File: handle-socket.c

package info (click to toggle)
putty 0.83-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,216 kB
  • sloc: ansic: 148,476; python: 8,466; perl: 1,830; makefile: 128; sh: 117
file content (517 lines) | stat: -rw-r--r-- 14,895 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 * General mechanism for wrapping up reading/writing of Windows
 * HANDLEs into a PuTTY Socket abstraction.
 */

#include <stdio.h>
#include <assert.h>
#include <limits.h>

#include "tree234.h"
#include "putty.h"
#include "network.h"

/*
 * Freezing one of these sockets is a slightly fiddly business,
 * because the reads from the handle are happening in a separate
 * thread as blocking system calls and so once one is in progress it
 * can't sensibly be interrupted. Hence, after the user tries to
 * freeze one of these sockets, it's unavoidable that we may receive
 * one more load of data before we manage to get handle-io.c to stop
 * reading.
 */
typedef enum HandleSocketFreezeState {
    UNFROZEN,  /* reading as normal */
    FREEZING,  /* have been set to frozen but winhandl is still reading */
    FROZEN,    /* really frozen - winhandl has been throttled */
    THAWING    /* we're gradually releasing our remaining data */
} HandleSocketFreezeState;

typedef struct HandleSocket {
    union {
        struct {
            HANDLE send_H, recv_H, stderr_H;
            struct handle *send_h, *recv_h, *stderr_h;

            HandleSocketFreezeState frozen;
            /* We buffer data here if we receive it from winhandl
             * while frozen. */
            bufchain inputdata;

            /* Handle logging proxy error messages from stderr_H, if
             * we have one */
            ProxyStderrBuf psb;

            bool defer_close, deferred_close;   /* in case of re-entrance */
        };
        struct {
            DeferredSocketOpener *opener;

            /* We buffer data here if we receive it via sk_write
             * before the socket is opened. */
            bufchain outputdata;

            bool output_eof_pending;

            bool start_frozen;
        };
    };

    char *error;

    SockAddr *addr;
    int port;
    Plug *plug;

    Socket sock;
} HandleSocket;

static size_t handle_gotdata(
    struct handle *h, const void *data, size_t len, int err)
{
    HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);

    if (err) {
        plug_closing_error(hs->plug, "Read error from handle");
        return 0;
    } else if (len == 0) {
        plug_closing_normal(hs->plug);
        return 0;
    } else {
        assert(hs->frozen != FROZEN && hs->frozen != THAWING);
        if (hs->frozen == FREEZING) {
            /*
             * If we've received data while this socket is supposed to
             * be frozen (because the read handle-io.c started before
             * sk_set_frozen was called has now returned) then buffer
             * the data for when we unfreeze.
             */
            bufchain_add(&hs->inputdata, data, len);
            hs->frozen = FROZEN;

            /*
             * And return a very large backlog, to prevent further
             * data arriving from winhandl until we unfreeze.
             */
            return INT_MAX;
        } else {
            plug_receive(hs->plug, 0, data, len);
            return 0;
        }
    }
}

static size_t handle_stderr(
    struct handle *h, const void *data, size_t len, int err)
{
    HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);

    if (!err && len > 0)
        log_proxy_stderr(hs->plug, &hs->sock, &hs->psb, data, len);

    return 0;
}

static void handle_sentdata(struct handle *h, size_t new_backlog, int err,
                            bool close)
{
    HandleSocket *hs = (HandleSocket *)handle_get_privdata(h);

    if (close) {
        if (hs->send_H != INVALID_HANDLE_VALUE)
            CloseHandle(hs->send_H);
        if (hs->recv_H != INVALID_HANDLE_VALUE && hs->recv_H != hs->send_H)
            CloseHandle(hs->recv_H);
        hs->send_H = hs->recv_H = INVALID_HANDLE_VALUE;
    }

    if (err) {
        plug_closing_system_error(hs->plug, err);
        return;
    }

    plug_sent(hs->plug, new_backlog);
}

static Plug *sk_handle_plug(Socket *s, Plug *p)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    Plug *ret = hs->plug;
    if (p)
        hs->plug = p;
    return ret;
}

static void sk_handle_close(Socket *s)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);

    if (hs->defer_close) {
        hs->deferred_close = true;
        return;
    }

    handle_free(hs->send_h);
    handle_free(hs->recv_h);
    if (hs->send_H != INVALID_HANDLE_VALUE)
        CloseHandle(hs->send_H);
    if (hs->recv_H != INVALID_HANDLE_VALUE && hs->recv_H != hs->send_H)
        CloseHandle(hs->recv_H);
    bufchain_clear(&hs->inputdata);

    if (hs->addr)
        sk_addr_free(hs->addr);

    delete_callbacks_for_context(hs);

    sfree(hs);
}

static size_t sk_handle_write(Socket *s, const void *data, size_t len)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);

    return handle_write(hs->send_h, data, len);
}

static size_t sk_handle_write_oob(Socket *s, const void *data, size_t len)
{
    /*
     * oob data is treated as inband; nasty, but nothing really
     * better we can do
     */
    return sk_handle_write(s, data, len);
}

static void sk_handle_write_eof(Socket *s)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);

    handle_write_eof(hs->send_h);
}

static void handle_socket_unfreeze(void *hsv)
{
    HandleSocket *hs = (HandleSocket *)hsv;

