
* Make up rho, used to substitute for the plaintext in the
* session hash in case of confirmation failure.
*/
uint16_t *rho = snewn(p, uint16_t);
ntru_gen_short(rho, p, w);
/*
* And we're done! Free everything except the pieces we're
* returning.
*/
NTRUKeyPair *keypair = snew(NTRUKeyPair);
keypair->p = p;
keypair->q = q;
keypair->w = w;
keypair->h = h;
keypair->f3 = f3;
keypair->ginv = ginv;
keypair->rho = rho;
ring_free(f, p);
ring_free(f3inv, p);
ring_free(g, p);
ring_free(g_q, p);
return keypair;
}
/*
* The top-level key generation function for real use (as opposed to
* testsc): keep trying to make a key until you succeed.
*/
NTRUKeyPair *ntru_keygen(unsigned p, unsigned q, unsigned w)
{
while (1) {
NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
if (keypair)
return keypair;
}
}
/*
* Public-key encryption.
*/
void ntru_encrypt(uint16_t *ciphertext, const uint16_t *plaintext,
uint16_t *pubkey, unsigned p, unsigned q)
{
uint16_t *r_q = snewn(p, uint16_t);
ntru_expand(r_q, plaintext, p, q);
uint16_t *unrounded = snewn(p, uint16_t);
ntru_ring_multiply(unrounded, r_q, pubkey, p, q);
ntru_round3(ciphertext, unrounded, p, q);
ntru_normalise(ciphertext, ciphertext, p, q);
ring_free(r_q, p);
ring_free(unrounded, p);
}
/*
* Public-key decryption.
*/
void ntru_decrypt(uint16_t *plaintext, const uint16_t *ciphertext,
NTRUKeyPair *keypair)
{
unsigned p = keypair->p, q = keypair->q, w = keypair->w;
uint16_t *tmp = snewn(p, uint16_t);
ntru_ring_multiply(tmp, ciphertext, keypair->f3, p, q);
ntru_mod3(tmp, tmp, p, q);
ntru_normalise(tmp, tmp, p, 3);
ntru_ring_multiply(plaintext, tmp, keypair->ginv, p, 3);
ring_free(tmp, p);
/*
* With luck, this should have recovered exactly the original
* plaintext. But, as per the spec, we check whether it has
* exactly w nonzero coefficients, and if not, then something has
* gone wrong - and in that situation we time-safely substitute a
* different output.
*
* (I don't know exactly why we do this, but I assume it's because
* otherwise the mis-decoded output could be made to disgorge a
* secret about the private key in some way.)
*/
unsigned weight = p;
for (size_t i = 0; i < p; i++)
weight -= iszero(plaintext[i]);
unsigned ok = iszero(weight ^ w);
/*
* The default failure return value consists of w 1s followed by
* 0s.
*/
unsigned mask = ok - 1;
for (size_t i = 0; i < w; i++) {
uint16_t diff = (1 ^ plaintext[i]) & mask;
plaintext[i] ^= diff;
}
for (size_t i = w; i < p; i++) {
uint16_t diff = (0 ^ plaintext[i]) & mask;
plaintext[i] ^= diff;
}
}
/* ----------------------------------------------------------------------
* Encode and decode public keys, ciphertexts and plaintexts.
*
* Public keys and ciphertexts use the complicated binary encoding
* system implemented above. In both cases, the inputs are regarded as
* symmetric about zero, and are first biased to map their most
* negative permitted value to 0, so that they become non-negative and
* hence suitable as inputs to the encoding system. In the case of a
* ciphertext, where the input coefficients have also been coerced to
* be multiples of 3, we divide by 3 as well, saving space by reducing
* the upper bounds (m_i) on all the encoded numbers.
*/
/*
* Compute the encoding schedule for a public key.
