1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
|
"""Exposes functionality for manipulating ELF files
Stop hard-coding things! Look them up at runtime with :mod:`pwnlib.elf`.
Example Usage
-------------
.. code-block:: python
>>> e = ELF('/bin/cat')
>>> print(hex(e.address)) #doctest: +SKIP
0x400000
>>> print(hex(e.symbols['write'])) #doctest: +SKIP
0x401680
>>> print(hex(e.got['write'])) #doctest: +SKIP
0x60b070
>>> print(hex(e.plt['write'])) #doctest: +SKIP
0x401680
You can even patch and save the files.
.. code-block:: python
>>> e = ELF('/bin/cat')
>>> e.read(e.address+1, 3)
b'ELF'
>>> e.asm(e.address, 'ret')
>>> e.save('/tmp/quiet-cat')
>>> disasm(open('/tmp/quiet-cat','rb').read(1))
' 0: c3 ret'
Module Members
--------------
"""
from __future__ import absolute_import
from __future__ import division
import collections
import gzip
import mmap
import os
import re
import six
import subprocess
import tempfile
from six import BytesIO
from collections import namedtuple, defaultdict
from elftools.elf.constants import P_FLAGS
from elftools.elf.constants import SHN_INDICES
from elftools.elf.descriptions import describe_e_type
from elftools.elf.elffile import ELFFile
from elftools.elf.enums import ENUM_GNU_PROPERTY_X86_FEATURE_1_FLAGS
from elftools.elf.gnuversions import GNUVerDefSection
from elftools.elf.relocation import RelocationSection, RelrRelocationSection
from elftools.elf.sections import SymbolTableSection
from elftools.elf.segments import InterpSegment
# See https://github.com/Gallopsled/pwntools/issues/1189
try:
from elftools.elf.enums import ENUM_P_TYPE
except ImportError:
from elftools.elf.enums import ENUM_P_TYPE_BASE as ENUM_P_TYPE
import intervaltree
from pwnlib import adb
from pwnlib import qemu
from pwnlib.asm import *
from pwnlib.context import LocalContext
from pwnlib.context import context
from pwnlib.elf.config import kernel_configuration
from pwnlib.elf.config import parse_kconfig
from pwnlib.elf.datatypes import constants
from pwnlib.elf.maps import CAT_PROC_MAPS_EXIT
from pwnlib.elf.plt import emulate_plt_instructions
from pwnlib.log import getLogger
from pwnlib.term import text
from pwnlib.tubes.process import process
from pwnlib.util import misc
from pwnlib.util import packing
from pwnlib.util.fiddling import unhex
from pwnlib.util.misc import align, align_down, which
from pwnlib.util.sh_string import sh_string
log = getLogger(__name__)
__all__ = ['load', 'ELF']
def _iter_symbols(sec):
# Cache result of iter_symbols.
if not hasattr(sec, '_symbols'):
sec._symbols = list(sec.iter_symbols())
return iter(sec._symbols)
class Function(object):
"""Encapsulates information about a function in an :class:`.ELF` binary.
Arguments:
name(str): Name of the function
address(int): Address of the function
size(int): Size of the function, in bytes
elf(ELF): Encapsulating ELF object
"""
def __init__(self, name, address, size, elf=None):
#: Name of the function
self.name = name
#: Address of the function in the encapsulating ELF
self.address = address
#: Size of the function, in bytes
self.size = size
#: Encapsulating ELF object
self.elf = elf
def __repr__(self):
return '%s(name=%r, address=%#x, size=%#x, elf=%r)' % (
self.__class__.__name__,
self.name,
self.address,
self.size,
self.elf
)
def __flat__(self):
return packing.pack(self.address)
def disasm(self):
return self.elf.disasm(self.address, self.size)
def load(*args, **kwargs):
"""Compatibility wrapper for pwntools v1"""
return ELF(*args, **kwargs)
class dotdict(dict):
"""Wrapper to allow dotted access to dictionary elements.
Is a real :class:`dict` object, but also serves up keys as attributes
when reading attributes.
Supports recursive instantiation for keys which contain dots.
Example:
>>> x = pwnlib.elf.elf.dotdict()
>>> isinstance(x, dict)
True
>>> x['foo'] = 3
>>> x.foo
3
>>> x['bar.baz'] = 4
>>> x.bar.baz
4
"""
def __missing__(self, name):
if isinstance(name, (bytes, bytearray)):
name = packing._decode(name)
return self[name]
raise KeyError(name)
def __getattr__(self, name):
if name in self:
return self[name]
name_dot = name + '.'
name_len = len(name_dot)
subkeys = {k[name_len:]: self[k] for k in self if k.startswith(name_dot)}
if subkeys:
return dotdict(subkeys)
raise AttributeError(name)
class ELF(ELFFile):
"""Encapsulates information about an ELF file.
Example:
.. code-block:: python
>>> bash = ELF(which('bash'))
>>> hex(bash.symbols['read'])
0x41dac0
>>> hex(bash.plt['read'])
0x41dac0
>>> u32(bash.read(bash.got['read'], 4))
0x41dac6
>>> print(bash.disasm(bash.plt.read, 16))
0: ff 25 1a 18 2d 00 jmp QWORD PTR [rip+0x2d181a] # 0x2d1820
6: 68 59 00 00 00 push 0x59
b: e9 50 fa ff ff jmp 0xfffffffffffffa60
"""
# These class-level intitializers are only for ReadTheDocs
bits = 32
bytes = 4
path = '/path/to/the/file'
symbols = {}
got = {}
plt = {}
functions = {}
endian = 'little'
address = 0x400000
linker = None
# Whether to fill gaps in memory with zeroed pages
_fill_gaps = True
def __init__(self, path, checksec=True):
# elftools uses the backing file for all reads and writes
# in order to permit writing without being able to write to disk,
# mmap() the file.
#: :class:`file`: Open handle to the ELF file on disk
self.file = open(path,'rb')
#: :class:`mmap.mmap`: Memory-mapped copy of the ELF file on disk
self.mmap = mmap.mmap(self.file.fileno(), 0, access=mmap.ACCESS_COPY)
super(ELF,self).__init__(self.mmap)
#: :class:`str`: Path to the file
self.path = packing._need_text(os.path.abspath(path))
#: :class:`dotdict` of ``name`` to ``address`` for all symbols in the ELF
self.symbols = dotdict()
#: :class:`dotdict` of ``name`` to ``address`` for all Global Offset Table (GOT) entries
self.got = dotdict()
#: :class:`dotdict` of ``name`` to ``address`` for all Procedure Linkage Table (PLT) entries
self.plt = dotdict()
#: :class:`dotdict` of ``name`` to :class:`.Function` for each function in the ELF
self.functions = dotdict()
#: :class:`dict`: Linux kernel configuration, if this is a Linux kernel image
self.config = {}
#: :class:`tuple`: Linux kernel version, if this is a Linux kernel image
self.version = (0,)
#: :class:`str`: Linux kernel build commit, if this is a Linux kernel image
self.build = ''
#: :class:`str`: Endianness of the file (e.g. ``'big'``, ``'little'``)
self.endian = {
'ELFDATANONE': 'little',
'ELFDATA2LSB': 'little',
'ELFDATA2MSB': 'big'
}[self['e_ident']['EI_DATA']]
#: :class:`int`: Bit-ness of the file
self.bits = self.elfclass
#: :class:`int`: Pointer width, in bytes
self.bytes = self.bits // 8
#: :class:`str`: Architecture of the file (e.g. ``'i386'``, ``'arm'``).