    /*
     * If we've been put into a state other than THAWING since the
     * last callback, then we're done.
     */
    if (hs->frozen != THAWING)
        return;

    /*
     * Get some of the data we've buffered.
     */
    ptrlen data = bufchain_prefix(&hs->inputdata);
    assert(data.len > 0);

    /*
     * Hand it off to the plug. Be careful of re-entrance - that might
     * have the effect of trying to close this socket.
     */
    hs->defer_close = true;
    plug_receive(hs->plug, 0, data.ptr, data.len);
    bufchain_consume(&hs->inputdata, data.len);
    hs->defer_close = false;
    if (hs->deferred_close) {
        sk_handle_close(&hs->sock);
        return;
    }

    if (bufchain_size(&hs->inputdata) > 0) {
        /*
         * If there's still data in our buffer, stay in THAWING state,
         * and reschedule ourself.
         */
        queue_toplevel_callback(handle_socket_unfreeze, hs);
    } else {
        /*
         * Otherwise, we've successfully thawed!
         */
        hs->frozen = UNFROZEN;
        handle_unthrottle(hs->recv_h, 0);
    }
}

static void sk_handle_set_frozen(Socket *s, bool is_frozen)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);

    if (is_frozen) {
        switch (hs->frozen) {
          case FREEZING:
          case FROZEN:
            return;                    /* nothing to do */

          case THAWING:
            /*
             * We were in the middle of emptying our bufchain, and got
             * frozen again. In that case, handle-io.c is already
             * throttled, so just return to FROZEN state. The toplevel
             * callback will notice and disable itself.
             */
            hs->frozen = FROZEN;
            break;

          case UNFROZEN:
            /*
             * The normal case. Go to FREEZING, and expect one more
             * load of data from winhandl if we're unlucky.
             */
            hs->frozen = FREEZING;
            break;
        }
    } else {
        switch (hs->frozen) {
          case UNFROZEN:
          case THAWING:
            return;                    /* nothing to do */

          case FREEZING:
            /*
             * If winhandl didn't send us any data throughout the time
             * we were frozen, then we'll still be in this state and
             * can just unfreeze in the trivial way.
             */
            assert(bufchain_size(&hs->inputdata) == 0);
            hs->frozen = UNFROZEN;
            break;

          case FROZEN:
            /*
             * If we have buffered data, go to THAWING and start
             * releasing it in top-level callbacks.
             */
            hs->frozen = THAWING;
            queue_toplevel_callback(handle_socket_unfreeze, hs);
        }
    }
}

static const char *sk_handle_socket_error(Socket *s)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    return hs->error;
}

static SocketEndpointInfo *sk_handle_endpoint_info(Socket *s, bool peer)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    ULONG pid;
    static HMODULE kernel32_module;
    DECL_WINDOWS_FUNCTION(static, BOOL, GetNamedPipeClientProcessId,
                          (HANDLE, PULONG));

    if (!peer)
        return NULL;

    if (!kernel32_module) {
        kernel32_module = load_system32_dll("kernel32.dll");
#if !HAVE_GETNAMEDPIPECLIENTPROCESSID
        /* For older Visual Studio, and MinGW too (at least as of
         * Ubuntu 16.04), this function isn't available in the header
         * files to type-check. Ditto the toolchain I use for
         * Coveritying the Windows code. */
        GET_WINDOWS_FUNCTION_NO_TYPECHECK(
            kernel32_module, GetNamedPipeClientProcessId);
#else
        GET_WINDOWS_FUNCTION(
            kernel32_module, GetNamedPipeClientProcessId);
#endif
    }

    /*
     * Of course, not all handles managed by this module will be
     * server ends of named pipes, but if they are, then it's useful
     * to log what we can find out about the client end.
     */
    if (p_GetNamedPipeClientProcessId &&
        p_GetNamedPipeClientProcessId(hs->send_H, &pid)) {
        SocketEndpointInfo *pi = snew(SocketEndpointInfo);
        pi->addressfamily = ADDRTYPE_LOCAL;
        pi->addr_text = NULL;
        pi->port = -1;
        pi->log_text = dupprintf("process id %lu", (unsigned long)pid);
        return pi;
    }

    return NULL;
}

static const SocketVtable HandleSocket_sockvt = {
    .plug = sk_handle_plug,
    .close = sk_handle_close,
    .write = sk_handle_write,
    .write_oob = sk_handle_write_oob,
    .write_eof = sk_handle_write_eof,
    .set_frozen = sk_handle_set_frozen,
    .socket_error = sk_handle_socket_error,
    .endpoint_info = sk_handle_endpoint_info,
};

static void sk_handle_connect_success_callback(void *ctx)
{
    HandleSocket *hs = (HandleSocket *)ctx;
    plug_log(hs->plug, &hs->sock, PLUGLOG_CONNECT_SUCCESS, hs->addr, hs->port,
             NULL, 0);
}

