1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
|
"""
Resolve symbols in loaded, dynamically-linked ELF binaries.
Given a function which can leak data at an arbitrary address,
any symbol in any loaded library can be resolved.
Example
^^^^^^^^
::
# Assume a process or remote connection
p = process('./pwnme')
# Declare a function that takes a single address, and
# leaks at least one byte at that address.
def leak(address):
data = p.read(address, 4)
log.debug("%#x => %s", address, enhex(data or ''))
return data
# For the sake of this example, let's say that we
# have any of these pointers. One is a pointer into
# the target binary, the other two are pointers into libc
main = 0xfeedf4ce
libc = 0xdeadb000
system = 0xdeadbeef
# With our leaker, and a pointer into our target binary,
# we can resolve the address of anything.
#
# We do not actually need to have a copy of the target
# binary for this to work.
d = DynELF(leak, main)
assert d.lookup(None, 'libc') == libc
assert d.lookup('system', 'libc') == system
# However, if we *do* have a copy of the target binary,
# we can speed up some of the steps.
d = DynELF(leak, main, elf=ELF('./pwnme'))
assert d.lookup(None, 'libc') == libc
assert d.lookup('system', 'libc') == system
# Alternately, we can resolve symbols inside another library,
# given a pointer into it.
d = DynELF(leak, libc + 0x1234)
assert d.lookup('system') == system
DynELF
"""
from __future__ import absolute_import
from __future__ import division
import ctypes
from elftools.elf.enums import ENUM_D_TAG
from pwnlib import elf
from pwnlib import libcdb
from pwnlib.context import context
from pwnlib.elf import ELF
from pwnlib.elf import constants
from pwnlib.log import getLogger
from pwnlib.memleak import MemLeak
from pwnlib.util.fiddling import enhex
from pwnlib.util.packing import _need_bytes
log = getLogger(__name__)
sizeof = ctypes.sizeof
def sysv_hash(symbol):
"""sysv_hash(str) -> int
Function used to generate SYSV-style hashes for strings.
"""
h = 0
g = 0
for c in bytearray(_need_bytes(symbol, 4, 0x80)):
h = (h << 4) + c
g = h & 0xf0000000
h ^= (g >> 24)
h &= ~g
return h & 0xffffffff
def gnu_hash(s):
"""gnu_hash(str) -> int
Function used to generated GNU-style hashes for strings.
"""
s = bytearray(_need_bytes(s, 4, 0x80))
h = 5381
for c in s:
h = h * 33 + c
return h & 0xffffffff
class DynELF(object):
'''
DynELF knows how to resolve symbols in remote processes via an infoleak or
memleak vulnerability encapsulated by :class:`pwnlib.memleak.MemLeak`.
Implementation Details:
Resolving Functions:
In all ELFs which export symbols for importing by other libraries,
(e.g. ``libc.so``) there are a series of tables which give exported
symbol names, exported symbol addresses, and the ``hash`` of those
exported symbols. By applying a hash function to the name of the
desired symbol (e.g., ``'printf'``), it can be located in the hash
table. Its location in the hash table provides an index into the
string name table (strtab_), and the symbol address (symtab_).
Assuming we have the base address of ``libc.so``, the way to resolve
the address of ``printf`` is to locate the ``symtab``, ``strtab``,
and hash table. The string ``"printf"`` is hashed according to the
style of the hash table (SYSV_ or GNU_), and the hash table is
walked until a matching entry is located. We can verify an exact
match by checking the string table, and then get the offset into
``libc.so`` from the ``symtab``.
Resolving Library Addresses:
If we have a pointer into a dynamically-linked executable, we can
leverage an internal linker structure called the `link map`_. This
is a linked list structure which contains information about each
loaded library, including its full path and base address.
A pointer to the ``link map`` can be found in two ways. Both are
referenced from entries in the DYNAMIC_ array.
- In non-RELRO binaries, a pointer is placed in the `.got.plt`_ area
in the binary. This is marked by finding the DT_PLTGOT_ area in the
binary.