#:
#: See: :attr:`.ContextType.arch`
self.arch = self.get_machine_arch()
if isinstance(self.arch, (bytes, six.text_type)):
self.arch = self.arch.lower()
self._sections = None
self._segments = None
#: IntervalTree which maps all of the loaded memory segments
self.memory = intervaltree.IntervalTree()
self._populate_memory()
# Is this a native binary? Should we be checking QEMU?
try:
with context.local(arch=self.arch):
#: Whether this ELF should be able to run natively
self.native = context.native
except AttributeError:
# The architecture may not be supported in pwntools
self.native = False
self._address = 0
if self.elftype != 'DYN':
for seg in self.iter_segments_by_type('PT_LOAD'):
addr = seg.header.p_vaddr
if addr == 0:
continue
if addr < self._address or self._address == 0:
self._address = addr
self.load_addr = self._address
# Try to figure out if we have a kernel configuration embedded
IKCFG_ST=b'IKCFG_ST'
for start in self.search(IKCFG_ST):
start += len(IKCFG_ST)
stop = next(self.search(b'IKCFG_ED'))
fileobj = BytesIO(self.read(start, stop-start))
# Python gzip throws an exception if there is non-Gzip data
# after the Gzip stream.
#
# Catch the exception, and just deal with it.
with gzip.GzipFile(fileobj=fileobj) as gz:
config = gz.read()
if config:
self.config = parse_kconfig(config.decode())
#: ``True`` if the ELF is a statically linked executable
self.statically_linked = bool(self.elftype == 'EXEC' and self.load_addr)
#: ``True`` if the ELF is an executable
self.executable = bool(self.elftype == 'EXEC')
for seg in self.iter_segments_by_type('PT_INTERP'):
self.executable = True
#: ``True`` if the ELF is statically linked
self.statically_linked = False
#: Path to the linker for the ELF
self.linker = self.read(seg.header.p_vaddr, seg.header.p_memsz)
self.linker = self.linker.rstrip(b'\x00')
#: Operating system of the ELF
self.os = 'linux'
if self.linker and self.linker.startswith(b'/system/bin/linker'):
self.os = 'android'
#: ``True`` if the ELF is a shared library
self.library = not self.executable and self.elftype == 'DYN'
try:
self._populate_symbols()
except Exception as e:
log.warn("Could not populate symbols: %s", e)
try:
self._populate_got()
except Exception as e:
log.warn("Could not populate GOT: %s", e)
try:
self._populate_plt()
except Exception as e:
log.warn("Could not populate PLT: %s", e)
self._populate_synthetic_symbols()
self._populate_functions()
self._populate_kernel_version()
if checksec:
self._describe()
self._libs = None
self._maps = None
@staticmethod
@LocalContext
def from_assembly(assembly, *a, **kw):
"""from_assembly(assembly) -> ELF
Given an assembly listing, return a fully loaded ELF object
which contains that assembly at its entry point.
Arguments:
assembly(str): Assembly language listing
vma(int): Address of the entry point and the module's base address.
Example:
>>> e = ELF.from_assembly('nop; foo: int 0x80', vma = 0x400000)
>>> e.symbols['foo'] = 0x400001
>>> e.disasm(e.entry, 1)
' 400000: 90 nop'
>>> e.disasm(e.symbols['foo'], 2)
' 400001: cd 80 int 0x80'
"""
return ELF(make_elf_from_assembly(assembly, *a, **kw))
@staticmethod
@LocalContext
def from_bytes(bytes, *a, **kw):
r"""from_bytes(bytes) -> ELF
Given a sequence of bytes, return a fully loaded ELF object
which contains those bytes at its entry point.
Arguments:
bytes(str): Shellcode byte string
vma(int): Desired base address for the ELF.
Example:
>>> e = ELF.from_bytes(b'\x90\xcd\x80', vma=0xc000)
>>> print(e.disasm(e.entry, 3))
c000: 90 nop
c001: cd 80 int 0x80
"""
return ELF(make_elf(bytes, extract=False, *a, **kw))
def process(self, argv=[], *a, **kw):
"""process(argv=[], *a, **kw) -> process
Execute the binary with :class:`.process`. Note that ``argv``
is a list of arguments, and should not include ``argv[0]``.
Arguments:
argv(list): List of arguments to the binary
*args: Extra arguments to :class:`.process`
**kwargs: Extra arguments to :class:`.process`
Returns:
:class:`.process`
"""
p = process
if context.os == 'android':
p = adb.process
return p([self.path] + argv, *a, **kw)
def debug(self, argv=[], *a, **kw):
"""debug(argv=[], *a, **kw) -> tube
Debug the ELF with :func:`.gdb.debug`.
Arguments:
argv(list): List of arguments to the binary
*args: Extra arguments to :func:`.gdb.debug`
**kwargs: Extra arguments to :func:`.gdb.debug`
Returns:
:class:`.tube`: See :func:`.gdb.debug`
"""
import pwnlib.gdb
return pwnlib.gdb.debug([self.path] + argv, *a, **kw)
def _describe(self, *a, **kw):
log.info_once(
'%s\n%-12s%s-%s-%s\n%s',
repr(self.path),
'Arch:',
self.arch,
self.bits,
self.endian,
self.checksec(*a, **kw)
)
def get_machine_arch(self):
return {
('EM_X86_64', 64): 'amd64',
('EM_X86_64', 32): 'amd64', # x32 ABI
('EM_386', 32): 'i386',
('EM_486', 32): 'i386',
('EM_ARM', 32): 'arm',
('EM_AARCH64', 64): 'aarch64',
('EM_MIPS', 32): 'mips',
('EM_MIPS', 64): 'mips64',
('EM_PPC', 32): 'powerpc',
('EM_PPC64', 64): 'powerpc64',
('EM_SPARC32PLUS', 32): 'sparc',
('EM_SPARCV9', 64): 'sparc64',
('EM_IA_64', 64): 'ia64',
('EM_RISCV', 32): 'riscv32',
('EM_RISCV', 64): 'riscv64',
}.get((self['e_machine'], self.bits), self['e_machine'])
@property
def entry(self):
""":class:`int`: Address of the entry point for the ELF"""
return self.address + (self.header.e_entry - self.load_addr)
entrypoint = entry
start = entry
@property
def elftype(self):
""":class:`str`: ELF type (``EXEC``, ``DYN``, etc)"""
return describe_e_type(self.header.e_type).split()[0]
def iter_segments(self):
# Yield and cache all the segments in the file
if self._segments is None:
self._segments = [self.get_segment(i) for i in range(self.num_segments())]
return iter(self._segments)
@property
def segments(self):
"""
:class:`list`: A list of :class:`elftools.elf.segments.Segment` objects
for the segments in the ELF.