*/
static NTRUEncodeSchedule *ntru_encode_pubkey_schedule(unsigned p, unsigned q)
{
uint16_t *ms = snewn(p, uint16_t);
for (size_t i = 0; i < p; i++)
ms[i] = q;
NTRUEncodeSchedule *sched = ntru_encode_schedule(ms, p);
sfree(ms);
return sched;
}
/*
* Encode a public key.
*/
void ntru_encode_pubkey(const uint16_t *pubkey, unsigned p, unsigned q,
BinarySink *bs)
{
/* Compute the biased version for encoding */
uint16_t *biased_pubkey = snewn(p, uint16_t);
ntru_bias(biased_pubkey, pubkey, q / 2, p, q);
/* Encode it */
NTRUEncodeSchedule *sched = ntru_encode_pubkey_schedule(p, q);
ntru_encode(sched, biased_pubkey, bs);
ntru_encode_schedule_free(sched);
ring_free(biased_pubkey, p);
}
/*
* Decode a public key and write it into 'pubkey'. We also return a
* ptrlen pointing at the chunk of data we removed from the
* BinarySource.
*/
ptrlen ntru_decode_pubkey(uint16_t *pubkey, unsigned p, unsigned q,
BinarySource *src)
{
NTRUEncodeSchedule *sched = ntru_encode_pubkey_schedule(p, q);
/* Retrieve the right number of bytes from the source */
size_t len = ntru_encode_schedule_length(sched);
ptrlen encoded = get_data(src, len);
if (get_err(src)) {
/* If there wasn't enough data, give up and return all-zeroes
* purely for determinism. But that value should never be
* used, because the caller will also check get_err(src). */
memset(pubkey, 0, p*sizeof(*pubkey));
} else {
/* Do the decoding */
ntru_decode(sched, pubkey, encoded);
/* Unbias the coefficients */
ntru_bias(pubkey, pubkey, q-q/2, p, q);
}
ntru_encode_schedule_free(sched);
return encoded;
}
/*
* For ciphertext biasing: work out the largest absolute value a
* ciphertext element can take, which is given by taking q/2 and
* rounding it to the nearest multiple of 3.
*/
static inline unsigned ciphertext_bias(unsigned q)
{
return (q/2+1) / 3;
}
/*
* The number of possible values of a ciphertext coefficient (for use
* as the m_i in encoding) ranges from +ciphertext_bias(q) to
* -ciphertext_bias(q) inclusive.
*/
static inline unsigned ciphertext_m(unsigned q)
{
return 1 + 2 * ciphertext_bias(q);
}
/*
* Compute the encoding schedule for a ciphertext.
*/
static NTRUEncodeSchedule *ntru_encode_ciphertext_schedule(
unsigned p, unsigned q)
{
unsigned m = ciphertext_m(q);
uint16_t *ms = snewn(p, uint16_t);
for (size_t i = 0; i < p; i++)
ms[i] = m;
NTRUEncodeSchedule *sched = ntru_encode_schedule(ms, p);
sfree(ms);
return sched;
}
/*
* Encode a ciphertext.
*/
void ntru_encode_ciphertext(const uint16_t *ciphertext, unsigned p, unsigned q,
BinarySink *bs)
{
SETUP;
/*
* Bias the ciphertext, and scale down by 1/3, which we do by
* modular multiplication by the inverse of 3 mod q. (That only
* works if we know the inputs are all _exact_ multiples of 3
* - but we do!)