- In all binaries, a pointer can be found in the area described by
the DT_DEBUG_ area. This exists even in stripped binaries.
For maximum flexibility, both mechanisms are used exhaustively.
.. _symtab: https://refspecs.linuxbase.org/elf/gabi4+/ch4.symtab.html
.. _strtab: https://refspecs.linuxbase.org/elf/gabi4+/ch4.strtab.html
.. _.got.plt: https://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/specialsections.html
.. _DYNAMIC: http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#dynamic_section
.. _SYSV: https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html#hash
.. _GNU: https://blogs.oracle.com/solaris/post/gnu-hash-elf-sections
.. _DT_DEBUG: https://reverseengineering.stackexchange.com/questions/6525/elf-link-map-when-linked-as-relro
.. _link map: https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/link.h;h=eaca8028e45a859ac280301a6e955a14eed1b887;hb=HEAD#l84
.. _DT_PLTGOT: https://refspecs.linuxfoundation.org/ELF/zSeries/lzsabi0_zSeries/x2251.html
'''
def __init__(self, leak, pointer=None, elf=None, libcdb=True):
'''
Instantiates an object which can resolve symbols in a running binary
given a :class:`pwnlib.memleak.MemLeak` leaker and a pointer inside
the binary.
Arguments:
leak(MemLeak): Instance of pwnlib.memleak.MemLeak for leaking memory
pointer(int): A pointer into a loaded ELF file
elf(str,ELF): Path to the ELF file on disk, or a loaded :class:`pwnlib.elf.ELF`.
libcdb(bool): Attempt to use libcdb to speed up libc lookups
'''
self.libcdb = libcdb
self._elfclass = None
self._elftype = None
self._link_map = None
self._waitfor = None
self._bases = {}
self._dynamic = None
self.elf = None
if elf:
path = elf
if isinstance(elf, ELF):
path = elf.path
# Load a fresh copy of the ELF
with context.local(log_level='error'):
w = self.waitfor("Loading from %r" % path)
self.elf = ELF(path)
w.success("[LOADED]")
if not (pointer or (elf and elf.address)):
log.error("Must specify either a pointer into a module and/or an ELF file with a valid base address")
pointer = pointer or elf.address
if not isinstance(leak, MemLeak):
leak = MemLeak(leak)
if not elf:
log.warn_once("No ELF provided. Leaking is much faster if you have a copy of the ELF being leaked.")
self.leak = leak
self.libbase = self._find_base(pointer or elf.address)
if elf:
self._elftype = self.elf.elftype
self._elfclass = self.elf.elfclass
self.elf.address = self.libbase
self._dynamic = self.elf.get_section_by_name('.dynamic').header.sh_addr
self._dynamic = self._make_absolute_ptr(self._dynamic)
@classmethod
def for_one_lib_only(cls, leak, ptr):
return cls(leak, ptr)
@classmethod
def from_lib_ptr(cls, leak, ptr):
return cls(leak, ptr)
@staticmethod
def find_base(leak, ptr):
"""Given a :class:`pwnlib.memleak.MemLeak` object and a pointer into a
library, find its base address.
"""
return DynELF(leak, ptr).libbase
@property
def elfclass(self):
"""32 or 64"""
if not self._elfclass:
elfclass = self.leak.field(self.libbase, elf.Elf_eident.EI_CLASS)
self._elfclass = {constants.ELFCLASS32: 32,
constants.ELFCLASS64: 64}[elfclass]
return self._elfclass
@property
def elftype(self):
"""e_type from the elf header. In practice the value will almost always
be 'EXEC' or 'DYN'. If the value is architecture-specific (between
ET_LOPROC and ET_HIPROC) or invalid, KeyError is raised.
"""
if not self._elftype:
Ehdr = {32: elf.Elf32_Ehdr, 64: elf.Elf64_Ehdr}[self.elfclass]
elftype = self.leak.field(self.libbase, Ehdr.e_type)
self._elftype = {constants.ET_NONE: 'NONE',
constants.ET_REL: 'REL',
constants.ET_EXEC: 'EXEC',
constants.ET_DYN: 'DYN',
constants.ET_CORE: 'CORE'}[elftype]
return self._elftype
@property
def link_map(self):
"""Pointer to the runtime link_map object"""
if not self._link_map:
self._link_map = self._find_linkmap()
return self._link_map
@property
def dynamic(self):
"""
Returns:
Pointer to the ``.DYNAMIC`` area.