"""
return list(self.iter_segments())
def iter_segments_by_type(self, t):
"""
Yields:
Segments matching the specified type.
"""
for seg in self.iter_segments():
if t == seg.header.p_type or t in str(seg.header.p_type):
yield seg
def iter_notes(self):
"""
Yields:
All the notes in the PT_NOTE segments. Each result is a dictionary-
like object with ``n_name``, ``n_type``, and ``n_desc`` fields, amongst
others.
"""
for seg in self.iter_segments_by_type('PT_NOTE'):
for note in seg.iter_notes():
yield note
def iter_properties(self):
"""
Yields:
All the GNU properties in the PT_NOTE segments. Each result is a dictionary-
like object with ``pr_type``, ``pr_datasz``, and ``pr_data`` fields.
"""
for note in self.iter_notes():
if note.n_type != 'NT_GNU_PROPERTY_TYPE_0':
continue
for prop in note.n_desc:
yield prop
def get_segment_for_address(self, address, size=1):
"""get_segment_for_address(address, size=1) -> Segment
Given a virtual address described by a ``PT_LOAD`` segment, return the
first segment which describes the virtual address. An optional ``size``
may be provided to ensure the entire range falls into the same segment.
Arguments:
address(int): Virtual address to find
size(int): Number of bytes which must be available after ``address``
in **both** the file-backed data for the segment, and the memory
region which is reserved for the data.
Returns:
Either returns a :class:`.segments.Segment` object, or ``None``.
"""
for seg in self.iter_segments_by_type("PT_LOAD"):
mem_start = seg.header.p_vaddr
mem_stop = seg.header.p_memsz + mem_start
if not (mem_start <= address <= address+size < mem_stop):
continue
offset = self.vaddr_to_offset(address)
file_start = seg.header.p_offset
file_stop = seg.header.p_filesz + file_start
if not (file_start <= offset <= offset+size < file_stop):
continue
return seg
return None
def iter_sections(self):
# Yield and cache all the sections in the file
if self._sections is None:
self._sections = [self.get_section(i) for i in range(self.num_sections())]
return iter(self._sections)
@property
def sections(self):
"""
:class:`list`: A list of :class:`elftools.elf.sections.Section` objects
for the segments in the ELF.
"""
return list(self.iter_sections())
@property
def dwarf(self):
"""DWARF info for the elf"""
return self.get_dwarf_info()
@property
def sym(self):
""":class:`dotdict`: Alias for :attr:`.ELF.symbols`"""
return self.symbols
@property
def address(self):
""":class:`int`: Address of the lowest segment loaded in the ELF.
When updated, the addresses of the following fields are also updated:
- :attr:`~.ELF.symbols`
- :attr:`~.ELF.got`
- :attr:`~.ELF.plt`
- :attr:`~.ELF.functions`
However, the following fields are **NOT** updated:
- :attr:`~.ELF.segments`
- :attr:`~.ELF.sections`
Example:
>>> bash = ELF('/bin/bash')
>>> read = bash.symbols['read']
>>> text = bash.get_section_by_name('.text').header.sh_addr
>>> bash.address += 0x1000
>>> read + 0x1000 == bash.symbols['read']
True
>>> text == bash.get_section_by_name('.text').header.sh_addr
True
"""
return self._address
@address.setter
def address(self, new):
delta = new-self._address
update = lambda x: x+delta
self.symbols = dotdict({k:update(v) for k,v in self.symbols.items()})
self.plt = dotdict({k:update(v) for k,v in self.plt.items()})
self.got = dotdict({k:update(v) for k,v in self.got.items()})
for f in self.functions.values():
f.address += delta
# Update our view of memory
memory = intervaltree.IntervalTree()
for begin, end, data in self.memory:
memory.addi(update(begin),
update(end),
data)
self.memory = memory
self._address = update(self.address)
def section(self, name):
"""section(name) -> bytes
Gets data for the named section
Arguments:
name(str): Name of the section
Returns:
:class:`str`: String containing the bytes for that section
"""
return self.get_section_by_name(name).data()
@property
def rwx_segments(self):
""":class:`list`: List of all segments which are writeable and executable.
See:
:attr:`.ELF.segments`
"""
if not self.nx:
return self.writable_segments
wx = P_FLAGS.PF_X | P_FLAGS.PF_W
return [s for s in self.segments if s.header.p_flags & wx == wx]
@property
def executable_segments(self):
""":class:`list`: List of all segments which are executable.
See:
:attr:`.ELF.segments`
"""
if not self.nx:
return list(self.segments)
return [s for s in self.segments if s.header.p_flags & P_FLAGS.PF_X]
@property
def writable_segments(self):
""":class:`list`: List of all segments which are writeable.
See:
:attr:`.ELF.segments`
"""
return [s for s in self.segments if s.header.p_flags & P_FLAGS.PF_W]
@property
def non_writable_segments(self):
""":class:`list`: List of all segments which are NOT writeable.
See:
:attr:`.ELF.segments`
"""
return [s for s in self.segments if not s.header.p_flags & P_FLAGS.PF_W]
@property
def libs(self):
"""Dictionary of {path: address} for every library loaded for this ELF."""
if self._libs is None:
self._populate_libraries()
return self._libs
@property
def maps(self):
"""Dictionary of {name: address} for every mapping in this ELF's address space."""
if self._maps is None:
self._populate_libraries()
return self._maps
@property
def libc(self):
""":class:`.ELF`: If this :class:`.ELF` imports any libraries which contain ``'libc[.-]``,
and we can determine the appropriate path to it on the local
system, returns a new :class:`.ELF` object pertaining to that library.
If not found, the value will be :const:`None`.
"""
for lib in self.libs:
if '/libc.' in lib or '/libc-' in lib:
return ELF(lib)
def _populate_libraries(self):
"""
>>> from os.path import exists
>>> bash = ELF(which('bash'))
>>> all(map(exists, bash.libs.keys()))
True
>>> any(map(lambda x: 'libc' in x, bash.libs.keys()))
True
"""
# Patch some shellcode into the ELF and run it.
maps = self._patch_elf_and_read_maps()
self._maps = maps
self._libs = {}
for lib, address in maps.items():
# Filter out [stack] and such from the library listings
if lib.startswith('['):
continue
# Any existing files we can just use
if os.path.exists(lib):
self._libs[lib] = address
# Try etc/qemu-binfmt, as per Ubuntu
if not self.native:
ld_prefix = qemu.ld_prefix()
qemu_lib = os.path.join(ld_prefix, lib)
qemu_lib = os.path.realpath(qemu_lib)
if os.path.exists(qemu_lib):
self._libs[qemu_lib] = address
def _patch_elf_and_read_maps(self):
r"""patch_elf_and_read_maps(self) -> dict
Read ``/proc/self/maps`` as if the ELF were executing.
This is done by replacing the code at the entry point with shellcode which
dumps ``/proc/self/maps`` and exits, and **actually executing the binary**.
Returns:
A ``dict`` mapping file paths to the lowest address they appear at.
Does not do any translation for e.g. QEMU emulation, the raw results
are returned.
If there is not enough space to inject the shellcode in the segment
which contains the entry point, returns ``{}``.
