1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
|
#!/usr/bin/env python3
from __future__ import division
import sys
import decimal
import math
assert sys.version_info[:2] >= (3,0), "This is Python 3 code"
# Python code which draws the PuTTY icon components at a range of
# sizes.
# TODO
# ----
#
# - use of alpha blending
# + try for variable-transparency borders
#
# - can we integrate the Mac icons into all this? Do we want to?
# Python 3 prefers round-to-even. Emulate Python 2's behaviour instead.
def round(number):
return float(
decimal.Decimal(number).to_integral(rounding=decimal.ROUND_HALF_UP))
def pixel(x, y, colour, canvas):
canvas[(int(x),int(y))] = colour
def overlay(src, x, y, dst):
x = int(x)
y = int(y)
for (sx, sy), colour in src.items():
dst[sx+x, sy+y] = blend(colour, dst.get((sx+x, sy+y), cT))
def finalise(canvas):
for k in canvas.keys():
canvas[k] = finalisepix(canvas[k])
def bbox(canvas):
minx, miny, maxx, maxy = None, None, None, None
for (x, y) in canvas.keys():
if minx == None:
minx, miny, maxx, maxy = x, y, x+1, y+1
else:
minx = min(minx, x)
miny = min(miny, y)
maxx = max(maxx, x+1)
maxy = max(maxy, y+1)
return (minx, miny, maxx, maxy)
def topy(canvas):
miny = {}
for (x, y) in canvas.keys():
miny[x] = min(miny.get(x, y), y)
return miny
def render(canvas, minx, miny, maxx, maxy):
w = maxx - minx
h = maxy - miny
ret = []
for y in range(h):
ret.append([outpix(cT)] * w)
for (x, y), colour in canvas.items():
if x >= minx and x < maxx and y >= miny and y < maxy:
ret[y-miny][x-minx] = outpix(colour)
return ret
# Code to actually draw pieces of icon. These don't generally worry
# about positioning within a canvas; they just draw at a standard
# location, return some useful coordinates, and leave composition
# to other pieces of code.
sqrthash = {}
def memoisedsqrt(x):
if x not in sqrthash:
sqrthash[x] = math.sqrt(x)
return sqrthash[x]
BR, TR, BL, TL = list(range(4)) # enumeration of quadrants for border()
def border(canvas, thickness, squarecorners, out={}):