"""
if not self._dynamic:
self._dynamic = self._find_dynamic_phdr()
return self._dynamic
def _find_base(self, ptr):
page_size = 0x1000
page_mask = ~(page_size - 1)
ptr &= page_mask
w = None
while True:
if self.leak.compare(ptr, b'\x7fELF'):
break
# See if we can short circuit the search
fast = self._find_base_optimized(ptr)
if fast:
ptr = fast
continue
ptr -= page_size
if ptr < 0:
raise ValueError("Address is negative, something is wrong!")
# Defer creating the spinner in the event that 'ptr'
# is already the base address
w = w or self.waitfor("Finding base address")
self.status('%#x' % ptr)
# If we created a spinner, print the success message
if w:
self.success('%#x' % ptr)
return ptr
def _find_base_optimized(self, ptr):
if not self.elf:
return None
# If we have an ELF< we can probably speed this up a little bit?
# Note that we add +0x20 onto the offset in order to avoid needing
# to leak any bytes which contain '\r\n\t\b '
ptr += 0x20
data = self.leak.n(ptr, 32)
if not data:
return None
# Do not permit multiple matches
matches = list(self.elf.search(data))
if len(matches) != 1:
return None
candidate = matches[0]
candidate -= self.elf.address
# The match should have the same page-alignment as our leaked data.
if candidate & 0xfff != 0x20:
return None
# Adjust based on the original pointer we got, and the ELF's address.
ptr -= candidate
return ptr
def _find_dynamic_phdr(self):
"""
Returns the address of the first Program Header with the type
PT_DYNAMIC.
"""
leak = self.leak
base = self.libbase
#First find PT_DYNAMIC
Ehdr = {32: elf.Elf32_Ehdr, 64: elf.Elf64_Ehdr}[self.elfclass]
Phdr = {32: elf.Elf32_Phdr, 64: elf.Elf64_Phdr}[self.elfclass]
self.status("PT_DYNAMIC")
phead = base + leak.field(base, Ehdr.e_phoff)
self.status("PT_DYNAMIC header = %#x" % phead)
phnum = leak.field(base, Ehdr.e_phnum)
self.status("PT_DYNAMIC count = %#x" % phnum)
for i in range(phnum):
if leak.field_compare(phead, Phdr.p_type, constants.PT_DYNAMIC):
break
phead += sizeof(Phdr)
else:
self.failure("Could not find Program Header of type PT_DYNAMIC")
return None
dynamic = leak.field(phead, Phdr.p_vaddr)
self.status("PT_DYNAMIC @ %#x" % dynamic)
dynamic = self._make_absolute_ptr(dynamic)
return dynamic
def _find_dt_optimized(self, name):
"""
Find an entry in the DYNAMIC array through an ELF
Arguments:
name(str): Name of the tag to find ('DT_DEBUG', 'DT_PLTGOT', ...)
Returns:
Pointer to the data described by the specified entry.
"""
if not self.elf:
return None
ptr = self.elf.dynamic_value_by_tag(name)
if ptr:
ptr = self._make_absolute_ptr(ptr)
self.success("Found %s at %#x" % (name, ptr))
return ptr
return None
def _find_dt(self, tag):
"""
Find an entry in the DYNAMIC array.
Arguments:
tag(int): Single tag to find
Returns:
Pointer to the data described by the specified entry.
