1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
|
/*
* Parser for the boolean expression language used to configure what
* host names an OpenSSH certificate will be trusted to sign for.
*/
/*
Language specification
======================
Outer lexical layer: the input expression is broken up into tokens,
with any whitespace between them discarded and ignored. The following
tokens are special:
( ) && || !
and the remaining token type is an 'atom', which is any non-empty
sequence of characters from the following set:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
.-_*?[]/:
Inner lexical layer: once the boundaries of an 'atom' token have been
determined by the outer lex layer, each atom is further classified
into one of the following subtypes:
- If it contains no ':' or '/', it's taken to be a wildcard matching
hostnames, e.g. "*.example.com".
- If it begins with 'port:' followed by digits, it's taken to be a
single port number specification, e.g. "port:22".
- If it begins with 'port:' followed by two digit sequences separated
by '-', it's taken to be a port number range, e.g. "port:0-1023".
- Any other atom is reserved for future expansion. (See Rationale.)
Syntax layer: all of those types of atom are interpreted as predicates
applied to the (hostname, port) data configured for the SSH connection
for which the certificate is being validated.
Wildcards are handled using the syntax in wildcard.c. The dot-
separated structure of hostnames is thus not special; the '*' in
"*.example.com" will match any number of subdomains under example.com.
More complex boolean expressions can be made by combining those
predicates using the boolean operators and parentheses, in the obvious
way: && and || are infix operators representing logical AND and OR, !
is a prefix operator representing logical NOT, and parentheses
indicate grouping.
Each of && and || can associate freely with itself (that is, you can
write "a && b && c" without having to parenthesise one or the other
subexpression). But they are forbidden to associate with _each other_.
That is, if you write "a && b || c" or "a || b && c", it's a syntax
error, and you must add parentheses to indicate which operator was
intended to have the higher priority.
Rationale
=========
Atoms: restrictions
-------------------
The characters permitted in the 'atom' token don't include \, even
though it's a special character defined by wildcard.c. That's because
in this restricted context wildcards will never need it: no hostname
contains a literal \, and neither does any hostname contain a literal
instance of any of the wildcard characters that wildcard.c allows you
to use \ to escape.
Atoms: future extension
-----------------------
The specification of the 'atom' token is intended to leave space for
more than one kind of future extension.
Most obviously, additional special predicates similar to "port:", with
different disambiguating prefixes. I don't know what things of that
kind we might need, but space is left for them just in case.
Also, the unused '/' in the permitted-characters spec is intended to
leave open the possibility of allowing certificate acceptance to be
based on IP address, because the usual CIDR syntax for specifying IP
ranges (e.g. "192.168.1.0/24" or "2345:6789:abcd:ef01::/128") would be
lexed as a single atom under these rules.
For the moment, certificate acceptance rules based on IP address are
not supported, because it's not clear what the semantics ought to be.
There are two problems with using IP addresses for this purpose:
1. Sometimes they come from the DNS, which means you can't trust
them. The whole idea of SSH is to end-to-end authenticate the host
key against only the input given _by the user_ to the client. Any
additional data provided by the network, such as the result of a
DNS lookup, is suspect.
On the other hand, sometimes the IP address *is* part of the user
input, because the user can provide an IP address rather than a
hostname as the intended connection destination. So there are two
kinds of IP address, and they should very likely be treated
differently.
2. Sometimes the server's IP address is not even *known* by the
client, if you're connecting via a proxy and leaving DNS lookups
to the proxy.
So, what should a boolean expression do if it's asked to accept or
reject based on an IP address, and the IP address is unknown or
untrustworthy? I'm not sure, and therefore, in the initial version of
this expression system, I haven't implemented them at all.
But the syntax is still available for a future extension to use, if we
come up with good answers to these questions.