# I haven't yet worked out exactly how to do borders in a
# properly alpha-blended fashion.
#
# When you have two shades of dark available (half-dark H and
# full-dark F), the right sequence of circular border sections
# around a pixel x starts off with these two layouts:
#
# H F
# HxH FxF
# H F
#
# Where it goes after that I'm not entirely sure, but I'm
# absolutely sure those are the right places to start. However,
# every automated algorithm I've tried has always started off
# with the two layouts
#
# H HHH
# HxH HxH
# H HHH
#
# which looks much worse. This is true whether you do
# pixel-centre sampling (define an inner circle and an outer
# circle with radii differing by 1, set any pixel whose centre
# is inside the inner circle to F, any pixel whose centre is
# outside the outer one to nothing, interpolate between the two
# and round sensibly), _or_ whether you plot a notional circle
# of a given radius and measure the actual _proportion_ of each
# pixel square taken up by it.
#
# It's not clear what I should be doing to prevent this. One
# option is to attempt error-diffusion: Ian Jackson proved on
# paper that if you round each pixel's ideal value to the
# nearest of the available output values, then measure the
# error at each pixel, propagate that error outwards into the
# original values of the surrounding pixels, and re-round
# everything, you do get the correct second stage. However, I
# haven't tried it at a proper range of radii.
#
# Another option is that the automated mechanisms described
# above would be entirely adequate if it weren't for the fact
# that the human visual centres are adapted to detect
# horizontal and vertical lines in particular, so the only
# place you have to behave a bit differently is at the ends of
# the top and bottom row of pixels in the circle, and the top
# and bottom of the extreme columns.
#
# For the moment, what I have below is a very simple mechanism
# which always uses only one alpha level for any given border
# thickness, and which seems to work well enough for Windows
# 16-colour icons. Everything else will have to wait.
thickness = memoisedsqrt(thickness)
if thickness < 0.9:
darkness = 0.5
else:
darkness = 1
if thickness < 1: thickness = 1
thickness = round(thickness - 0.5) + 0.3
out["borderthickness"] = thickness
dmax = int(round(thickness))
if dmax < thickness: dmax = dmax + 1
cquadrant = [[0] * (dmax+1) for x in range(dmax+1)]
squadrant = [[0] * (dmax+1) for x in range(dmax+1)]
for x in range(dmax+1):
for y in range(dmax+1):
if max(x, y) < thickness:
squadrant[x][y] = darkness
if memoisedsqrt(x*x+y*y) < thickness:
cquadrant[x][y] = darkness
bvalues = {}
for (x, y), colour in canvas.items():
for dx in range(-dmax, dmax+1):
for dy in range(-dmax, dmax+1):
quadrant = 2 * (dx < 0) + (dy < 0)
if (x, y, quadrant) in squarecorners:
bval = squadrant[abs(dx)][abs(dy)]
else:
bval = cquadrant[abs(dx)][abs(dy)]
if bvalues.get((x+dx,y+dy),0) < bval:
bvalues[(x+dx,y+dy)] = bval
for (x, y), value in bvalues.items():
if (x,y) not in canvas:
canvas[(x,y)] = dark(value)
def sysbox(size, out={}):
canvas = {}
# The system box of the computer.
height = int(round(3.6*size))
width = int(round(16.51*size))
depth = int(round(2*size))
highlight = int(round(1*size))
bothighlight = int(round(1*size))
out["sysboxheight"] = height
floppystart = int(round(19*size)) # measured in half-pixels
floppyend = int(round(29*size)) # measured in half-pixels
floppybottom = height - bothighlight
floppyrheight = 0.7 * size
floppyheight = int(round(floppyrheight))
if floppyheight < 1:
floppyheight = 1
floppytop = floppybottom - floppyheight
# The front panel is rectangular.
for x in range(width):
for y in range(height):
grey = 3
if x < highlight or y < highlight:
grey = grey + 1
if x >= width-highlight or y >= height-bothighlight:
grey = grey - 1
if y < highlight and x >= width-highlight:
v = (highlight-1-y) - (x-(width-highlight))
if v < 0:
grey = grey - 1
elif v > 0:
grey = grey + 1
if y >= floppytop and y < floppybottom and \
2*x+2 > floppystart and 2*x < floppyend:
if 2*x >= floppystart and 2*x+2 <= floppyend and \
floppyrheight >= 0.7:
grey = 0
else:
grey = 2
pixel(x, y, greypix(grey/4.0), canvas)
# The side panel is a parallelogram.
for x in range(depth):
for y in range(height):
pixel(x+width, y-(x+1), greypix(0.5), canvas)
# The top panel is another parallelogram.
for x in range(width-1):
for y in range(depth):
grey = 3
if x >= width-1 - highlight:
grey = grey + 1
pixel(x+(y+1), -(y+1), greypix(grey/4.0), canvas)
# And draw a border.
border(canvas, size, [], out)
return canvas
def monitor(size):
canvas = {}
# The computer's monitor.
height = int(round(9.55*size))
width = int(round(11.49*size))
surround = int(round(1*size))
botsurround = int(round(2*size))
sheight = height - surround - botsurround
swidth = width - 2*surround
depth = int(round(2*size))
highlight = int(round(math.sqrt(size)))
shadow = int(round(0.55*size))
# The front panel is rectangular.
for x in range(width):
for y in range(height):
if x >= surround and y >= surround and \
x < surround+swidth and y < surround+sheight:
# Screen.
sx = (float(x-surround) - swidth//3) / swidth
sy = (float(y-surround) - sheight//3) / sheight
shighlight = 1.0 - (sx*sx+sy*sy)*0.27
pix = bluepix(shighlight)
if x < surround+shadow or y < surround+shadow:
pix = blend(cD, pix) # sharp-edged shadow on top and left
else:
# Complicated double bevel on the screen surround.
# First, the outer bevel. We compute the distance
# from this pixel to each edge of the front
# rectangle.
list = [
(x, +1),
(y, +1),
(width-1-x, -1),
(height-1-y, -1)
]
# Now sort the list to find the distance to the
# _nearest_ edge, or the two joint nearest.
list.sort()
# If there's one nearest edge, that determines our
# bevel colour. If there are two joint nearest, our
# bevel colour is their shared one if they agree,
# and neutral otherwise.
outerbevel = 0
if list[0][0] < list[1][0] or list[0][1] == list[1][1]:
if list[0][0] < highlight:
outerbevel = list[0][1]
# Now, the inner bevel. We compute the distance
# from this pixel to each edge of the screen
# itself.
list = [
(surround-1-x, -1),
(surround-1-y, -1),
(x-(surround+swidth), +1),
(y-(surround+sheight), +1)
]
# Now we sort to find the _maximum_ distance, which
# conveniently ignores any less than zero.
list.sort()