*/
uint16_t *biased_ciphertext = snewn(p, uint16_t);
ntru_bias(biased_ciphertext, ciphertext, 3 * ciphertext_bias(q), p, q);
ntru_scale(biased_ciphertext, biased_ciphertext, INVERT(3), p, q);
/* Encode. */
NTRUEncodeSchedule *sched = ntru_encode_ciphertext_schedule(p, q);
ntru_encode(sched, biased_ciphertext, bs);
ntru_encode_schedule_free(sched);
ring_free(biased_ciphertext, p);
}
ptrlen ntru_decode_ciphertext(uint16_t *ct, NTRUKeyPair *keypair,
BinarySource *src)
{
unsigned p = keypair->p, q = keypair->q;
NTRUEncodeSchedule *sched = ntru_encode_ciphertext_schedule(p, q);
/* Retrieve the right number of bytes from the source */
size_t len = ntru_encode_schedule_length(sched);
ptrlen encoded = get_data(src, len);
if (get_err(src)) {
/* As above, return deterministic nonsense on failure */
memset(ct, 0, p*sizeof(*ct));
} else {
/* Do the decoding */
ntru_decode(sched, ct, encoded);
/* Undo the scaling and bias */
ntru_scale(ct, ct, 3, p, q);
ntru_bias(ct, ct, q - 3 * ciphertext_bias(q), p, q);
}
ntru_encode_schedule_free(sched);
return encoded; /* also useful to the caller, optionally */
}
/*
* Encode a plaintext.
*
* This is a much simpler encoding than the NTRUEncodeSchedule system:
* since elements of a plaintext are mod 3, we just encode each one in
* 2 bits, applying the usual bias so that {-1,0,+1} map to {0,1,2}
* respectively.
*
* There's no corresponding decode function, because plaintexts are
* never transmitted on the wire (the whole point is that they're too
* secret!). Plaintexts are only encoded in order to put them into
* hash preimages.
*/
void ntru_encode_plaintext(const uint16_t *plaintext, unsigned p,
BinarySink *bs)
{
unsigned byte = 0, bitpos = 0;
for (size_t i = 0; i < p; i++) {
unsigned encoding = (plaintext[i] + 1) * iszero(plaintext[i] >> 1);
byte |= encoding << bitpos;
bitpos += 2;
if (bitpos == 8 || i+1 == p) {
put_byte(bs, byte);
byte = 0;
bitpos = 0;
}
}
}
/* ----------------------------------------------------------------------
* Compute the hashes required by the key exchange layer of NTRU Prime.
*
* There are two of these. The 'confirmation hash' is sent by the
* server along with the ciphertext, and the client can recalculate it
* to check whether the ciphertext was decrypted correctly. Then, the
* 'session hash' is the actual output of key exchange, and if the
* confirmation hash doesn't match, it gets deliberately corrupted.
*/
/*
* Make the confirmation hash, whose inputs are the plaintext and the
* public key.
*
* This is defined as H(2 || H(3 || r) || H(4 || K)), where r is the
* plaintext and K is the public key (as encoded by the above
* functions), and the constants 2,3,4 are single bytes. The choice of
* hash function (H itself) is SHA-512 truncated to 256 bits.
*
* (To be clear: that is _not_ the thing that FIPS 180-4 6.7 defines
* as "SHA-512/256", which varies the initialisation vector of the
* SHA-512 algorithm as well as truncating the output. _This_
* algorithm uses the standard SHA-512 IV, and _just_ truncates the
* output, in the manner suggested by FIPS 180-4 section 7.)
*
* 'out' should therefore expect to receive 32 bytes of data.
*/
static void ntru_confirmation_hash(
uint8_t *out, const uint16_t *plaintext,
const uint16_t *pubkey, unsigned p, unsigned q)
{
/* The outer hash object */
ssh_hash *hconfirm = ssh_hash_new(&ssh_sha512);
put_byte(hconfirm, 2); /* initial byte 2 */
uint8_t hashdata[64];
/* Compute H(3 || r) and add it to the main hash */
ssh_hash *h3r = ssh_hash_new(&ssh_sha512);
put_byte(h3r, 3);
ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(h3r));
ssh_hash_final(h3r, hashdata);
put_data(hconfirm, hashdata, 32);
/* Compute H(4 || K) and add it to the main hash */
ssh_hash *h4K = ssh_hash_new(&ssh_sha512);
put_byte(h4K, 4);
ntru_encode_pubkey(pubkey, p, q, BinarySink_UPCAST(h4K));
ssh_hash_final(h4K, hashdata);
put_data(hconfirm, hashdata, 32);
/* Compute the full output of the main SHA-512 hash */
ssh_hash_final(hconfirm, hashdata);
/* And copy the first 32 bytes into the caller's output array */
memcpy(out, hashdata, 32);
smemclr(hashdata, sizeof(hashdata));
}
/*
* Make the session hash, whose inputs are the plaintext, the
* ciphertext, and the confirmation hash (hence, transitively, a
* dependence on the public key as well).