Doctests:
These tests are just to ensure that our shellcode is correct.
>>> for arch in CAT_PROC_MAPS_EXIT:
... context.clear()
... with context.local(arch=arch):
... sc = shellcraft.cat2("/proc/self/maps")
... sc += shellcraft.exit()
... sc = asm(sc)
... sc = enhex(sc)
... assert sc == CAT_PROC_MAPS_EXIT[arch], (arch, sc)
"""
# Get our shellcode
sc = CAT_PROC_MAPS_EXIT.get(self.arch, None)
if sc is None:
log.error("Cannot patch /proc/self/maps shellcode into %r binary", self.arch)
sc = unhex(sc)
# Ensure there is enough room in the segment where the entry point resides
# in order to inject our shellcode.
seg = self.get_segment_for_address(self.entry, len(sc))
if not seg:
log.warn_once("Could not inject code to determine memory mapping for %r: Not enough space", self)
return {}
# Create our temporary file
# NOTE: We cannot use "with NamedTemporaryFile() as foo", because we cannot
# execute the file while the handle is open.
fd, path = tempfile.mkstemp()
# Close the file descriptor so that it may be executed
os.close(fd)
# Save off a copy of the ELF
self.save(path)
# Load a new copy of the ELF at the temporary file location
old = self.read(self.entry, len(sc))
try:
self.write(self.entry, sc)
self.save(path)
finally:
# Restore the original contents
self.write(self.entry, old)
# Make the file executable
os.chmod(path, 0o755)
# Run a copy of it, get the maps
try:
with context.silent:
io = process(path)
data = packing._decode(io.recvall(timeout=2))
except Exception:
log.warn_once("Injected /proc/self/maps code did not execute correctly")
return {}
# Swap in the original ELF name
data = data.replace(path, self.path)
# All we care about in the data is the load address of each file-backed mapping,
# or each kernel-supplied mapping.
#
# For quick reference, the data looks like this:
# 7fcb025f2000-7fcb025f3000 r--p 00025000 fe:01 3025685 /lib/x86_64-linux-gnu/ld-2.23.so
# 7fcb025f3000-7fcb025f4000 rw-p 00026000 fe:01 3025685 /lib/x86_64-linux-gnu/ld-2.23.so
# 7fcb025f4000-7fcb025f5000 rw-p 00000000 00:00 0
# 7ffe39cd4000-7ffe39cf6000 rw-p 00000000 00:00 0 [stack]
# 7ffe39d05000-7ffe39d07000 r--p 00000000 00:00 0 [vvar]
result = {}
for line in data.splitlines():
if '/' in line:
index = line.index('/')
elif '[' in line:
index = line.index('[')
else:
continue
address, _ = line.split('-', 1)
address = int(address, 0x10)
name = line[index:]
result.setdefault(name, address)
# Remove the temporary file, best-effort
os.unlink(path)
return result
def _populate_functions(self):
"""Builds a dict of 'functions' (i.e. symbols of type 'STT_FUNC')
by function name that map to a tuple consisting of the func address and size
in bytes.
"""
for sec in self.sections:
if not isinstance(sec, SymbolTableSection):
continue
for sym in _iter_symbols(sec):
# Avoid duplicates
if sym.name in self.functions:
continue
if sym.entry.st_info['type'] == 'STT_FUNC' and sym.entry.st_size != 0:
name = sym.name
if name not in self.symbols:
continue
addr = self.symbols[name]
size = sym.entry.st_size
self.functions[name] = Function(name, addr, size, self)
def _populate_symbols(self):
"""
>>> bash = ELF(which('bash'))
>>> bash.symbols['_start'] == bash.entry
True
"""
# Populate all of the "normal" symbols from the symbol tables
for section in self.sections:
if not isinstance(section, SymbolTableSection):
continue
for symbol in _iter_symbols(section):
if not symbol.name or symbol.entry.st_shndx == 'SHN_UNDEF':
continue
self.symbols[symbol.name] = symbol.entry.st_value
def _populate_synthetic_symbols(self):
"""Adds symbols from the GOT and PLT to the symbols dictionary.
Does not overwrite any existing symbols, and prefers PLT symbols.
Synthetic plt.xxx and got.xxx symbols are added for each PLT and
GOT entry, respectively.
Example:bash.
>>> bash = ELF(which('bash'))
>>> bash.symbols.wcscmp == bash.plt.wcscmp
True
>>> bash.symbols.wcscmp == bash.symbols.plt.wcscmp
True
>>> bash.symbols.stdin == bash.got.stdin
True
>>> bash.symbols.stdin == bash.symbols.got.stdin
True
"""
for symbol, address in self.plt.items():
self.symbols.setdefault(symbol, address)
self.symbols['plt.' + symbol] = address
for symbol, address in self.got.items():
self.symbols.setdefault(symbol, address)
self.symbols['got.' + symbol] = address
def _populate_got(self):
"""Loads the symbols for all relocations.
>>> libc = ELF(which('bash')).libc
>>> assert 'strchrnul' in libc.got
>>> assert 'memcpy' in libc.got
>>> assert libc.got.strchrnul != libc.got.memcpy
"""
# Statically linked implies no relocations, since there is no linker
# Could always be self-relocating like Android's linker *shrug*
if self.statically_linked:
return
revsymbols = defaultdict(list)
for name, addr in self.symbols.items():
revsymbols[addr].append(name)
for section in self.sections:
# We are only interested in relocations
if not isinstance(section, (RelocationSection, RelrRelocationSection)):
continue
# Only get relocations which link to another section (for symbols)
if section.header.sh_link == SHN_INDICES.SHN_UNDEF:
continue
symbols = self.get_section(section.header.sh_link)
for rel in section.iter_relocations():
sym_idx = rel.entry.r_info_sym
if not sym_idx and rel.is_RELA():
# TODO: actually resolve relocations
relocated = rel.entry.r_addend # sufficient for now
symnames = revsymbols[relocated]
for symname in symnames:
self.got[symname] = rel.entry.r_offset
continue
symbol = symbols.get_symbol(sym_idx)
if symbol and symbol.name:
self.got[symbol.name] = rel.entry.r_offset
if self.arch == 'mips':
try:
self._populate_mips_got()
except Exception as e:
log.warn("Could not populate MIPS GOT: %s", e)
if not self.got:
log.warn("Did not find any GOT entries")
def _populate_mips_got(self):
self._mips_got = {}
strings = self.get_section(self.header.e_shstrndx)
ELF_MIPS_GNU_GOT1_MASK = 0x80000000
if self.bits == 64:
ELF_MIPS_GNU_GOT1_MASK <<= 32
# Beginning of the GOT
got = self.dynamic_value_by_tag('DT_PLTGOT') or 0
# Find the beginning of the GOT pointers
got1_mask = (self.unpack(got) & ELF_MIPS_GNU_GOT1_MASK)
i = 2 if got1_mask else 1
self._mips_skip = i
# We don't care about local GOT entries, skip them
local_gotno = self.dynamic_value_by_tag('DT_MIPS_LOCAL_GOTNO')
got += local_gotno * context.bytes
# Iterate over the dynamic symbol table
dynsym = self.get_section_by_name('.dynsym')
symbol_iter = _iter_symbols(dynsym)
# 'gotsym' is the index of the first GOT symbol
gotsym = self.dynamic_value_by_tag('DT_MIPS_GOTSYM')
for i in range(gotsym):
next(symbol_iter)
# 'symtabno' is the total number of symbols
symtabno = self.dynamic_value_by_tag('DT_MIPS_SYMTABNO')
for i in range(symtabno - gotsym):
symbol = next(symbol_iter)
self._mips_got[i + gotsym] = got
self.got[symbol.name] = got
got += self.bytes
def _populate_plt(self):
"""Loads the PLT symbols
>>> path = pwnlib.data.elf.path
>>> for test in glob(os.path.join(path, 'test-*')):
... test = ELF(test)
... assert '__stack_chk_fail' in test.got, test
... if test.arch != 'ppc':
... assert '__stack_chk_fail' in test.plt, test
"""
if self.statically_linked:
log.debug("%r is statically linked, skipping GOT/PLT symbols" % self.path)
return
if not self.got:
log.debug("%r doesn't have any GOT symbols, skipping PLT" % self.path)