# And now the strategy is pretty much the same as
# above, only we're working from the opposite end
# of the list.
innerbevel = 0
if list[-1][0] > list[-2][0] or list[-1][1] == list[-2][1]:
if list[-1][0] >= 0 and list[-1][0] < highlight:
innerbevel = list[-1][1]
# Now we know the adjustment we want to make to the
# pixel's overall grey shade due to the outer
# bevel, and due to the inner one. We break a tie
# in favour of a light outer bevel, but otherwise
# add.
grey = 3
if outerbevel > 0 or outerbevel == innerbevel:
innerbevel = 0
grey = grey + outerbevel + innerbevel
pix = greypix(grey / 4.0)
pixel(x, y, pix, canvas)
# The side panel is a parallelogram.
for x in range(depth):
for y in range(height):
pixel(x+width, y-x, greypix(0.5), canvas)
# The top panel is another parallelogram.
for x in range(width):
for y in range(depth-1):
pixel(x+(y+1), -(y+1), greypix(0.75), canvas)
# And draw a border.
border(canvas, size, [(0,int(height-1),BL)])
return canvas
def computer(size):
# Monitor plus sysbox.
out = {}
m = monitor(size)
s = sysbox(size, out)
x = int(round((2+size/(size+1))*size))
y = int(out["sysboxheight"] + out["borderthickness"])
mb = bbox(m)
sb = bbox(s)
xoff = sb[0] - mb[0] + x
yoff = sb[3] - mb[3] - y
overlay(m, xoff, yoff, s)
return s
def lightning(size):
canvas = {}
# The lightning bolt motif.
# We always want this to be an even number of pixels in height,
# and an odd number in width.
width = round(7*size) * 2 - 1
height = round(8*size) * 2
# The outer edge of each side of the bolt goes to this point.
outery = round(8.4*size)
outerx = round(11*size)
# And the inner edge goes to this point.
innery = height - 1 - outery
innerx = round(7*size)
for y in range(int(height)):
list = []
if y <= outery:
list.append(width-1-int(outerx * float(y) / outery + 0.3))
if y <= innery:
list.append(width-1-int(innerx * float(y) / innery + 0.3))
y0 = height-1-y
if y0 <= outery:
list.append(int(outerx * float(y0) / outery + 0.3))
if y0 <= innery:
list.append(int(innerx * float(y0) / innery + 0.3))
list.sort()
for x in range(int(list[0]), int(list[-1]+1)):
pixel(x, y, cY, canvas)
# And draw a border.
border(canvas, size, [(int(width-1),0,TR), (0,int(height-1),BL)])
return canvas
def document(size):
canvas = {}
# The document used in the PSCP/PSFTP icon.
width = round(13*size)
height = round(16*size)
lineht = round(1*size)
if lineht < 1: lineht = 1
linespc = round(0.7*size)
if linespc < 1: linespc = 1
nlines = int((height-linespc)/(lineht+linespc))
height = nlines*(lineht+linespc)+linespc # round this so it fits better
# Start by drawing a big white rectangle.
for y in range(int(height)):
for x in range(int(width)):
pixel(x, y, cW, canvas)
# Now draw lines of text.
for line in range(nlines):
# Decide where this line of text begins.
if line == 0:
start = round(4*size)
elif line < 5*nlines//7:
start = round((line - (nlines//7)) * size)
else:
start = round(1*size)
if start < round(1*size):
start = round(1*size)
# Decide where it ends.
endpoints = [10, 8, 11, 6, 5, 7, 5]
ey = line * 6.0 / (nlines-1)
eyf = math.floor(ey)
eyc = math.ceil(ey)
exf = endpoints[int(eyf)]
exc = endpoints[int(eyc)]
if eyf == eyc:
end = exf
else:
end = exf * (eyc-ey) + exc * (ey-eyf)
end = round(end * size)
liney = height - (lineht+linespc) * (line+1)
for x in range(int(start), int(end)):
for y in range(int(lineht)):
pixel(x, y+liney, cK, canvas)
# And draw a border.
border(canvas, size, \
[(0,0,TL),(int(width-1),0,TR),(0,int(height-1),BL), \
(int(width-1),int(height-1),BR)])
return canvas
def hat(size):
canvas = {}
# The secret-agent hat in the Pageant icon.
topa = [6]*9+[5,3,1,0,0,1,2,2,1,1,1,9,9,10,10,11,11,12,12]
topa = [round(x*size) for x in topa]
botl = round(topa[0]+2.4*math.sqrt(size))
botr = round(topa[-1]+2.4*math.sqrt(size))
width = round(len(topa)*size)