"""
base = self.libbase
dynamic = self.dynamic
leak = self.leak
name = next(k for k,v in ENUM_D_TAG.items() if v == tag)
# Read directly from the ELF if possible
ptr = self._find_dt_optimized(name)
if ptr:
return ptr
Dyn = {32: elf.Elf32_Dyn, 64: elf.Elf64_Dyn} [self.elfclass]
# Found the _DYNAMIC program header, now find PLTGOT entry in it
# An entry with a DT_NULL tag marks the end of the DYNAMIC array.
while not leak.field_compare(dynamic, Dyn.d_tag, constants.DT_NULL):
if leak.field_compare(dynamic, Dyn.d_tag, tag):
break
dynamic += sizeof(Dyn)
else:
self.failure("Could not find tag %s" % name)
return None
ptr = leak.field(dynamic, Dyn.d_ptr)
ptr = self._make_absolute_ptr(ptr)
self.status("Found %s at %#x" % (name, ptr))
return ptr
def _find_linkmap(self, pltgot=None, debug=None):
"""
The linkmap is a chained structure created by the loader at runtime
which contains information on the names and load addresses of all
libraries.
For non-RELRO binaries, a pointer to this is stored in the .got.plt
area.
For RELRO binaries, a pointer is additionally stored in the DT_DEBUG
area.
"""
w = self.waitfor("Finding linkmap")
Got = {32: elf.Elf_i386_GOT, 64: elf.Elf_x86_64_GOT}[self.elfclass]
r_debug = {32: elf.Elf32_r_debug, 64: elf.Elf64_r_debug}[self.elfclass]
linkmap = None
if not pltgot:
w.status("Finding linkmap: DT_PLTGOT")
pltgot = self._find_dt(constants.DT_PLTGOT)
if pltgot:
w.status("GOT.linkmap")
linkmap = self.leak.field(pltgot, Got.linkmap)
w.status("GOT.linkmap %#x" % linkmap)
if not linkmap:
debug = debug or self._find_dt(constants.DT_DEBUG)
if debug:
w.status("r_debug.linkmap")
linkmap = self.leak.field(debug, r_debug.r_map)
w.status("r_debug.linkmap %#x" % linkmap)
if not linkmap:
w.failure("Could not find DT_PLTGOT or DT_DEBUG")
return None
linkmap = self._make_absolute_ptr(linkmap)
w.success('%#x' % linkmap)
return linkmap
def waitfor(self, msg):
if not self._waitfor:
self._waitfor = log.waitfor(msg)
else:
self.status(msg)
return self._waitfor
def failure(self, msg):
if not self._waitfor:
log.failure(msg)
else:
self._waitfor.failure(msg)
self._waitfor = None
def success(self, msg):
if not self._waitfor:
log.success(msg)
else:
self._waitfor.success(msg)
self._waitfor = None
def status(self, msg):
if not self._waitfor:
log.info(msg)
else:
self._waitfor.status(msg)
@property
def libc(self):
"""libc(self) -> ELF
Leak the Build ID of the remote libc.so, download the file,
and load an ``ELF`` object with the correct base address.
Returns:
An ELF object, or None.
"""
libc = b'libc.so'
with self.waitfor('Downloading libc'):
dynlib = self._dynamic_load_dynelf(libc)
self.status("Trying lookup based on Build ID")
build_id = dynlib._lookup_build_id(libc)
if not build_id:
return None
self.status("Trying lookup based on Build ID: %s" % build_id)
path = libcdb.search_by_build_id(build_id)
if not path:
return None
libc = ELF(path)
libc.address = dynlib.libbase
return libc
def lookup (self, symb = None, lib = None):
"""lookup(symb = None, lib = None) -> int
Find the address of ``symbol``, which is found in ``lib``.
Arguments:
symb(str): Named routine to look up
If omitted, the base address of the library will be returned.
lib(str): Substring to match for the library name.
If omitted, the current library is searched.
If set to ``'libc'``, ``'libc.so'`` is assumed.
Returns:
Address of the named symbol, or :const:`None`.