(One possibility would be to evaluate the whole expression in Kleene
three-valued logic, so that every subexpression has the possible
answers TRUE, FALSE and UNKNOWN. If a definite IP address is not
available, IP address predicates evaluate to UNKNOWN. Then, once the
expression as a whole is evaluated, fail closed, by interpreting
UNKNOWN as 'reject'. The effect would be that a positive _or_ negative
constraint on the IP address would cause rejection if the IP address
is not reliably known, because once the predicate itself has returned
UNKNOWN, negating it still gives UNKNOWN. The only way you could still
accept a certificate in that situation would be if the overall
structure of the expression meant that the test of the IP address
couldn't affect the result anyway, e.g. if it was ANDed with another
subexpression that definitely evaluated to FALSE, or ORed with one
that evaluated to TRUE. This system seems conceptually elegant to me,
but the argument against it is that it's complicated and
counterintuitive, which is not a property you want in something a user
is writing for security purposes!)
Operator precedence
-------------------
Why did I choose to make && and || refuse to associate with each
other, instead of applying the usual C precedence rule that && beats
||? Because I think the C precedence rule is essentially arbitrary, in
the sense that when people are writing boolean expressions in practice
based on predicates from the rest of their program, it's about equally
common to want to nest an && within an || and vice versa. So the
default precedence rule only gives the user what they actually wanted
about 50% of the time, and leads to absent-minded errors about as
often as it conveniently allows you to omit a pair of parens.
With my mathematician hat on, it's not so arbitrary. I agree that if
you're *going* to give || and && a relative priority then it makes
more sense to make && the higher-priority one, because if you're
thinking algebraically, && is more multiplicative and || is more
additive. But the pure-maths contexts in which that's convenient have
nothing to do with general boolean expressions in if statements.
This boolean syntax is still close enough to that of C and its
derivatives to allow easy enough expression interchange (not counting
the fact that atoms would need rewriting). Any boolean expression
structure accepted by this syntax is also legal C and means the same
thing; any expression structure accepted by C is either legal and
equivalent in this syntax, or will fail with an error. In no case is
anything accepted but mapped to a different meaning.
*/
#include "putty.h"
typedef enum Token {
TOK_LPAR, TOK_RPAR,
TOK_AND, TOK_OR, TOK_NOT,
TOK_ATOM,
TOK_END, TOK_ERROR
} Token;
static inline bool is_space(char c)
{
return (c == ' ' || c == '\n' || c == '\r' || c == '\t' ||
c == '\f' || c == '\v');
}
static inline bool is_operator_char(char c)
{
return (c == '(' || c == ')' || c == '&' || c == '|' || c == '!');
}
static inline bool is_atom_char(char c)
{
return (('A' <= c && c <= 'Z') ||
('a' <= c && c <= 'z') ||
('0' <= c && c <= '9') ||
c == '.' || c == '-' || c == '_' || c == '*' || c == '?' ||
c == '[' || c == ']' || c == '/' || c == ':');
}
static Token lex(ptrlen *text, ptrlen *token, char **err)
{
const char *p = text->ptr, *e = p + text->len;
Token type = TOK_ERROR;
/* Skip whitespace */
while (p < e && is_space(*p))
p++;
const char *start = p;
if (!(p < e)) {
type = TOK_END;
goto out;
}
if (is_operator_char(*p)) {
/* Match boolean-expression tokens */
static const struct operator {
ptrlen text;
Token type;
} operators[] = {
{PTRLEN_DECL_LITERAL("("), TOK_LPAR},
{PTRLEN_DECL_LITERAL(")"), TOK_RPAR},
{PTRLEN_DECL_LITERAL("&&"), TOK_AND},
{PTRLEN_DECL_LITERAL("||"), TOK_OR},
{PTRLEN_DECL_LITERAL("!"), TOK_NOT},
};
for (size_t i = 0; i < lenof(operators); i++) {
const struct operator *op = &operators[i];
if (e - p >= op->text.len &&
ptrlen_eq_ptrlen(op->text, make_ptrlen(p, op->text.len))) {
p += op->text.len;
type = op->type;
goto out;
}
}
/*
* Report an error if one of the operator characters is used
* in a way that doesn't match something in that table (e.g. a
* single &).