# Line equations for the top and bottom of the hat brim, in the
# form y=mx+c. c, of course, needs scaling by size, but m is
# independent of size.
brimm = 1.0 / 3.75
brimtopc = round(4*size/3)
brimbotc = round(10*size/3)
for x in range(int(width)):
xs = float(x) * (len(topa)-1) / (width-1)
xf = math.floor(xs)
xc = math.ceil(xs)
topf = topa[int(xf)]
topc = topa[int(xc)]
if xf == xc:
top = topf
else:
top = topf * (xc-xs) + topc * (xs-xf)
top = math.floor(top)
bot = round(botl + (botr-botl) * x/(width-1))
for y in range(int(top), int(bot)):
pixel(x, y, cK, canvas)
# Now draw the brim.
for x in range(int(width)):
brimtop = brimtopc + brimm * x
brimbot = brimbotc + brimm * x
for y in range(int(math.floor(brimtop)), int(math.ceil(brimbot))):
tophere = max(min(brimtop - y, 1), 0)
bothere = max(min(brimbot - y, 1), 0)
grey = bothere - tophere
# Only draw brim pixels over pixels which are (a) part
# of the main hat, and (b) not right on its edge.
if (x,y) in canvas and \
(x,y-1) in canvas and \
(x,y+1) in canvas and \
(x-1,y) in canvas and \
(x+1,y) in canvas:
pixel(x, y, greypix(grey), canvas)
return canvas
def key(size):
canvas = {}
# The key in the PuTTYgen icon.
keyheadw = round(9.5*size)
keyheadh = round(12*size)
keyholed = round(4*size)
keyholeoff = round(2*size)
# Ensure keyheadh and keyshafth have the same parity.
keyshafth = round((2*size - (int(keyheadh)&1)) / 2) * 2 + (int(keyheadh)&1)
keyshaftw = round(18.5*size)
keyhead = [round(x*size) for x in [12,11,8,10,9,8,11,12]]
squarepix = []
# Ellipse for the key head, minus an off-centre circular hole.
for y in range(int(keyheadh)):
dy = (y-(keyheadh-1)/2.0) / (keyheadh/2.0)
dyh = (y-(keyheadh-1)/2.0) / (keyholed/2.0)
for x in range(int(keyheadw)):
dx = (x-(keyheadw-1)/2.0) / (keyheadw/2.0)
dxh = (x-(keyheadw-1)/2.0-keyholeoff) / (keyholed/2.0)
if dy*dy+dx*dx <= 1 and dyh*dyh+dxh*dxh > 1:
pixel(x + keyshaftw, y, cy, canvas)
# Rectangle for the key shaft, extended at the bottom for the
# key head detail.
for x in range(int(keyshaftw)):
top = round((keyheadh - keyshafth) / 2)
bot = round((keyheadh + keyshafth) / 2)
xs = float(x) * (len(keyhead)-1) / round((len(keyhead)-1)*size)
xf = math.floor(xs)
xc = math.ceil(xs)
in_head = 0
if xc < len(keyhead):
in_head = 1
yf = keyhead[int(xf)]
yc = keyhead[int(xc)]
if xf == xc:
bot = yf
else:
bot = yf * (xc-xs) + yc * (xs-xf)
for y in range(int(top),int(bot)):
pixel(x, y, cy, canvas)
if in_head:
last = (x, y)
if x == 0:
squarepix.append((x, int(top), TL))
if x == 0:
squarepix.append(last + (BL,))
if last != None and not in_head:
squarepix.append(last + (BR,))
last = None
# And draw a border.
border(canvas, size, squarepix)
return canvas
def linedist(x1,y1, x2,y2, x,y):
# Compute the distance from the point x,y to the line segment
# joining x1,y1 to x2,y2. Returns the distance vector, measured
# with x,y at the origin.
vectors = []
# Special case: if x1,y1 and x2,y2 are the same point, we
# don't attempt to extrapolate it into a line at all.
if x1 != x2 or y1 != y2:
# First, find the nearest point to x,y on the infinite
# projection of the line segment. So we construct a vector
# n perpendicular to that segment...
nx = y2-y1
ny = x1-x2
# ... compute the dot product of (x1,y1)-(x,y) with that
# vector...
nd = (x1-x)*nx + (y1-y)*ny
# ... multiply by the vector we first thought of...
ndx = nd * nx
ndy = nd * ny
# ... and divide twice by the length of n.
ndx = ndx / (nx*nx+ny*ny)
ndy = ndy / (nx*nx+ny*ny)
# That gives us a displacement vector from x,y to the
# nearest point. See if it's within the range of the line
# segment.
cx = x + ndx
cy = y + ndy
if cx >= min(x1,x2) and cx <= max(x1,x2) and \
cy >= min(y1,y2) and cy <= max(y1,y2):
vectors.append((ndx,ndy))