return
# This element holds an address associated with the procedure linkage table
# and/or the global offset table.
#
# Zach's note: This corresponds to the ".got.plt" section, in a PIE non-RELRO binary.
# This corresponds to the ".got" section, in a PIE full-RELRO binary.
# In particular, this is where EBX points when it points into the GOT.
dt_pltgot = self.dynamic_value_by_tag('DT_PLTGOT') or 0
# There are three PLTs we may need to search
plt = self.get_section_by_name('.plt') # <-- Functions only
plt_got = self.get_section_by_name('.plt.got') # <-- Functions used as data
plt_sec = self.get_section_by_name('.plt.sec')
plt_mips = self.get_section_by_name('.MIPS.stubs')
# Invert the GOT symbols we already have, so we can look up by address
inv_symbols = {v:k for k,v in self.got.items()}
inv_symbols.update({v:k for k,v in self.symbols.items()})
with context.local(arch=self.arch, bits=self.bits, endian=self.endian):
for section in (plt, plt_got, plt_sec, plt_mips):
if not section:
continue
res = emulate_plt_instructions(self,
dt_pltgot,
section.header.sh_addr,
section.data(),
inv_symbols)
for address, target in sorted(res.items()):
self.plt[inv_symbols[target]] = address
# for a,n in sorted({v:k for k,v in self.plt.items()}.items()):
# log.debug('PLT %#x %s', a, n)
def _populate_kernel_version(self):
if 'linux_banner' not in self.symbols:
return
banner = self.string(self.symbols.linux_banner)
# convert banner into a utf-8 string since re.search does not accept bytes anymore
banner = banner.decode('utf-8')
# 'Linux version 3.18.31-gd0846ecc
regex = r'Linux version (\S+)'
match = re.search(regex, banner)
if match:
version = match.group(1)
if '-' in version:
version, self.build = version.split('-', 1)
self.version = list(map(int, version.rstrip('+').split('.')))
self.config['version'] = self.version
@property
def libc_start_main_return(self):
""":class:`int`: Address of the return address into __libc_start_main from main.
>>> bash = ELF(which('bash'))
>>> libc = bash.libc
>>> libc.libc_start_main_return > 0
True
Try to find the return address from main into __libc_start_main.
The heuristic to find the call to the function pointer of main is
to list all calls inside __libc_start_main, find the call to exit
after the call to main and select the previous call.
"""
if '__libc_start_main' not in self.functions:
return 0
if 'exit' not in self.symbols:
return 0
# If there's no delay slot, execution continues on the next instruction after a call.
call_return_offset = 1
if self.arch in ['arm', 'thumb']:
call_instructions = set(['blx', 'bl'])
elif self.arch == 'aarch64':
call_instructions = set(['blr', 'bl'])
elif self.arch in ['mips', 'mips64']:
call_instructions = set(['bal', 'jalr'])
# Account for the delay slot.
call_return_offset = 2
elif self.arch in ['i386', 'amd64', 'ia64']:
call_instructions = set(['call'])
else:
log.error('Unsupported architecture %s in ELF.libc_start_main_return', self.arch)
return 0
lines = self.functions['__libc_start_main'].disasm().split('\n')
exit_addr = hex(self.symbols['exit'])
calls = [(index, line) for index, line in enumerate(lines) if set(line.split()) & call_instructions]
def find_ret_main_addr(lines, calls):
exit_calls = [index for index, line in enumerate(calls) if exit_addr in line[1]]
if len(exit_calls) != 1:
return 0
call_to_main = calls[exit_calls[0] - 1]
return_from_main = lines[call_to_main[0] + call_return_offset].lstrip()
return_from_main = int(return_from_main[ : return_from_main.index(':') ], 16)
return return_from_main
# Starting with glibc-2.34 calling `main` is split out into `__libc_start_call_main`
ret_addr = find_ret_main_addr(lines, calls)
# Pre glibc-2.34 case - `main` is called directly
if ret_addr:
return ret_addr
# `__libc_start_main` -> `__libc_start_call_main` -> `main`
# Find a direct call which calls `exit` once. That's probably `__libc_start_call_main`.
direct_call_pattern = re.compile(r'['+r'|'.join(call_instructions)+r']\s+(0x[0-9a-zA-Z]+)')
for line in calls:
match = direct_call_pattern.search(line[1])
if not match:
continue
target_addr = int(match.group(1), 0)
# `__libc_start_call_main` is usually smaller than `__libc_start_main`, so
# we might disassemble a bit too much, but it's a good dynamic estimate.
callee_lines = self.disasm(target_addr, self.functions['__libc_start_main'].size).split('\n')
callee_calls = [(index, line) for index, line in enumerate(callee_lines) if set(line.split()) & call_instructions]
ret_addr = find_ret_main_addr(callee_lines, callee_calls)
if ret_addr:
return ret_addr
return 0
def search(self, needle, writable = False, executable = False):
"""search(needle, writable = False, executable = False) -> generator
Search the ELF's virtual address space for the specified string.
Notes:
Does not search empty space between segments, or uninitialized
data. This will only return data that actually exists in the
ELF file. Searching for a long string of NULL bytes probably
won't work.
Arguments:
needle(bytes): String to search for.
writable(bool): Search only writable sections.
executable(bool): Search only executable sections.
Yields:
An iterator for each virtual address that matches.
Examples:
An ELF header starts with the bytes ``\\x7fELF``, so we
sould be able to find it easily.
>>> bash = ELF('/bin/bash')
>>> bash.address + 1 == next(bash.search(b'ELF'))
True
We can also search for string the binary.
>>> len(list(bash.search(b'GNU bash'))) > 0
True
It is also possible to search for instructions in executable sections.