*/
p++;
type = TOK_ERROR;
*err = dupstr("unrecognised boolean operator");
goto out;
} else if (is_atom_char(*p)) {
/*
* Match an 'atom' token, which is any non-empty sequence of
* characters from the combined set that allows hostname
* wildcards, IP address ranges and special predicates like
* port numbers.
*/
do {
p++;
} while (p < e && is_atom_char(*p));
type = TOK_ATOM;
goto out;
} else {
/*
* Otherwise, report an error.
*/
p++;
type = TOK_ERROR;
*err = dupstr("unexpected character in expression");
goto out;
}
out:
*token = make_ptrlen(start, p - start);
text->ptr = p;
text->len = e - p;
return type;
}
typedef enum Operator {
OP_AND, OP_OR, OP_NOT,
OP_HOSTNAME_WC, OP_PORT_RANGE
} Operator;
typedef struct ExprNode ExprNode;
struct ExprNode {
Operator op;
ptrlen text;
union {
struct {
/* OP_AND, OP_OR */
ExprNode **subexprs;
size_t nsubexprs;
};
struct {
/* OP_NOT */
ExprNode *subexpr;
};
struct {
/* OP_HOSTNAME_WC */
char *wc;
};
struct {
/* OP_PORT_RANGE */
unsigned lo, hi; /* both inclusive */
};
};
};
static ExprNode *exprnode_new(Operator op, ptrlen text)
{
ExprNode *en = snew(ExprNode);
memset(en, 0, sizeof(*en));
en->op = op;
en->text = text;
return en;
}
static void exprnode_free(ExprNode *en)
{
switch (en->op) {
case OP_AND:
case OP_OR:
for (size_t i = 0; i < en->nsubexprs; i++)
exprnode_free(en->subexprs[i]);
sfree(en->subexprs);
break;
case OP_NOT:
exprnode_free(en->subexpr);
break;
case OP_HOSTNAME_WC:
sfree(en->wc);
break;
case OP_PORT_RANGE:
break;
default:
unreachable("unhandled node type in exprnode_free");
}
sfree(en);
}
static unsigned ptrlen_to_port_number(ptrlen input)
{
unsigned val = 0;
for (const char *p = input.ptr, *end = p + input.len; p < end; p++) {
assert('0' <= *p && *p <= '9'); /* expect parser to have checked */
val = 10 * val + (*p - '0');
if (val >= 65536)
val = 65536; /* normalise 'too large' to avoid integer overflow */
}
return val;
}
typedef struct ParserState ParserState;
struct ParserState {
ptrlen currtext;
Token tok;
ptrlen toktext;
char *err;
ptrlen errloc;
};
static void error(ParserState *ps, char *errtext, ptrlen errloc)
{
if (!ps->err) {
ps->err = errtext;
ps->errloc = errloc;
} else {
sfree(errtext);
}
}
static void advance(ParserState *ps)
{
char *err = NULL;
ps->tok = lex(&ps->currtext, &ps->toktext, &err);
if (ps->tok == TOK_ERROR)
error(ps, err, ps->toktext);
}
static ExprNode *parse_atom(ParserState *ps);
static ExprNode *parse_expr(ParserState *ps);
static bool atom_is_hostname_wc(ptrlen toktext)
{
return !ptrlen_contains(toktext, ":/");
}
static ExprNode *parse_atom(ParserState *ps)
{
if (ps->tok == TOK_LPAR) {
ptrlen openpar = ps->toktext;
advance(ps); /* eat the ( */
ExprNode *subexpr = parse_expr(ps);
if (!subexpr)
return NULL;
if (ps->tok != TOK_RPAR) {
error(ps, dupstr("expected ')' after parenthesised subexpression"),
subexpr->text);
exprnode_free(subexpr);
return NULL;
}
ptrlen closepar = ps->toktext;
advance(ps); /* eat the ) */