# Now we have up to three candidate result vectors: (ndx,ndy)
# as computed just above, and the two vectors to the ends of
# the line segment, (x1-x,y1-y) and (x2-x,y2-y). Pick the
# shortest.
vectors = vectors + [(x1-x,y1-y), (x2-x,y2-y)]
bestlen, best = None, None
for v in vectors:
vlen = v[0]*v[0]+v[1]*v[1]
if bestlen == None or bestlen > vlen:
bestlen = vlen
best = v
return best
def spanner(size):
canvas = {}
# The spanner in the config box icon.
headcentre = 0.5 + round(4*size)
headradius = headcentre + 0.1
headhighlight = round(1.5*size)
holecentre = 0.5 + round(3*size)
holeradius = round(2*size)
holehighlight = round(1.5*size)
shaftend = 0.5 + round(25*size)
shaftwidth = round(2*size)
shafthighlight = round(1.5*size)
cmax = shaftend + shaftwidth
# Define three line segments, such that the shortest distance
# vectors from any point to each of these segments determines
# everything we need to know about where it is on the spanner
# shape.
segments = [
((0,0), (holecentre, holecentre)),
((headcentre, headcentre), (headcentre, headcentre)),
((headcentre+headradius/math.sqrt(2), headcentre+headradius/math.sqrt(2)),
(cmax, cmax))
]
for y in range(int(cmax)):
for x in range(int(cmax)):
vectors = [linedist(a,b,c,d,x,y) for ((a,b),(c,d)) in segments]
dists = [memoisedsqrt(vx*vx+vy*vy) for (vx,vy) in vectors]
# If the distance to the hole line is less than
# holeradius, we're not part of the spanner.
if dists[0] < holeradius:
continue
# If the distance to the head `line' is less than
# headradius, we are part of the spanner; likewise if
# the distance to the shaft line is less than
# shaftwidth _and_ the resulting shaft point isn't
# beyond the shaft end.
if dists[1] > headradius and \
(dists[2] > shaftwidth or x+vectors[2][0] >= shaftend):
continue
# We're part of the spanner. Now compute the highlight
# on this pixel. We do this by computing a `slope
# vector', which points from this pixel in the
# direction of its nearest edge. We store an array of
# slope vectors, in polar coordinates.
angles = [math.atan2(vy,vx) for (vx,vy) in vectors]
slopes = []
if dists[0] < holeradius + holehighlight:
slopes.append(((dists[0]-holeradius)/holehighlight,angles[0]))
if dists[1]/headradius < dists[2]/shaftwidth:
if dists[1] > headradius - headhighlight and dists[1] < headradius:
slopes.append(((headradius-dists[1])/headhighlight,math.pi+angles[1]))
else:
if dists[2] > shaftwidth - shafthighlight and dists[2] < shaftwidth:
slopes.append(((shaftwidth-dists[2])/shafthighlight,math.pi+angles[2]))
# Now we find the smallest distance in that array, if
# any, and that gives us a notional position on a
# sphere which we can use to compute the final
# highlight level.
bestdist = None
bestangle = 0
for dist, angle in slopes:
if bestdist == None or bestdist > dist:
bestdist = dist
bestangle = angle
if bestdist == None:
bestdist = 1.0
sx = (1.0-bestdist) * math.cos(bestangle)
sy = (1.0-bestdist) * math.sin(bestangle)
sz = math.sqrt(1.0 - sx*sx - sy*sy)
shade = sx-sy+sz / math.sqrt(3) # can range from -1 to +1
shade = 1.0 - (1-shade)/3
pixel(x, y, yellowpix(shade), canvas)
# And draw a border.
border(canvas, size, [])
return canvas
def box(size, back):
canvas = {}
# The back side of the cardboard box in the installer icon.
boxwidth = round(15 * size)
boxheight = round(12 * size)
boxdepth = round(4 * size)
boxfrontflapheight = round(5 * size)
boxrightflapheight = round(3 * size)
# Three shades of basically acceptable brown, all achieved by
# halftoning between two of the Windows-16 colours. I'm quite
# pleased that was feasible at all!
dark = halftone(cr, cK)
med = halftone(cr, cy)
light = halftone(cr, cY)
# We define our halftoning parity in such a way that the black
# pixels along the RHS of the visible part of the box back
# match up with the one-pixel black outline around the
# right-hand side of the box. In other words, we want the pixel
# at (-1, boxwidth-1) to be black, and hence the one at (0,
# boxwidth) too.
parityadjust = int(boxwidth) % 2
# The entire back of the box.
if back:
for x in range(int(boxwidth + boxdepth)):
ytop = max(-x-1, -boxdepth-1)
ybot = min(boxheight, boxheight+boxwidth-1-x)
for y in range(int(ytop), int(ybot)):
pixel(x, y, dark[(x+y+parityadjust) % 2], canvas)