>>> binary = ELF.from_assembly('nop; mov eax, 0; jmp esp; ret')
>>> jmp_addr = next(binary.search(asm('jmp esp'), executable = True))
>>> binary.read(jmp_addr, 2) == asm('jmp esp')
True
"""
load_address_fixup = (self.address - self.load_addr)
if writable:
segments = self.writable_segments
elif executable:
segments = self.executable_segments
else:
segments = self.segments
needle = packing._need_bytes(needle)
for seg in segments:
addr = seg.header.p_vaddr
memsz = seg.header.p_memsz
filesz = seg.header.p_filesz
zeroed = memsz - filesz
offset = seg.header.p_offset
data = self.mmap[offset:offset+filesz]
data += b'\x00' * zeroed
offset = 0
while True:
offset = data.find(needle, offset)
if offset == -1:
break
yield (addr + offset + load_address_fixup)
offset += 1
def offset_to_vaddr(self, offset):
"""offset_to_vaddr(offset) -> int
Translates the specified offset to a virtual address.
Arguments:
offset(int): Offset to translate
Returns:
`int`: Virtual address which corresponds to the file offset, or
:const:`None`.
Examples:
This example shows that regardless of changes to the virtual
address layout by modifying :attr:`.ELF.address`, the offset
for any given address doesn't change.
>>> bash = ELF('/bin/bash')
>>> bash.address == bash.offset_to_vaddr(0)
True
>>> bash.address += 0x123456
>>> bash.address == bash.offset_to_vaddr(0)
True
"""
load_address_fixup = (self.address - self.load_addr)
for segment in self.segments:
begin = segment.header.p_offset
size = segment.header.p_filesz
end = begin + size
if begin <= offset and offset <= end:
delta = offset - begin
return segment.header.p_vaddr + delta + load_address_fixup
return None
def _populate_memory(self):
load_segments = list(filter(lambda s: s.header.p_type == 'PT_LOAD', self.iter_segments()))
# Map all of the segments
for i, segment in enumerate(load_segments):
start = segment.header.p_vaddr
stop_data = start + segment.header.p_filesz
stop_mem = start + segment.header.p_memsz
# Chop any existing segments which cover the range described by
# [vaddr, vaddr+filesz].
#
# This has the effect of removing any issues we may encounter
# with "overlapping" segments, by giving precedence to whichever
# DT_LOAD segment is **last** to load data into the region.
self.memory.chop(start, stop_data)
# Fill the start of the segment's first page
page_start = align_down(0x1000, start)
if page_start < start and not self.memory[page_start]:
self.memory.addi(page_start, start, None)
# Add the new segment
if start != stop_data:
self.memory.addi(start, stop_data, segment)
if stop_data != stop_mem:
self.memory.addi(stop_data, stop_mem, b'\x00')
page_end = align(0x1000, stop_mem)
# Check for holes which we can fill
if self._fill_gaps and i+1 < len(load_segments):
next_start = load_segments[i+1].header.p_vaddr
page_next = align_down(0x1000, next_start)
if stop_mem < next_start:
if page_end < page_next:
if stop_mem < page_end:
self.memory.addi(stop_mem, page_end, None)
if page_next < next_start:
self.memory.addi(page_next, next_start, None)
else:
self.memory.addi(stop_mem, next_start, None)
else:
if stop_mem < page_end:
self.memory.addi(stop_mem, page_end, None)
def vaddr_to_offset(self, address):
"""vaddr_to_offset(address) -> int
Translates the specified virtual address to a file offset
Arguments:
address(int): Virtual address to translate
Returns:
int: Offset within the ELF file which corresponds to the address,
or :const:`None`.
Examples:
>>> bash = ELF(which('bash'))
>>> bash.vaddr_to_offset(bash.address)
0
>>> bash.address += 0x123456
>>> bash.vaddr_to_offset(bash.address)
0
>>> bash.vaddr_to_offset(0) is None
True
"""
for interval in self.memory[address]:
segment = interval.data
# Convert the address back to how it was when the segment was loaded
address = (address - self.address) + self.load_addr
# Figure out the offset into the segment
offset = address - segment.header.p_vaddr
# Add the segment-base offset to the offset-within-the-segment
return segment.header.p_offset + offset
def read(self, address, count):
r"""read(address, count) -> bytes
Read data from the specified virtual address
Arguments:
address(int): Virtual address to read
count(int): Number of bytes to read
Returns:
A :class:`bytes` object, or :const:`None`.
Examples:
The simplest example is just to read the ELF header.
>>> bash = ELF(which('bash'))
>>> bash.read(bash.address, 4)
b'\x7fELF'
ELF segments do not have to contain all of the data on-disk
that gets loaded into memory.
First, let's create an ELF file has some code in two sections.
>>> assembly = '''
... .section .A,"awx"
... .global A
... A: nop
... .section .B,"awx"
... .global B
... B: int3
... '''
>>> e = ELF.from_assembly(assembly, vma=False)
By default, these come right after eachother in memory.
>>> e.read(e.symbols.A, 2)
b'\x90\xcc'
>>> e.symbols.B - e.symbols.A
1
Let's move the sections so that B is a little bit further away.
>>> objcopy = pwnlib.asm._objcopy()
>>> objcopy += [
... '--change-section-vma', '.B+5',
... '--change-section-lma', '.B+5',
... e.path
... ]
>>> subprocess.check_call(objcopy)
0
Now let's re-load the ELF, and check again
>>> e = ELF(e.path)
>>> e.symbols.B - e.symbols.A
6
>>> e.read(e.symbols.A, 2)
b'\x90\x00'
>>> e.read(e.symbols.A, 7)
b'\x90\x00\x00\x00\x00\x00\xcc'
>>> e.read(e.symbols.A, 10)
b'\x90\x00\x00\x00\x00\x00\xcc\x00\x00\x00'
Everything is relative to the user-selected base address, so moving
things around keeps everything working.
>>> e.address += 0x1000
>>> e.read(e.symbols.A, 10)
b'\x90\x00\x00\x00\x00\x00\xcc\x00\x00\x00'
"""
retval = []
if count == 0:
return b''
start = address
stop = address + count
overlap = self.memory.overlap(start, stop)
# Create a new view of memory, for just what we need
memory = intervaltree.IntervalTree(overlap)
memory.chop(-1<<64, start)
memory.chop(stop, 1<<64)
if memory.begin() != start:
log.error("Address %#x is not contained in %s" % (start, self))
if memory.end() != stop:
log.error("Address %#x is not contained in %s" % (stop, self))
# We have a view of memory which lets us get everything we need
for begin, end, data in sorted(memory):
length = end-begin
if data in (None, b'\x00'):
retval.append(b'\x00' * length)
continue
# Offset within VMA range
begin -= self.address
# Adjust to original VMA range
begin += self.load_addr
# Adjust to offset within segment VMA
offset = begin - data.header.p_vaddr
# Adjust in-segment offset to in-file offset
offset += data.header.p_offset
retval.append(self.mmap[offset:offset+length])
return b''.join(retval)
def write(self, address, data):
"""Writes data to the specified virtual address
Arguments:
address(int): Virtual address to write
data(str): Bytes to write
Note:
This routine does not check the bounds on the write to ensure
that it stays in the same segment.