/* We can reuse the existing AST node, but we need to extend
* its bounds within the input expression to include the
* parentheses */
subexpr->text = make_ptrlen_startend(
openpar.ptr, ptrlen_end(closepar));
return subexpr;
}
if (ps->tok == TOK_NOT) {
ptrlen notloc = ps->toktext;
advance(ps); /* eat the ! */
ExprNode *subexpr = parse_atom(ps);
if (!subexpr)
return NULL;
ExprNode *en = exprnode_new(
OP_NOT, make_ptrlen_startend(
notloc.ptr, ptrlen_end(subexpr->text)));
en->subexpr = subexpr;
return en;
}
if (ps->tok == TOK_ATOM) {
if (atom_is_hostname_wc(ps->toktext)) {
/* Hostname wildcard. */
ExprNode *en = exprnode_new(OP_HOSTNAME_WC, ps->toktext);
en->wc = mkstr(ps->toktext);
advance(ps);
return en;
}
ptrlen tail;
if (ptrlen_startswith(ps->toktext, PTRLEN_LITERAL("port:"), &tail)) {
/* Port number (single or range). */
unsigned lo, hi;
char *minus;
static const char DIGITS[] = "0123456789\0";
bool parse_ok = false;
if (tail.len > 0 && ptrlen_contains_only(tail, DIGITS)) {
lo = ptrlen_to_port_number(tail);
if (lo >= 65536) {
error(ps, dupstr("port number too large"), tail);
return NULL;
}
hi = lo;
parse_ok = true;
} else if ((minus = memchr(tail.ptr, '-', tail.len)) != NULL) {
ptrlen pl_lo = make_ptrlen_startend(tail.ptr, minus);
ptrlen pl_hi = make_ptrlen_startend(minus+1, ptrlen_end(tail));
if (pl_lo.len > 0 && ptrlen_contains_only(pl_lo, DIGITS) &&
pl_hi.len > 0 && ptrlen_contains_only(pl_hi, DIGITS)) {
lo = ptrlen_to_port_number(pl_lo);
if (lo >= 65536) {
error(ps, dupstr("port number too large"), pl_lo);
return NULL;
}
hi = ptrlen_to_port_number(pl_hi);
if (hi >= 65536) {
error(ps, dupstr("port number too large"), pl_hi);
return NULL;
}
if (hi < lo) {
error(ps, dupstr("port number range is backwards"),
make_ptrlen_startend(pl_lo.ptr,
ptrlen_end(pl_hi)));
return NULL;
}
parse_ok = true;
}
}
if (!parse_ok) {
error(ps, dupstr("unable to parse port number specification"),
ps->toktext);
return NULL;
}
ExprNode *en = exprnode_new(OP_PORT_RANGE, ps->toktext);
en->lo = lo;
en->hi = hi;
advance(ps);
return en;
}
}
error(ps, dupstr("expected a predicate or a parenthesised subexpression"),
ps->toktext);
return NULL;
}
static ExprNode *parse_expr(ParserState *ps)
{
ExprNode *subexpr = parse_atom(ps);
if (!subexpr)
return NULL;
if (ps->tok != TOK_AND && ps->tok != TOK_OR)
return subexpr;
Token operator = ps->tok;
ExprNode *en = exprnode_new(ps->tok == TOK_AND ? OP_AND : OP_OR,
subexpr->text);
size_t subexprs_size = 0;
sgrowarray(en->subexprs, subexprs_size, en->nsubexprs);
en->subexprs[en->nsubexprs++] = subexpr;
while (true) {
advance(ps); /* eat the operator */
subexpr = parse_atom(ps);
if (!subexpr) {
exprnode_free(en);
return NULL;
}
sgrowarray(en->subexprs, subexprs_size, en->nsubexprs);
en->subexprs[en->nsubexprs++] = subexpr;
en->text = make_ptrlen_startend(
en->text.ptr, ptrlen_end(subexpr->text));
if (ps->tok != TOK_AND && ps->tok != TOK_OR)
return en;
if (ps->tok != operator) {