"""
result = None
if lib == 'libc':
lib = 'libc.so'
if symb:
symb = _need_bytes(symb, min_wrong=0x80)
#
# Get a pretty name for the symbol to show the user
#
if symb and lib:
pretty = '%r in %r' % (symb, lib)
else:
pretty = repr(symb or lib)
if not pretty:
self.failure("Must specify a library or symbol")
self.waitfor('Resolving %s' % pretty)
#
# If we are loading from a different library, create
# a DynELF instance for it.
#
if lib is not None: dynlib = self._dynamic_load_dynelf(lib)
else: dynlib = self
if dynlib is None:
log.failure("Could not find %r", lib)
return None
#
# If we are resolving a symbol in the library, find it.
#
if symb and self.libcdb:
# Try a quick lookup by build ID
self.status("Trying lookup based on Build ID")
build_id = dynlib._lookup_build_id(lib=lib)
if build_id:
log.info("Trying lookup based on Build ID: %s", build_id)
path = libcdb.search_by_build_id(build_id)
if path:
with context.local(log_level='error'):
e = ELF(path)
e.address = dynlib.libbase
result = e.symbols[symb]
if symb and not result:
self.status("Trying remote lookup")
result = dynlib._lookup(symb)
if not symb:
result = dynlib.libbase
#
# Did we win?
#
if result: self.success("%#x" % result)
else: self.failure("Could not find %s" % pretty)
return result
def bases(self):
'''Resolve base addresses of all loaded libraries.
Return a dictionary mapping library path to its base address.
'''
if not self._bases:
if self.link_map is None:
self.failure("Cannot determine bases without linkmap")
return {}
leak = self.leak
LinkMap = {32: elf.Elf32_Link_Map, 64: elf.Elf64_Link_Map}[self.elfclass]
cur = self.link_map
# make sure we rewind to the beginning!
while leak.field(cur, LinkMap.l_prev):
cur = leak.field(cur, LinkMap.l_prev)
while cur:
p_name = leak.field(cur, LinkMap.l_name)
name = leak.s(p_name)
addr = leak.field(cur, LinkMap.l_addr)
cur = leak.field(cur, LinkMap.l_next)
log.debug('Found %r @ %#x', name, addr)
self._bases[name] = addr
return self._bases
def _dynamic_load_dynelf(self, libname):
"""_dynamic_load_dynelf(libname) -> DynELF
Looks up information about a loaded library via the link map.
Arguments:
libname(str): Name of the library to resolve, or a substring (e.g. 'libc.so')
Returns:
A DynELF instance for the loaded library, or None.
"""
cur = self.link_map
leak = self.leak
LinkMap = {32: elf.Elf32_Link_Map, 64: elf.Elf64_Link_Map}[self.elfclass]
# make sure we rewind to the beginning!
while leak.field(cur, LinkMap.l_prev):
cur = leak.field(cur, LinkMap.l_prev)
libname = _need_bytes(libname, 2, 0x80)
while cur:
self.status("link_map entry %#x" % cur)
p_name = leak.field(cur, LinkMap.l_name)
name = leak.s(p_name)
if libname in name:
break
if name:
self.status('Skipping %s' % name)
cur = leak.field(cur, LinkMap.l_next)
else:
self.failure("Could not find library with name containing %r" % libname)
return None
libbase = leak.field(cur, LinkMap.l_addr)
self.status("Resolved library %r at %#x" % (libname, libbase))
lib = DynELF(leak, libbase)
lib._dynamic = leak.field(cur, LinkMap.l_ld)
lib._waitfor = self._waitfor
return lib
def _rel_lookup(self, symb, strtab=None, symtab=None, jmprel=None):
"""Performs slower symbol lookup using DT_JMPREL(.rela.plt)"""
leak = self.leak
elf_obj = self.elf
symb_name = symb.decode()
# If elf is available look for the symbol in it
if elf_obj and symb_name in elf_obj.symbols:
self.success("Symbol '%s' found in ELF!" % symb_name)
return elf_obj.symbols[symb_name]
log.warning("Looking up symbol through DT_JMPREL. This might be slower...")