Examples:
>>> bash = ELF(which('bash'))
>>> bash.read(bash.address+1, 3)
b'ELF'
>>> bash.write(bash.address, b"HELO")
>>> bash.read(bash.address, 4)
b'HELO'
"""
offset = self.vaddr_to_offset(address)
if offset is not None:
length = len(data)
self.mmap[offset:offset+length] = data
return None
def save(self, path=None):
"""Save the ELF to a file
>>> bash = ELF(which('bash'))
>>> bash.save('/tmp/bash_copy')
>>> copy = open('/tmp/bash_copy', 'rb')
>>> bash = open(which('bash'), 'rb')
>>> bash.read() == copy.read()
True
"""
if path is None:
path = self.path
misc.write(path, self.data)
def get_data(self):
"""get_data() -> bytes
Retrieve the raw data from the ELF file.
>>> bash = ELF(which('bash'))
>>> fd = open(which('bash'), 'rb')
>>> bash.get_data() == fd.read()
True
"""
return self.mmap[:]
@property
def data(self):
""":class:`bytes`: Raw data of the ELF file.
See:
:meth:`get_data`
"""
return self.mmap[:]
def disasm(self, address, n_bytes):
"""disasm(address, n_bytes) -> str
Returns a string of disassembled instructions at
the specified virtual memory address"""
arch = self.arch
if self.arch == 'arm' and address & 1:
arch = 'thumb'
address -= 1
return disasm(self.read(address, n_bytes), vma=address, arch=arch, endian=self.endian)
def asm(self, address, assembly):
"""asm(address, assembly)
Assembles the specified instructions and inserts them
into the ELF at the specified address.
This modifies the ELF in-place.
The resulting binary can be saved with :meth:`.ELF.save`
"""
binary = asm(assembly, vma=address, arch=self.arch, endian=self.endian, bits=self.bits)
self.write(address, binary)
def bss(self, offset=0):
"""bss(offset=0) -> int
Returns:
Address of the ``.bss`` section, plus the specified offset.
"""
orig_bss = self.get_section_by_name('.bss').header.sh_addr
curr_bss = orig_bss - self.load_addr + self.address
return curr_bss + offset
def __repr__(self):
return "%s(%r)" % (self.__class__.__name__, self.path)
def dynamic_by_tag(self, tag):
"""dynamic_by_tag(tag) -> tag
Arguments:
tag(str): Named ``DT_XXX`` tag (e.g. ``'DT_STRTAB'``).
Returns:
:class:`elftools.elf.dynamic.DynamicTag`
"""
dt = None
dynamic = self.get_section_by_name('.dynamic')
if not dynamic:
return None
try:
dt = next(t for t in dynamic.iter_tags() if tag == t.entry.d_tag)
except StopIteration:
pass
return dt
def dynamic_value_by_tag(self, tag):
"""dynamic_value_by_tag(tag) -> int
Retrieve the value from a dynamic tag a la ``DT_XXX``.
If the tag is missing, returns ``None``.
"""
tag = self.dynamic_by_tag(tag)
if tag:
return tag.entry.d_val
def dynamic_string(self, offset):
"""dynamic_string(offset) -> bytes
Fetches an enumerated string from the ``DT_STRTAB`` table.
Arguments:
offset(int): String index
Returns:
:class:`str`: String from the table as raw bytes.
"""
dt_strtab = self.dynamic_by_tag('DT_STRTAB')
if not dt_strtab:
return None
address = dt_strtab.entry.d_ptr + offset
string = b''
while b'\x00' not in string:
string += self.read(address, 1)
address += 1
return string.rstrip(b'\x00')
@property
def relro(self):
""":class:`bool`: Whether the current binary uses RELRO protections.
This requires both presence of the dynamic tag ``DT_BIND_NOW``, and
a ``GNU_RELRO`` program header.
The `ELF Specification`_ describes how the linker should resolve
symbols immediately, as soon as a binary is loaded. This can be
emulated with the ``LD_BIND_NOW=1`` environment variable.
``DT_BIND_NOW``
If present in a shared object or executable, this entry instructs
the dynamic linker to process all relocations for the object
containing this entry before transferring control to the program.
The presence of this entry takes precedence over a directive to use
lazy binding for this object when specified through the environment
or via ``dlopen(BA_LIB)``.
(`page 81`_)
Separately, an extension to the GNU linker allows a binary to specify
a PT_GNU_RELRO_ program header, which describes the *region of memory
which is to be made read-only after relocations are complete.*
Finally, a new-ish extension which doesn't seem to have a canonical
source of documentation is DF_BIND_NOW_, which has supposedly superceded
``DT_BIND_NOW``.
``DF_BIND_NOW``
If set in a shared object or executable, this flag instructs the
dynamic linker to process all relocations for the object containing
this entry before transferring control to the program. The presence
of this entry takes precedence over a directive to use lazy binding
for this object when specified through the environment or via
``dlopen(BA_LIB)``.
.. _ELF Specification: https://refspecs.linuxbase.org/elf/elf.pdf
.. _page 81: https://refspecs.linuxbase.org/elf/elf.pdf#page=81
.. _DT_BIND_NOW: https://refspecs.linuxbase.org/elf/elf.pdf#page=81
.. _PT_GNU_RELRO: https://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic.html#PROGHEADER
.. _DF_BIND_NOW: https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html#df_bind_now
>>> path = pwnlib.data.elf.relro.path
>>> for test in glob(os.path.join(path, 'test-*')):
... e = ELF(test)
... expected = os.path.basename(test).split('-')[2]
... actual = str(e.relro).lower()
... assert actual == expected
"""
if not any('GNU_RELRO' in str(s.header.p_type) for s in self.segments):
return None
if self.dynamic_by_tag('DT_BIND_NOW'):
return "Full"
flags = self.dynamic_value_by_tag('DT_FLAGS')
if flags and flags & constants.DF_BIND_NOW:
return "Full"
flags_1 = self.dynamic_value_by_tag('DT_FLAGS_1')
if flags_1 and flags_1 & constants.DF_1_NOW:
return "Full"
return "Partial"
@property
def nx(self):
""":class:`bool`: Whether the current binary uses NX protections.
Specifically, we are checking for ``READ_IMPLIES_EXEC`` being set
by the kernel, as a result of honoring ``PT_GNU_STACK`` in the kernel.
``READ_IMPLIES_EXEC`` is set, according to a set of architecture specific
rules, that depend on the CPU features, and the presence of ``PT_GNU_STACK``.
Unfortunately, :class:`ELF` is not context-aware, so it's not always possible
to determine whether the process of a binary that's missing ``PT_GNU_STACK``
will have NX or not.