error(ps, dupstr("expected parentheses to disambiguate && and || "
"on either side of expression"), subexpr->text);
exprnode_free(en);
return NULL;
}
}
}
static ExprNode *parse(ptrlen expr, char **error_msg, ptrlen *error_loc)
{
ParserState ps[1];
ps->currtext = expr;
ps->err = NULL;
advance(ps);
ExprNode *en = parse_expr(ps);
if (en && ps->tok != TOK_END) {
error(ps, dupstr("unexpected text at end of expression"),
make_ptrlen_startend(ps->toktext.ptr, ptrlen_end(expr)));
exprnode_free(en);
en = NULL;
}
if (!en) {
if (error_msg)
*error_msg = ps->err;
else
sfree(ps->err);
if (error_loc)
*error_loc = ps->errloc;
return NULL;
}
return en;
}
static bool eval(ExprNode *en, const char *hostname, unsigned port)
{
switch (en->op) {
case OP_AND:
for (size_t i = 0; i < en->nsubexprs; i++)
if (!eval(en->subexprs[i], hostname, port))
return false;
return true;
case OP_OR:
for (size_t i = 0; i < en->nsubexprs; i++)
if (eval(en->subexprs[i], hostname, port))
return true;
return false;
case OP_NOT:
return !eval(en->subexpr, hostname, port);
case OP_HOSTNAME_WC:
return wc_match(en->wc, hostname);
case OP_PORT_RANGE:
return en->lo <= port && port <= en->hi;
default:
unreachable("unhandled node type in eval");
}
}
bool cert_expr_match_str(const char *expression,
const char *hostname, unsigned port)
{
ExprNode *en = parse(ptrlen_from_asciz(expression), NULL, NULL);
if (!en)
return false;
bool matched = eval(en, hostname, port);
exprnode_free(en);
return matched;
}
bool cert_expr_valid(const char *expression,
char **error_msg, ptrlen *error_loc)
{
ExprNode *en = parse(ptrlen_from_asciz(expression), error_msg, error_loc);
if (en) {
exprnode_free(en);
return true;
} else {
return false;
}
}
struct CertExprBuilder {
char **wcs;
size_t nwcs, wcsize;
};
CertExprBuilder *cert_expr_builder_new(void)
{
CertExprBuilder *eb = snew(CertExprBuilder);
eb->wcs = NULL;
eb->nwcs = eb->wcsize = 0;
return eb;
}
void cert_expr_builder_free(CertExprBuilder *eb)
{
for (size_t i = 0; i < eb->nwcs; i++)
sfree(eb->wcs[i]);
sfree(eb->wcs);
sfree(eb);
}
void cert_expr_builder_add(CertExprBuilder *eb, const char *wildcard)
{
/* Check this wildcard is lexically valid as an atom */
ptrlen orig = ptrlen_from_asciz(wildcard), pl = orig;
ptrlen toktext;
char *err;
Token tok = lex(&pl, &toktext, &err);
if (!(tok == TOK_ATOM &&
toktext.ptr == orig.ptr &&
toktext.len == orig.len &&
atom_is_hostname_wc(toktext))) {
if (tok == TOK_ERROR)
sfree(err);
return;
}
sgrowarray(eb->wcs, eb->wcsize, eb->nwcs);
eb->wcs[eb->nwcs++] = mkstr(orig);
}
char *cert_expr_expression(CertExprBuilder *eb)
{
strbuf *sb = strbuf_new();
for (size_t i = 0; i < eb->nwcs; i++) {
if (i)
put_dataz(sb, " || ");
put_dataz(sb, eb->wcs[i]);
}
return strbuf_to_str(sb);
}
#ifdef TEST
void out_of_memory(void) { fprintf(stderr, "out of memory\n"); abort(); }
static void exprnode_dump(BinarySink *bs, ExprNode *en, const char *origtext)
{
put_fmt(bs, "(%zu:%zu ",
(size_t)((const char *)en->text.ptr - origtext),