strtab = strtab or self._find_dt(constants.DT_STRTAB)
symtab = symtab or self._find_dt(constants.DT_SYMTAB)
jmprel = jmprel or self._find_dt(constants.DT_JMPREL) # .rela.plt
strtab = self._make_absolute_ptr(strtab)
symtab = self._make_absolute_ptr(symtab)
jmprel = self._make_absolute_ptr(jmprel)
w = self.waitfor("Looking for %s in .rel.plt" % symb)
# We look for the symbol by iterating through each Elf64_Rel entry.
# For each Elf64_Rel, get the Elf64_Sym for that entry
# Then compare the Elf64_Sym.st_name with the symbol name
Rel = {32: elf.Elf32_Rel, 64: elf.Elf64_Rel}[self.elfclass]
Sym = {32: elf.Elf32_Sym, 64: elf.Elf64_Sym}[self.elfclass]
rel_addr = jmprel
rel_entry = None
while True:
rel_entry = leak.struct(rel_addr, Rel)
# We ran out of entries in DT_JMPREL
if rel_entry.r_offset == 0:
return None
sym_idx = rel_entry.r_info >> 32 # might be different for 32-bit
sym_entry_address = symtab + ( sym_idx * sizeof(Sym) )
sym_str_off = leak.field(sym_entry_address, Sym.st_name)
symb_str = leak.s(strtab+sym_str_off)
if symb_str == symb:
w.success("Found matching Elf64_Rel entry!")
break
rel_addr += sizeof(Rel)
symbol_address = self._make_absolute_ptr(rel_entry.r_offset)
return symbol_address
def _lookup(self, symb):
"""Performs the actual symbol lookup within one ELF file."""
leak = self.leak
Dyn = {32: elf.Elf32_Dyn, 64: elf.Elf64_Dyn}[self.elfclass]
name = lambda tag: next(k for k,v in ENUM_D_TAG.items() if v == tag)
self.status('.gnu.hash/.hash, .strtab and .symtab offsets')
#
# We need all three of the hash, string table, and symbol table.
#
hshtab = self._find_dt(constants.DT_GNU_HASH)
strtab = self._find_dt(constants.DT_STRTAB)
symtab = self._find_dt(constants.DT_SYMTAB)
# Assume GNU hash will hit, since it is the default for GCC.
if hshtab:
hshtype = 'gnu'
else:
hshtab = self._find_dt(constants.DT_HASH)
hshtype = 'sysv'
if not all([strtab, symtab, hshtab]):
self.failure("Could not find all tables")
strtab = self._make_absolute_ptr(strtab)
symtab = self._make_absolute_ptr(symtab)
hshtab = self._make_absolute_ptr(hshtab)
#
# Perform the hash lookup
#
# Save off our real leaker in case we use the fake leaker
real_leak = self.leak
if self.elf:
# Create a fake leaker which just leaks out of the 'loaded' ELF
# However, we may load things which are outside of the ELF (e.g.
# the linkmap or GOT) so we need to fall back on the real leak.
@MemLeak
def fake_leak(address):
try:
return self.elf.read(address, 4)
except ValueError:
return real_leak.b(address)
# Use fake leaker since ELF is available
self.leak = fake_leak
routine = {'sysv': self._resolve_symbol_sysv,
'gnu': self._resolve_symbol_gnu}[hshtype]
resolved_addr = routine(self.libbase, symb, hshtab, strtab, symtab)
if resolved_addr:
# Restore the original leaker
self.leak = real_leak
return resolved_addr
# if symbol not found in GNU_Hash, try looking in JMPREL
resolved_addr = self._rel_lookup(symb, strtab, symtab)
# Restore the original leaker
self.leak = real_leak
return resolved_addr
def _resolve_symbol_sysv(self, libbase, symb, hshtab, strtab, symtab):
"""
Internal Documentation:
See the ELF manual for more information. Search for the phrase
"A hash table of Elf32_Word objects supports symbol table access", or see:
https://docs.oracle.com/cd/E19504-01/802-6319/6ia12qkfo/index.html#chapter6-48031
.. code-block:: c
struct Elf_Hash {
uint32_t nbucket;
uint32_t nchain;
uint32_t bucket[nbucket];
uint32_t chain[nchain];
}
You can force an ELF to use this type of symbol table by compiling
with 'gcc -Wl,--hash-style=sysv'
"""
self.status('.hash parms')
leak = self.leak
Sym = {32: elf.Elf32_Sym, 64: elf.Elf64_Sym}[self.elfclass]
nbucket = leak.field(hshtab, elf.Elf_HashTable.nbucket)
bucketaddr = hshtab + sizeof(elf.Elf_HashTable)
chain = bucketaddr + (nbucket * 4)
self.status('hashmap')
hsh = sysv_hash(symb) % nbucket
# Get the index out of the bucket for the hash we computed
idx = leak.d(bucketaddr, hsh)
while idx != constants.STN_UNDEF:
# Look up the symbol corresponding to the specified index
sym = symtab + (idx * sizeof(Sym))
symtype = leak.field(sym, Sym.st_info) & 0xf
# We only care about functions
if symtype == constants.STT_FUNC:
# Leak the name of the function from the symbol table
name = leak.s(strtab + leak.field(sym, Sym.st_name))