*
* As computed by the server, and by the client if the confirmation
* hash matched, this is defined as
*
* H(1 || H(3 || r) || ciphertext || confirmation hash)
*
* but if the confirmation hash _didn't_ match, then the plaintext r
* is replaced with the dummy plaintext-shaped value 'rho' we invented
* during key generation (presumably to avoid leaking any information
* about our secrets), and the initial byte 1 is replaced with 0 (to
* ensure that the resulting hash preimage can't match any legitimate
* preimage). So in that case, you instead get
*
* H(0 || H(3 || rho) || ciphertext || confirmation hash)
*
* The inputs to this function include 'ok', which is the value to use
* as the initial byte (1 on success, 0 on failure), and 'plaintext'
* which should already have been substituted with rho in case of
* failure.
*
* The ciphertext is provided in already-encoded form.
*/
static void ntru_session_hash(
uint8_t *out, unsigned ok, const uint16_t *plaintext,
unsigned p, ptrlen ciphertext, ptrlen confirmation_hash)
{
/* The outer hash object */
ssh_hash *hsession = ssh_hash_new(&ssh_sha512);
put_byte(hsession, ok); /* initial byte 1 or 0 */
uint8_t hashdata[64];
/* Compute H(3 || r), or maybe H(3 || rho), and add it to the main hash */
ssh_hash *h3r = ssh_hash_new(&ssh_sha512);
put_byte(h3r, 3);
ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(h3r));
ssh_hash_final(h3r, hashdata);
put_data(hsession, hashdata, 32);
/* Put the ciphertext and confirmation hash in */
put_datapl(hsession, ciphertext);
put_datapl(hsession, confirmation_hash);
/* Compute the full output of the main SHA-512 hash */
ssh_hash_final(hsession, hashdata);
/* And copy the first 32 bytes into the caller's output array */
memcpy(out, hashdata, 32);
smemclr(hashdata, sizeof(hashdata));
}
/* ----------------------------------------------------------------------
* Top-level KEM functions.
*/
/*
* The parameters p,q,w for the system. There are other choices of
* these, but OpenSSH only specifies this set. (If that ever changes,
* we'll need to turn these into elements of the state structures.)
*/
#define p_LIVE 761
#define q_LIVE 4591
#define w_LIVE 286
struct ntru_dk {
NTRUKeyPair *keypair;
strbuf *encoded;
pq_kem_dk dk;
};
static pq_kem_dk *ntru_vt_keygen(const pq_kemalg *alg, BinarySink *ek)
{
struct ntru_dk *ndk = snew(struct ntru_dk);
ndk->dk.vt = alg;
ndk->encoded = strbuf_new_nm();
ndk->keypair = ntru_keygen(p_LIVE, q_LIVE, w_LIVE);
ntru_encode_pubkey(ndk->keypair->h, p_LIVE, q_LIVE, ek);
return &ndk->dk;
}
static bool ntru_vt_encaps(const pq_kemalg *alg, BinarySink *c, BinarySink *k,
ptrlen ek)
{
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, ek);
uint16_t *pubkey = snewn(p_LIVE, uint16_t);
ntru_decode_pubkey(pubkey, p_LIVE, q_LIVE, src);
if (get_err(src) || get_avail(src)) {
/* Hard-fail if the input wasn't exactly the right length */
ring_free(pubkey, p_LIVE);
return false;
}
/* Invent a valid NTRU plaintext. */
uint16_t *plaintext = snewn(p_LIVE, uint16_t);