(size_t)((const char *)ptrlen_end(en->text) - origtext));
switch (en->op) {
case OP_AND:
case OP_OR:
put_dataz(bs, en->op == OP_AND ? "and" : "or");
for (size_t i = 0; i < en->nsubexprs; i++) {
put_byte(bs, ' ');
exprnode_dump(bs, en->subexprs[i], origtext);
}
break;
case OP_NOT:
put_dataz(bs, "not ");
exprnode_dump(bs, en->subexpr, origtext);
break;
case OP_HOSTNAME_WC:
put_dataz(bs, "host-wc '");
put_dataz(bs, en->wc);
put_byte(bs, '\'');
break;
case OP_PORT_RANGE:
put_fmt(bs, "port-range %u %u", en->lo, en->hi);
break;
default:
unreachable("unhandled node type in exprnode_dump");
}
put_byte(bs, ')');
}
static const struct ParseTest {
const char *file;
int line;
const char *expr, *output;
} parsetests[] = {
#define T(expr_, output_) { \
.file=__FILE__, .line=__LINE__, .expr=expr_, .output=output_}
T("*.example.com", "(0:13 host-wc '*.example.com')"),
T("port:0", "(0:6 port-range 0 0)"),
T("port:22", "(0:7 port-range 22 22)"),
T("port:22-22", "(0:10 port-range 22 22)"),
T("port:65535", "(0:10 port-range 65535 65535)"),
T("port:0-1023", "(0:11 port-range 0 1023)"),
T("&", "ERR:0:1:unrecognised boolean operator"),
T("|", "ERR:0:1:unrecognised boolean operator"),
T(";", "ERR:0:1:unexpected character in expression"),
T("port:", "ERR:0:5:unable to parse port number specification"),
T("port:abc", "ERR:0:8:unable to parse port number specification"),
T("port:65536", "ERR:5:10:port number too large"),
T("port:65536-65537", "ERR:5:10:port number too large"),
T("port:0-65536", "ERR:7:12:port number too large"),
T("port:23-22", "ERR:5:10:port number range is backwards"),
T("a", "(0:1 host-wc 'a')"),
T("(a)", "(0:3 host-wc 'a')"),
T("((a))", "(0:5 host-wc 'a')"),
T(" (\n(\ra\t)\f)\v", "(1:10 host-wc 'a')"),
T("a&&b", "(0:4 and (0:1 host-wc 'a') (3:4 host-wc 'b'))"),
T("a||b", "(0:4 or (0:1 host-wc 'a') (3:4 host-wc 'b'))"),
T("a&&b&&c", "(0:7 and (0:1 host-wc 'a') (3:4 host-wc 'b') (6:7 host-wc 'c'))"),
T("a||b||c", "(0:7 or (0:1 host-wc 'a') (3:4 host-wc 'b') (6:7 host-wc 'c'))"),
T("a&&(b||c)", "(0:9 and (0:1 host-wc 'a') (3:9 or (4:5 host-wc 'b') (7:8 host-wc 'c')))"),
T("a||(b&&c)", "(0:9 or (0:1 host-wc 'a') (3:9 and (4:5 host-wc 'b') (7:8 host-wc 'c')))"),
T("(a&&b)||c", "(0:9 or (0:6 and (1:2 host-wc 'a') (4:5 host-wc 'b')) (8:9 host-wc 'c'))"),
T("(a||b)&&c", "(0:9 and (0:6 or (1:2 host-wc 'a') (4:5 host-wc 'b')) (8:9 host-wc 'c'))"),
T("!a&&b", "(0:5 and (0:2 not (1:2 host-wc 'a')) (4:5 host-wc 'b'))"),
T("a&&!b&&c", "(0:8 and (0:1 host-wc 'a') (3:5 not (4:5 host-wc 'b')) (7:8 host-wc 'c'))"),
T("!a||b", "(0:5 or (0:2 not (1:2 host-wc 'a')) (4:5 host-wc 'b'))"),
T("a||!b||c", "(0:8 or (0:1 host-wc 'a') (3:5 not (4:5 host-wc 'b')) (7:8 host-wc 'c'))"),
T("", "ERR:0:0:expected a predicate or a parenthesised subexpression"),
T("a &&", "ERR:4:4:expected a predicate or a parenthesised subexpression"),
T("a ||", "ERR:4:4:expected a predicate or a parenthesised subexpression"),
T("a b c d", "ERR:2:7:unexpected text at end of expression"),