# Make sure it matches the name of the symbol we were looking for.
if name == symb:
#Bingo
addr = libbase + leak.field(sym, Sym.st_value)
return addr
self.status("%r (hash collision)" % name)
# The name did not match what we were looking for, or we assume
# it did not since it was not a function.
# Follow the chain for this particular hash.
idx = leak.d(chain, idx)
else:
self.failure('Could not find a SYSV hash that matched %#x' % hsh)
return None
def _resolve_symbol_gnu(self, libbase, symb, hshtab, strtab, symtab):
"""
Internal Documentation:
The GNU hash structure is a bit more complex than the normal hash
structure.
Again, Oracle has good documentation.
https://blogs.oracle.com/solaris/post/gnu-hash-elf-sections
You can force an ELF to use this type of symbol table by compiling
with 'gcc -Wl,--hash-style=gnu'
"""
self.status('.gnu.hash parms')
leak = self.leak
Sym = {32: elf.Elf32_Sym, 64: elf.Elf64_Sym}[self.elfclass]
# The number of hash buckets (hash % nbuckets)
nbuckets = leak.field(hshtab, elf.GNU_HASH.nbuckets)
# Index of the first accessible symbol in the hash table
# Numbering doesn't start at zero, it starts at symndx
symndx = leak.field(hshtab, elf.GNU_HASH.symndx)
# Number of things in the bloom filter.
# We don't care about the contents, but we have to skip over it.
maskwords = leak.field(hshtab, elf.GNU_HASH.maskwords)
# Skip over the bloom filter to get to the buckets
elfword = self.elfclass // 8
buckets = hshtab + sizeof(elf.GNU_HASH) + (elfword * maskwords)
# The chains come after the buckets
chains = buckets + (4 * nbuckets)
self.status('hash chain index')
# Hash the symbol, find its bucket
hsh = gnu_hash(symb)
bucket = hsh % nbuckets
# Get the first index in the chain for that bucket
ndx = leak.d(buckets, bucket)
if ndx == 0:
self.failure('Empty chain')
return None
# Find the start of the chain, taking into account that numbering
# effectively starts at 'symndx' within the chains.
chain = chains + 4 * (ndx - symndx)
self.status('hash chain')