ntru_gen_short(plaintext, p_LIVE, w_LIVE);
/* Encrypt the plaintext, and encode the ciphertext into a strbuf,
* so we can reuse it for both the session hash and sending to the
* client. */
uint16_t *ciphertext = snewn(p_LIVE, uint16_t);
ntru_encrypt(ciphertext, plaintext, pubkey, p_LIVE, q_LIVE);
strbuf *ciphertext_encoded = strbuf_new_nm();
ntru_encode_ciphertext(ciphertext, p_LIVE, q_LIVE,
BinarySink_UPCAST(ciphertext_encoded));
put_datapl(c, ptrlen_from_strbuf(ciphertext_encoded));
/* Compute the confirmation hash, and append that to the data sent
* to the other side. */
uint8_t confhash[32];
ntru_confirmation_hash(confhash, plaintext, pubkey, p_LIVE, q_LIVE);
put_data(c, confhash, 32);
/* Compute the session hash, i.e. the output shared secret. */
uint8_t sesshash[32];
ntru_session_hash(sesshash, 1, plaintext, p_LIVE,
ptrlen_from_strbuf(ciphertext_encoded),
make_ptrlen(confhash, 32));
put_data(k, sesshash, 32);
ring_free(pubkey, p_LIVE);
ring_free(plaintext, p_LIVE);
ring_free(ciphertext, p_LIVE);
strbuf_free(ciphertext_encoded);
smemclr(confhash, sizeof(confhash));
smemclr(sesshash, sizeof(sesshash));
return true;
}
static bool ntru_vt_decaps(pq_kem_dk *dk, BinarySink *k, ptrlen c)
{
struct ntru_dk *ndk = container_of(dk, struct ntru_dk, dk);
/* Expect a string containing a ciphertext and a confirmation hash. */
BinarySource src[1];
BinarySource_BARE_INIT_PL(src, c);
uint16_t *ciphertext = snewn(p_LIVE, uint16_t);
ptrlen ciphertext_encoded = ntru_decode_ciphertext(
ciphertext, ndk->keypair, src);
ptrlen confirmation_hash = get_data(src, 32);
if (get_err(src) || get_avail(src)) {
/* Hard-fail if the input wasn't exactly the right length */
ring_free(ciphertext, p_LIVE);
return false;
}
/* Decrypt the ciphertext to recover the sender's plaintext */
uint16_t *plaintext = snewn(p_LIVE, uint16_t);
ntru_decrypt(plaintext, ciphertext, ndk->keypair);
/* Make the confirmation hash */
uint8_t confhash[32];
ntru_confirmation_hash(confhash, plaintext, ndk->keypair->h,
p_LIVE, q_LIVE);
/* Check it matches the one the server sent */
unsigned ok = smemeq(confhash, confirmation_hash.ptr, 32);
/* If not, substitute in rho for the plaintext in the session hash */
unsigned mask = ok-1;
for (size_t i = 0; i < p_LIVE; i++)
plaintext[i] ^= mask & (plaintext[i] ^ ndk->keypair->rho[i]);
/* Compute the session hash, whether or not we did that */
uint8_t sesshash[32];
ntru_session_hash(sesshash, ok, plaintext, p_LIVE, ciphertext_encoded,
confirmation_hash);
put_data(k, sesshash, 32);
ring_free(plaintext, p_LIVE);
ring_free(ciphertext, p_LIVE);
smemclr(confhash, sizeof(confhash));
smemclr(sesshash, sizeof(sesshash));
return true;
}
static void ntru_vt_free_dk(pq_kem_dk *dk)
{
struct ntru_dk *ndk = container_of(dk, struct ntru_dk, dk);
strbuf_free(ndk->encoded);
ntru_keypair_free(ndk->keypair);
sfree(ndk);
}
const pq_kemalg ssh_ntru = {
.keygen = ntru_vt_keygen,
.encaps = ntru_vt_encaps,
.decaps = ntru_vt_decaps,
.free_dk = ntru_vt_free_dk,
.description = "NTRU Prime",
.ek_len = 1158,
.c_len = 1039,
};
|