T("(", "ERR:1:1:expected a predicate or a parenthesised subexpression"),
T("(a", "ERR:1:2:expected ')' after parenthesised subexpression"),
T("(a b", "ERR:1:2:expected ')' after parenthesised subexpression"),
T("a&&b&&c||d||e", "ERR:6:7:expected parentheses to disambiguate && and || on either side of expression"),
T("a||b||c&&d&&e", "ERR:6:7:expected parentheses to disambiguate && and || on either side of expression"),
T("!", "ERR:1:1:expected a predicate or a parenthesised subexpression"),
T("!a", "(0:2 not (1:2 host-wc 'a'))"),
#undef T
};
static const struct EvalTest {
const char *file;
int line;
const char *expr;
const char *host;
unsigned port;
bool output;
} evaltests[] = {
#define T(expr_, host_, port_, output_) { \
.file=__FILE__, .line=__LINE__, \
.expr=expr_, .host=host_, .port=port_, .output=output_}
T("*.example.com", "hostname.example.com", 22, true),
T("*.example.com", "hostname.example.org", 22, false),
T("*.example.com", "hostname.dept.example.com", 22, true),
T("*.example.com && port:22", "hostname.example.com", 21, false),
T("*.example.com && port:22", "hostname.example.com", 22, true),
T("*.example.com && port:22", "hostname.example.com", 23, false),
T("*.example.com && port:22-24", "hostname.example.com", 21, false),
T("*.example.com && port:22-24", "hostname.example.com", 22, true),
T("*.example.com && port:22-24", "hostname.example.com", 23, true),
T("*.example.com && port:22-24", "hostname.example.com", 24, true),
T("*.example.com && port:22-24", "hostname.example.com", 25, false),
T("*a* && *b* && *c*", "", 22, false),
T("*a* && *b* && *c*", "a", 22, false),
T("*a* && *b* && *c*", "b", 22, false),
T("*a* && *b* && *c*", "c", 22, false),
T("*a* && *b* && *c*", "ab", 22, false),
T("*a* && *b* && *c*", "ac", 22, false),
T("*a* && *b* && *c*", "bc", 22, false),
T("*a* && *b* && *c*", "abc", 22, true),
T("*a* || *b* || *c*", "", 22, false),
T("*a* || *b* || *c*", "a", 22, true),
T("*a* || *b* || *c*", "b", 22, true),
T("*a* || *b* || *c*", "c", 22, true),
T("*a* || *b* || *c*", "ab", 22, true),
T("*a* || *b* || *c*", "ac", 22, true),
T("*a* || *b* || *c*", "bc", 22, true),
T("*a* || *b* || *c*", "abc", 22, true),
T("*a* && !*b* && *c*", "", 22, false),
T("*a* && !*b* && *c*", "a", 22, false),
T("*a* && !*b* && *c*", "b", 22, false),
T("*a* && !*b* && *c*", "c", 22, false),
T("*a* && !*b* && *c*", "ab", 22, false),
T("*a* && !*b* && *c*", "ac", 22, true),
T("*a* && !*b* && *c*", "bc", 22, false),
T("*a* && !*b* && *c*", "abc", 22, false),
T("*a* || !*b* || *c*", "", 22, true),
T("*a* || !*b* || *c*", "a", 22, true),
T("*a* || !*b* || *c*", "b", 22, false),
T("*a* || !*b* || *c*", "c", 22, true),
T("*a* || !*b* || *c*", "ab", 22, true),
T("*a* || !*b* || *c*", "ac", 22, true),
T("*a* || !*b* || *c*", "bc", 22, true),
T("*a* || !*b* || *c*", "abc", 22, true),
#undef T
};
int main(int argc, char **argv)
{
if (argc > 1) {
/*
* Parse an expression from the command line.