# Even when drawing the back of the box, we still draw the
# whole shape, because that means we get the right overall size
# (the flaps make the box front larger than the box back) and
# it'll all be overwritten anyway.
# The front face of the box.
for x in range(int(boxwidth)):
for y in range(int(boxheight)):
pixel(x, y, med[(x+y+parityadjust) % 2], canvas)
# The right face of the box.
for x in range(int(boxwidth), int(boxwidth+boxdepth)):
ybot = boxheight + boxwidth-x
ytop = ybot - boxheight
for y in range(int(ytop), int(ybot)):
pixel(x, y, dark[(x+y+parityadjust) % 2], canvas)
# The front flap of the box.
for y in range(int(boxfrontflapheight)):
xadj = int(round(-0.5*y))
for x in range(int(xadj), int(xadj+boxwidth)):
pixel(x, y, light[(x+y+parityadjust) % 2], canvas)
# The right flap of the box.
for x in range(int(boxwidth), int(boxwidth + boxdepth + boxrightflapheight + 1)):
ytop = max(boxwidth - 1 - x, x - boxwidth - 2*boxdepth - 1)
ybot = min(x - boxwidth - 1, boxwidth + 2*boxrightflapheight - 1 - x)
for y in range(int(ytop), int(ybot+1)):
pixel(x, y, med[(x+y+parityadjust) % 2], canvas)
# And draw a border.
border(canvas, size, [(0, int(boxheight)-1, BL)])
return canvas
def boxback(size):
return box(size, 1)
def boxfront(size):
return box(size, 0)
# Functions to draw entire icons by composing the above components.
def xybolt(c1, c2, size, boltoffx=0, boltoffy=0, aux={}):
# Two unspecified objects and a lightning bolt.
canvas = {}
w = h = round(32 * size)
bolt = lightning(size)
# Position c2 against the top right of the icon.
bb = bbox(c2)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c2, w-bb[2], 0-bb[1], canvas)
aux["c2pos"] = (w-bb[2], 0-bb[1])
# Position c1 against the bottom left of the icon.
bb = bbox(c1)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c1, 0-bb[0], h-bb[3], canvas)
aux["c1pos"] = (0-bb[0], h-bb[3])
# Place the lightning bolt artistically off-centre. (The
# rationale for this positioning is that it's centred on the
# midpoint between the centres of the two monitors in the PuTTY
# icon proper, but it's not really feasible to _base_ the
# calculation here on that.)
bb = bbox(bolt)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(bolt, (w-bb[0]-bb[2])/2 + round(boltoffx*size), \
(h-bb[1]-bb[3])/2 + round((boltoffy-2)*size), canvas)
return canvas
def putty_icon(size):
return xybolt(computer(size), computer(size), size)
def puttycfg_icon(size):
w = h = round(32 * size)
s = spanner(size)
canvas = putty_icon(size)
# Centre the spanner.
bb = bbox(s)
overlay(s, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
def puttygen_icon(size):
return xybolt(computer(size), key(size), size, boltoffx=2)
def pscp_icon(size):
return xybolt(document(size), computer(size), size)
def puttyins_icon(size):
aret = {}
# The box back goes behind the lightning bolt.
canvas = xybolt(boxback(size), computer(size), size, boltoffx=-2, boltoffy=+1, aux=aret)
# But the box front goes over the top, so that the lightning
# bolt appears to come _out_ of the box. Here it's useful to
# know the exact coordinates where xybolt placed the box back,
# so we can overlay the box front exactly on top of it.
c1x, c1y = aret["c1pos"]
overlay(boxfront(size), c1x, c1y, canvas)
return canvas
def pterm_icon(size):
# Just a really big computer.
canvas = {}
w = h = round(32 * size)
c = computer(size * 1.4)
# Centre c in the return canvas.
bb = bbox(c)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
def ptermcfg_icon(size):
w = h = round(32 * size)
s = spanner(size)
canvas = pterm_icon(size)
# Centre the spanner.
bb = bbox(s)
overlay(s, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
def pageant_icon(size):
# A biggish computer, in a hat.
canvas = {}
w = h = round(32 * size)
c = computer(size * 1.2)
ht = hat(size)
cbb = bbox(c)
hbb = bbox(ht)