# Iteratively get the I'th entry from the hash chain, until we find
# one that matches.
i = 0
hsh &= ~1
# The least significant bit is used as a stopper bit.
# It is set to 1 when a symbol is the last symbol in a given hash chain.
hsh2 = 0
while not hsh2 & 1:
hsh2 = leak.d(chain, i)
if hsh == (hsh2 & ~1):
# Check for collision on hash values
sym = symtab + sizeof(Sym) * (ndx + i)
name = leak.s(strtab + leak.field(sym, Sym.st_name))
if name == symb:
# No collision, get offset and calculate address
offset = leak.field(sym, Sym.st_value)
addr = offset + libbase
return addr
self.status("%r (hash collision)" % name)
# Collision or no match, continue to the next item
i += 1
else:
self.failure('Could not find a GNU hash that matched %#x' % hsh)
return None
def _lookup_build_id(self, lib = None):
libbase = self.libbase
if not self.link_map:
self.status("No linkmap found")
return None
if lib is not None:
libbase = self.lookup(symb = None, lib = lib)
if not libbase:
self.status("Couldn't find libc base")
return None
for offset in libcdb.get_build_id_offsets():
address = libbase + offset
if self.leak.compare(address + 0xC, b"GNU\x00"):
return enhex(b''.join(self.leak.raw(address + 0x10, 20)))
else:
self.status("Build ID not found at offset %#x" % offset)
pass
def _make_absolute_ptr(self, ptr_or_offset):
"""For shared libraries (or PIE executables), many ELF fields may
contain offsets rather than actual pointers. If the ELF type is 'DYN',
the argument may be an offset. It will not necessarily be an offset,
because the run-time linker may have fixed it up to be a real pointer
already. In this case an educated guess is made, and the ELF base
address is added to the value if it is determined to be an offset.
"""
if_ptr = ptr_or_offset
if_offset = ptr_or_offset + self.libbase
# if the ELF type is not DYN, the value is a pointer
if self.elftype != 'DYN':
return if_ptr
# if the ELF type may be DYN, guess
if 0 < ptr_or_offset < self.libbase:
return if_offset
else:
return if_ptr
def stack(self):
"""Finds a pointer to the stack via __environ, which is an exported
symbol in libc, which points to the environment block.
"""
symbols = ['environ', '_environ', '__environ']
for symbol in symbols:
environ = self.lookup(symbol, 'libc')
if environ:
break
else:
log.error("Could not find the stack")
stack = self.leak.p(environ)
self.success('*environ: %#x' % stack)
return stack
def heap(self):
"""Finds the beginning of the heap via __curbrk, which is an exported
symbol in the linker, which points to the current brk.
"""
curbrk = self.lookup('__curbrk', 'libc')
brk = self.leak.p(curbrk)
self.success('*curbrk: %#x' % brk)
return brk
def _find_mapped_pages(self, readonly = False, page_size = 0x1000):
"""
A generator of all mapped pages, as found using the Program Headers.
Yields tuples of the form: (virtual address, memory size)
"""
leak = self.leak
base = self.libbase
Ehdr = {32: elf.Elf32_Ehdr, 64: elf.Elf64_Ehdr}[self.elfclass]
Phdr = {32: elf.Elf32_Phdr, 64: elf.Elf64_Phdr}[self.elfclass]
phead = base + leak.field(base, Ehdr.e_phoff)
phnum = leak.field(base, Ehdr.e_phnum)
for i in range(phnum):
if leak.field_compare(phead, Phdr.p_type, constants.PT_LOAD) :
# the interesting pages are those that are aligned to PAGE_SIZE
if leak.field_compare(phead, Phdr.p_align, page_size) and \
(readonly or leak.field(phead, Phdr.p_flags) & 0x02 != 0):
vaddr = leak.field(phead, Phdr.p_vaddr)
memsz = leak.field(phead, Phdr.p_memsz)
# fix relative offsets
if vaddr < base :
vaddr += base
yield vaddr, memsz
phead += sizeof(Phdr)
def dump(self, libs = False, readonly = False):
"""dump(libs = False, readonly = False)
Dumps the ELF's memory pages to allow further analysis.
Arguments:
libs(bool, optional): True if should dump the libraries too (False by default)
readonly(bool, optional): True if should dump read-only pages (False by default)
Returns:
a dictionary of the form: { address : bytes }
"""
leak = self.leak
page_size = 0x1000
pages = {}
for vaddr, memsz in self._find_mapped_pages(readonly, page_size) :
offset = vaddr % page_size
if offset != 0 :
memsz += offset
vaddr -= offset
memsz += (page_size - (memsz % page_size)) % page_size
pages[vaddr] = leak.n(vaddr, memsz)
if libs:
for lib_name in self.bases():
if len(lib_name) == 0:
continue
dyn_lib = self._dynamic_load_dynelf(lib_name)
if dyn_lib is not None:
pages.update(dyn_lib.dump(readonly = readonly))
return pages
|