*/
ptrlen expr = ptrlen_from_asciz(argv[1]);
char *error_msg;
ptrlen error_loc;
ExprNode *en = parse(expr, &error_msg, &error_loc);
if (!en) {
fprintf(stderr, "ERR:%zu:%zu:%s\n",
(size_t)((const char *)error_loc.ptr - argv[1]),
(size_t)((const char *)ptrlen_end(error_loc) - argv[1]),
error_msg);
fprintf(stderr, "%.*s\n", PTRLEN_PRINTF(expr));
for (const char *p = expr.ptr, *e = error_loc.ptr; p<e; p++)
fputc(' ', stderr);
for (size_t i = 0; i < error_loc.len || i < 1; i++)
fputc('^', stderr);
fputc('\n', stderr);
sfree(error_msg);
return 1;
}
if (argc > 2) {
/*
* Test-evaluate against a host/port pair given on the
* command line.
*/
const char *host = argv[2];
unsigned port = (argc > 3 ? strtoul(argv[3], NULL, 0) : 22);
bool result = eval(en, host, port);
printf("%s\n", result ? "accept" : "reject");
} else {
/*
* Just dump the result of parsing the expression.
*/
stdio_sink ss[1];
stdio_sink_init(ss, stdout);
exprnode_dump(BinarySink_UPCAST(ss), en, expr.ptr);
put_byte(ss, '\n');
}
exprnode_free(en);
return 0;
} else {
/*
* Run our automated tests.
*/
size_t pass = 0, fail = 0;
for (size_t i = 0; i < lenof(parsetests); i++) {
const struct ParseTest *test = &parsetests[i];
ptrlen expr = ptrlen_from_asciz(test->expr);
char *error_msg;
ptrlen error_loc;
ExprNode *en = parse(expr, &error_msg, &error_loc);
strbuf *output = strbuf_new();
if (!en) {
put_fmt(output, "ERR:%zu:%zu:%s",
(size_t)((const char *)error_loc.ptr - test->expr),
(size_t)((const char *)ptrlen_end(error_loc) -
test->expr),
error_msg);
sfree(error_msg);
} else {
exprnode_dump(BinarySink_UPCAST(output), en, expr.ptr);
exprnode_free(en);
}
if (ptrlen_eq_ptrlen(ptrlen_from_strbuf(output),
ptrlen_from_asciz(test->output))) {
pass++;
} else {
fprintf(stderr, "FAIL: parsetests[%zu] @ %s:%d:\n"
" expression: %s\n"
" expected: %s\n"
" actual: %s\n",
i, test->file, test->line, test->expr,
test->output, output->s);
fail++;
}
strbuf_free(output);
}
for (size_t i = 0; i < lenof(evaltests); i++) {
const struct EvalTest *test = &evaltests[i];
ptrlen expr = ptrlen_from_asciz(test->expr);
char *error_msg;
ptrlen error_loc;
ExprNode *en = parse(expr, &error_msg, &error_loc);
if (!en) {
fprintf(stderr, "FAIL: evaltests[%zu] @ %s:%d:\n"
" expression: %s\n"
" parse error: %zu:%zu:%s\n",
i, test->file, test->line, test->expr,
(size_t)((const char *)error_loc.ptr - test->expr),
(size_t)((const char *)ptrlen_end(error_loc) -
test->expr),
error_msg);
sfree(error_msg);
} else {
bool output = eval(en, test->host, test->port);
if (output == test->output) {
pass++;
} else {
fprintf(stderr, "FAIL: evaltests[%zu] @ %s:%d:\n"
" expression: %s\n"
" host: %s\n"
" port: %u\n"
" expected: %s\n"
" actual: %s\n",
i, test->file, test->line, test->expr,
test->host, test->port,
test->output ? "accept" : "reject",
output ? "accept" : "reject");
fail++;
}
exprnode_free(en);
}
}
fprintf(stderr, "pass %zu fail %zu total %zu\n",
pass, fail, pass+fail);
return fail != 0;
}
}
#endif // TEST
|