# Determine the relative y-coordinates of the computer and hat.
# We just centre the one on the other.
xrel = (cbb[0]+cbb[2]-hbb[0]-hbb[2])//2
# Determine the relative y-coordinates of the computer and hat.
# We do this by sitting the hat as low down on the computer as
# possible without any computer showing over the top. To do
# this we first have to find the minimum x coordinate at each
# y-coordinate of both components.
cty = topy(c)
hty = topy(ht)
yrelmin = None
for cx in cty.keys():
hx = cx - xrel
assert hx in hty
yrel = cty[cx] - hty[hx]
if yrelmin == None:
yrelmin = yrel
else:
yrelmin = min(yrelmin, yrel)
# Overlay the hat on the computer.
overlay(ht, xrel, yrelmin, c)
# And centre the result in the main icon canvas.
bb = bbox(c)
assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
overlay(c, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
return canvas
# Test and output functions.
import os
import sys
def testrun(func, fname):
canvases = []
for size in [0.5, 0.6, 1.0, 1.2, 1.5, 4.0]:
canvases.append(func(size))
wid = 0
ht = 0
for canvas in canvases:
minx, miny, maxx, maxy = bbox(canvas)
wid = max(wid, maxx-minx+4)
ht = ht + maxy-miny+4
block = []
for canvas in canvases:
minx, miny, maxx, maxy = bbox(canvas)
block.extend(render(canvas, minx-2, miny-2, minx-2+wid, maxy+2))
with open(fname, "wb") as f:
f.write((("P7\nWIDTH %d\nHEIGHT %d\nDEPTH 3\nMAXVAL 255\n" +
"TUPLTYPE RGB\nENDHDR\n") % (wid, ht)).encode('ASCII'))
assert len(block) == ht
for line in block:
assert len(line) == wid
for r, g, b, a in line:
# Composite on to orange.
r = int(round((r * a + 255 * (255-a)) / 255.0))
g = int(round((g * a + 128 * (255-a)) / 255.0))
b = int(round((b * a + 0 * (255-a)) / 255.0))
f.write(bytes(bytearray([r, g, b])))
def drawicon(func, width, fname, orangebackground = 0):
canvas = func(width / 32.0)
finalise(canvas)
minx, miny, maxx, maxy = bbox(canvas)
assert minx >= 0 and miny >= 0 and maxx <= width and maxy <= width
block = render(canvas, 0, 0, width, width)
with open(fname, "wb") as f:
f.write((("P7\nWIDTH %d\nHEIGHT %d\nDEPTH 4\nMAXVAL 255\n" +
"TUPLTYPE RGB_ALPHA\nENDHDR\n") %
(width, width)).encode('ASCII'))
assert len(block) == width
for line in block:
assert len(line) == width
for r, g, b, a in line:
if orangebackground:
# Composite on to orange.
r = int(round((r * a + 255 * (255-a)) / 255.0))
g = int(round((g * a + 128 * (255-a)) / 255.0))
b = int(round((b * a + 0 * (255-a)) / 255.0))
a = 255
f.write(bytes(bytearray([r, g, b, a])))
args = sys.argv[1:]
orangebackground = test = 0
colours = 1 # 0=mono, 1=16col, 2=truecol
doingargs = 1
realargs = []
for arg in args:
if doingargs and arg[0] == "-":
if arg == "-t":
test = 1
elif arg == "-it":
orangebackground = 1
elif arg == "-2":
colours = 0
elif arg == "-T":
colours = 2
elif arg == "--":
doingargs = 0
else:
sys.stderr.write("unrecognised option '%s'\n" % arg)
sys.exit(1)
else:
realargs.append(arg)
if colours == 0:
# Monochrome.
cK=cr=cg=cb=cm=cc=cP=cw=cR=cG=cB=cM=cC=cD = 0
cY=cy=cW = 1
cT = -1
def greypix(value):
return [cK,cW][int(round(value))]
def yellowpix(value):
return [cK,cW][int(round(value))]
def bluepix(value):
return cK
def dark(value):
return [cT,cK][int(round(value))]
def blend(col1, col2):
if col1 == cT:
return col2
else:
return col1
pixvals = [
(0x00, 0x00, 0x00, 0xFF), # cK
(0xFF, 0xFF, 0xFF, 0xFF), # cW
(0x00, 0x00, 0x00, 0x00), # cT
]
def outpix(colour):
return pixvals[colour]
def finalisepix(colour):
return colour
def halftone(col1, col2):
return (col1, col2)
elif colours == 1:
# Windows 16-colour palette.
cK,cr,cg,cy,cb,cm,cc,cP,cw,cR,cG,cY,cB,cM,cC,cW = list(range(16))
cT = -1
cD = -2 # special translucent half-darkening value used internally
def greypix(value):
return [cK,cw,cw,cP,cW][int(round(4*value))]
def yellowpix(value):
return [cK,cy,cY][int(round(2*value))]
def bluepix(value):
return [cK,cb,cB][int(round(2*value))]
def dark(value):
return [cT,cD,cK][int(round(2*value))]
def blend(col1, col2):
if col1 == cT:
return col2
elif col1 == cD:
return [cK,cK,cK,cK,cK,cK,cK,cw,cK,cr,cg,cy,cb,cm,cc,cw,cD,cD][col2]
else:
return col1
pixvals = [
(0x00, 0x00, 0x00, 0xFF), # cK
(0x80, 0x00, 0x00, 0xFF), # cr
(0x00, 0x80, 0x00, 0xFF), # cg
(0x80, 0x80, 0x00, 0xFF), # cy
(0x00, 0x00, 0x80, 0xFF), # cb
(0x80, 0x00, 0x80, 0xFF), # cm
(0x00, 0x80, 0x80, 0xFF), # cc
(0xC0, 0xC0, 0xC0, 0xFF), # cP
(0x80, 0x80, 0x80, 0xFF), # cw
(0xFF, 0x00, 0x00, 0xFF), # cR
(0x00, 0xFF, 0x00, 0xFF), # cG
(0xFF, 0xFF, 0x00, 0xFF), # cY
(0x00, 0x00, 0xFF, 0xFF), # cB
(0xFF, 0x00, 0xFF, 0xFF), # cM
(0x00, 0xFF, 0xFF, 0xFF), # cC
(0xFF, 0xFF, 0xFF, 0xFF), # cW
(0x00, 0x00, 0x00, 0x80), # cD
(0x00, 0x00, 0x00, 0x00), # cT
]
def outpix(colour):
return pixvals[colour]
def finalisepix(colour):
# cD is used internally, but can't be output. Convert to cK.
if colour == cD:
return cK
return colour
def halftone(col1, col2):
return (col1, col2)
else:
# True colour.
cK = (0x00, 0x00, 0x00, 0xFF)
cr = (0x80, 0x00, 0x00, 0xFF)
cg = (0x00, 0x80, 0x00, 0xFF)
cy = (0x80, 0x80, 0x00, 0xFF)
cb = (0x00, 0x00, 0x80, 0xFF)
cm = (0x80, 0x00, 0x80, 0xFF)
cc = (0x00, 0x80, 0x80, 0xFF)
cP = (0xC0, 0xC0, 0xC0, 0xFF)
cw = (0x80, 0x80, 0x80, 0xFF)
cR = (0xFF, 0x00, 0x00, 0xFF)
cG = (0x00, 0xFF, 0x00, 0xFF)
cY = (0xFF, 0xFF, 0x00, 0xFF)
cB = (0x00, 0x00, 0xFF, 0xFF)
cM = (0xFF, 0x00, 0xFF, 0xFF)
cC = (0x00, 0xFF, 0xFF, 0xFF)
cW = (0xFF, 0xFF, 0xFF, 0xFF)
cD = (0x00, 0x00, 0x00, 0x80)
cT = (0x00, 0x00, 0x00, 0x00)
def greypix(value):
value = max(min(value, 1), 0)
return (int(round(0xFF*value)),) * 3 + (0xFF,)
def yellowpix(value):
value = max(min(value, 1), 0)
return (int(round(0xFF*value)),) * 2 + (0, 0xFF)
def bluepix(value):
value = max(min(value, 1), 0)
return (0, 0, int(round(0xFF*value)), 0xFF)
def dark(value):
value = max(min(value, 1), 0)
return (0, 0, 0, int(round(0xFF*value)))
def blend(col1, col2):
r1,g1,b1,a1 = col1
r2,g2,b2,a2 = col2
r = int(round((r1*a1 + r2*(0xFF-a1)) / 255.0))
g = int(round((g1*a1 + g2*(0xFF-a1)) / 255.0))
b = int(round((b1*a1 + b2*(0xFF-a1)) / 255.0))
a = int(round((255*a1 + a2*(0xFF-a1)) / 255.0))
return r, g, b, a
def outpix(colour):
return colour
if colours == 2:
# True colour with no alpha blending: we still have to
# finalise half-dark pixels to black.
def finalisepix(colour):
if colour[3] > 0:
return colour[:3] + (0xFF,)
return colour
else:
def finalisepix(colour):
return colour
def halftone(col1, col2):
r1,g1,b1,a1 = col1
r2,g2,b2,a2 = col2
colret = (int(r1+r2)//2, int(g1+g2)//2, int(b1+b2)//2, int(a1+a2)//2)
return (colret, colret)
if test:
testrun(eval(realargs[0]), realargs[1])
else:
drawicon(eval(realargs[0]), int(realargs[1]), realargs[2], orangebackground)
|