Socket *make_handle_socket(HANDLE send_H, HANDLE recv_H, HANDLE stderr_H,
                           SockAddr *addr, int port, Plug *plug,
                           bool overlapped)
{
    HandleSocket *hs;
    int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);

    hs = snew(HandleSocket);
    hs->sock.vt = &HandleSocket_sockvt;
    hs->addr = addr;
    hs->port = port;
    hs->plug = plug;
    hs->error = NULL;

    hs->frozen = UNFROZEN;
    bufchain_init(&hs->inputdata);
    psb_init(&hs->psb);

    hs->recv_H = recv_H;
    hs->recv_h = handle_input_new(hs->recv_H, handle_gotdata, hs, flags);
    hs->send_H = send_H;
    hs->send_h = handle_output_new(hs->send_H, handle_sentdata, hs, flags);
    hs->stderr_H = stderr_H;
    if (hs->stderr_H)
        hs->stderr_h = handle_input_new(hs->stderr_H, handle_stderr,
                                        hs, flags);

    hs->defer_close = hs->deferred_close = false;

    queue_toplevel_callback(sk_handle_connect_success_callback, hs);

    return &hs->sock;
}

void handle_socket_set_psb_prefix(Socket *s, const char *prefix)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    assert(hs->sock.vt == &HandleSocket_sockvt);
    psb_set_prefix(&hs->psb, prefix);
}

static void sk_handle_deferred_close(Socket *s)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);

    deferred_socket_opener_free(hs->opener);
    bufchain_clear(&hs->outputdata);

    if (hs->addr)
        sk_addr_free(hs->addr);

    delete_callbacks_for_context(hs);

    sfree(hs);
}

static size_t sk_handle_deferred_write(Socket *s, const void *data, size_t len)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    assert(!hs->output_eof_pending);
    bufchain_add(&hs->outputdata, data, len);
    return bufchain_size(&hs->outputdata);
}

static void sk_handle_deferred_write_eof(Socket *s)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    assert(!hs->output_eof_pending);
    hs->output_eof_pending = true;
}

static void sk_handle_deferred_set_frozen(Socket *s, bool is_frozen)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    hs->frozen = is_frozen;
}

static SocketEndpointInfo *sk_handle_deferred_endpoint_info(
    Socket *s, bool peer)
{
    return NULL;
}

static const SocketVtable HandleSocket_deferred_sockvt = {
    .plug = sk_handle_plug,
    .close = sk_handle_deferred_close,
    .write = sk_handle_deferred_write,
    .write_oob = sk_handle_deferred_write,
    .write_eof = sk_handle_deferred_write_eof,
    .set_frozen = sk_handle_deferred_set_frozen,
    .socket_error = sk_handle_socket_error,
    .endpoint_info = sk_handle_deferred_endpoint_info,
};

Socket *make_deferred_handle_socket(DeferredSocketOpener *opener,
                                    SockAddr *addr, int port, Plug *plug)
{
    HandleSocket *hs = snew(HandleSocket);
    hs->sock.vt = &HandleSocket_deferred_sockvt;
    hs->addr = addr;
    hs->port = port;
    hs->plug = plug;
    hs->error = NULL;

    hs->opener = opener;
    bufchain_init(&hs->outputdata);
    hs->output_eof_pending = false;
    hs->start_frozen = false;

    return &hs->sock;
}

void setup_handle_socket(Socket *s, HANDLE send_H, HANDLE recv_H,
                         HANDLE stderr_H, bool overlapped)
{
    HandleSocket *hs = container_of(s, HandleSocket, sock);
    assert(hs->sock.vt == &HandleSocket_deferred_sockvt);

    int flags = (overlapped ? HANDLE_FLAG_OVERLAPPED : 0);

    struct handle *recv_h = handle_input_new(
        recv_H, handle_gotdata, hs, flags);
    struct handle *send_h = handle_output_new(
        send_H, handle_sentdata, hs, flags);
    struct handle *stderr_h = !stderr_H ? NULL : handle_input_new(
        stderr_H, handle_stderr, hs, flags);

    while (bufchain_size(&hs->outputdata)) {
        ptrlen data = bufchain_prefix(&hs->outputdata);
        handle_write(send_h, data.ptr, data.len);
        bufchain_consume(&hs->outputdata, data.len);
    }

    if (hs->output_eof_pending)
        handle_write_eof(send_h);

    bool start_frozen = hs->start_frozen;

    deferred_socket_opener_free(hs->opener);
    bufchain_clear(&hs->outputdata);

    hs->sock.vt = &HandleSocket_sockvt;
    hs->frozen = start_frozen ? FREEZING : UNFROZEN;
    bufchain_init(&hs->inputdata);
    psb_init(&hs->psb);

    hs->recv_H = recv_H;
    hs->recv_h = recv_h;
    hs->send_H = send_H;
    hs->send_h = send_h;
    hs->stderr_H = stderr_H;
    hs->stderr_h = stderr_h;

    hs->defer_close = hs->deferred_close = false;

    queue_toplevel_callback(sk_handle_connect_success_callback, hs);
}