The rules are as follows:
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| ELF arch | linux | GNU_STACK | other | NX |
+===========+==============+===========================+================================================+==========+
| i386 | < 5.8 | non-exec | | enabled |
| | [#x86_5.7]_ +---------------------------+------------------------------------------------+----------+
| | | exec / missing | | disabled |
| +--------------+---------------------------+------------------------------------------------+----------+
| | >= 5.8 | exec / non-exec | | enabled |
| | [#x86_5.8]_ +---------------------------+------------------------------------------------+----------+
| | | missing | | disabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| amd64 | < 5.8 | non-exec | | enabled |
| | [#x86_5.7]_ +---------------------------+------------------------------------------------+----------+
| | | exec / missing | | disabled |
| +--------------+---------------------------+------------------------------------------------+----------+
| | >= 5.8 | exec / non-exec / missing | | enabled |
| | [#x86_5.8]_ | | | |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| arm | < 5.8 | non-exec* | | enabled |
| | [#arm_5.7]_ +---------------------------+------------------------------------------------+----------+
| | | exec / missing | | disabled |
| +--------------+---------------------------+------------------------------------------------+----------+
| | >= 5.8 | exec / non-exec* | | enabled |
| | [#arm_5.8]_ +---------------------------+------------------------------------------------+----------+
| | | missing | | disabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| mips | < 5.18 | non-exec* | | enabled |
| | [#mips_5.17]_+---------------------------+------------------------------------------------+----------+
| | | exec / missing | | disabled |
| +--------------+---------------------------+------------------------------------------------+----------+
| | >= 5.18 | exec / non-exec* | | enabled |
| | [#mips_5.18]_+---------------------------+------------------------------------------------+----------+
| | | missing | | disabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| powerpc | [#powerpc]_ | non-exec / exec | | enabled |
| | +---------------------------+------------------------------------------------+----------+
| | | missing | | disabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| powerpc64 | [#powerpc]_ | exec / non-exec / missing | | enabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| ia64 | [#ia64]_ | non-exec | | enabled |
| | +---------------------------+------------------------------------------------+----------+
| | | exec / missing | e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK == 0 | enabled |
| | + +------------------------------------------------+----------+
| | | | e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK != 0 | disabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
| the rest | [#the_rest]_ | exec / non-exec / missing | | enabled |
+-----------+--------------+---------------------------+------------------------------------------------+----------+
\\* Hardware limitations are ignored.
If ``READ_IMPLIES_EXEC`` is set, then `all readable pages are executable`__.
.. __: https://github.com/torvalds/linux/blob/v6.3/fs/binfmt_elf.c#L1008-L1009
.. code-block:: c
if (elf_read_implies_exec(loc->elf_ex, executable_stack))
current->personality |= READ_IMPLIES_EXEC;
.. [#x86_5.7]
`source <https://github.com/torvalds/linux/blob/v5.7/arch/x86/include/asm/elf.h#L285-L286>`__
.. code-block:: c
#define elf_read_implies_exec(ex, executable_stack) \\
(executable_stack != EXSTACK_DISABLE_X)
.. [#x86_5.8]
`source <https://github.com/torvalds/linux/blob/v5.8/arch/x86/include/asm/elf.h#L305-L306>`__
.. code-block:: c
#define elf_read_implies_exec(ex, executable_stack) \\
(mmap_is_ia32() && executable_stack == EXSTACK_DEFAULT)
`mmap_is_ia32()`__:
.. __: https://github.com/torvalds/linux/blob/v5.8/arch/x86/include/asm/elf.h#L318-L321
.. code-block:: c
/*
* True on X86_32 or when emulating IA32 on X86_64
*/
static inline int mmap_is_ia32(void)
.. [#arm_5.7]
`source <https://github.com/torvalds/linux/blob/v5.7/arch/arm/kernel/elf.c#L85-L92>`__
.. code-block:: c
int arm_elf_read_implies_exec(int executable_stack)
{
if (executable_stack != EXSTACK_DISABLE_X)
return 1;
if (cpu_architecture() < CPU_ARCH_ARMv6)
return 1;
return 0;
}
.. [#arm_5.8]
`source <https://github.com/torvalds/linux/blob/v5.8/arch/arm/kernel/elf.c#L104-L111>`__
.. code-block:: c
int arm_elf_read_implies_exec(int executable_stack)
{
if (executable_stack == EXSTACK_DEFAULT)
return 1;
if (cpu_architecture() < CPU_ARCH_ARMv6)
return 1;
return 0;
}
.. [#mips_5.17]
`source <https://github.com/torvalds/linux/blob/v5.17/arch/mips/kernel/elf.c#L329-L342>`__
.. code-block:: c
int mips_elf_read_implies_exec(void *elf_ex, int exstack)
{
if (exstack != EXSTACK_DISABLE_X) {
/* The binary doesn't request a non-executable stack */
return 1;
}
if (!cpu_has_rixi) {
/* The CPU doesn't support non-executable memory */
return 1;
}
return 0;
}
.. [#mips_5.18]
`source <https://github.com/torvalds/linux/blob/v5.18/arch/mips/kernel/elf.c#L329-L336>`__
.. code-block:: c
int mips_elf_read_implies_exec(void *elf_ex, int exstack)
{
/*
* Set READ_IMPLIES_EXEC only on non-NX systems that
* do not request a specific state via PT_GNU_STACK.
*/
return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
}
.. [#powerpc]
`source <https://github.com/torvalds/linux/blob/v6.3/arch/powerpc/include/asm/elf.h#L82-L108>`__
.. code-block:: c
#ifdef __powerpc64__
/* stripped */
# define elf_read_implies_exec(ex, exec_stk) (is_32bit_task() ? \\
(exec_stk == EXSTACK_DEFAULT) : 0)
#else
# define elf_read_implies_exec(ex, exec_stk) (exec_stk == EXSTACK_DEFAULT)
#endif /* __powerpc64__ */
.. [#ia64]
`source <https://github.com/torvalds/linux/blob/v6.3/arch/ia64/include/asm/elf.h#L203-L204>`__
.. code-block:: c
#define elf_read_implies_exec(ex, executable_stack) \\
((executable_stack!=EXSTACK_DISABLE_X) && ((ex).e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK) != 0)
EF_IA_64_LINUX_EXECUTABLE_STACK__:
.. __: https://github.com/torvalds/linux/blob/v6.3/arch/ia64/include/asm/elf.h#L33
.. code-block:: c
#define EF_IA_64_LINUX_EXECUTABLE_STACK 0x1 /* is stack (& heap) executable by default? */
.. [#the_rest]
`source <https://github.com/torvalds/linux/blob/v6.3/include/linux/elf.h#L13>`__
.. code-block:: c
# define elf_read_implies_exec(ex, have_pt_gnu_stack) 0
"""
if not self.executable:
return True
exec_bit = None
for seg in self.iter_segments_by_type('GNU_STACK'):
exec_bit = bool(seg.header.p_flags & P_FLAGS.PF_X)
non_exec = exec_bit is False
missing = exec_bit is None
EF_IA_64_LINUX_EXECUTABLE_STACK = 1
if self.arch in ['i386', 'arm', 'aarch64', 'mips', 'mips64']:
if non_exec:
return True
elif missing:
return False
return None
elif self.arch == 'amd64':
return True if non_exec else None
elif self.arch == 'powerpc':
return not missing
elif self.arch == 'powerpc64':
return True
elif self.arch == 'ia64':
if non_exec:
return True
return not bool(self['e_flags'] & EF_IA_64_LINUX_EXECUTABLE_STACK)
return True
@property
def execstack(self):
""":class:`bool`: Whether dynamically loading the current binary will make the stack executable.
This is based on the presence of a program header ``PT_GNU_STACK``,
its setting, and the default stack permissions for the architecture.
If ``PT_GNU_STACK`` is persent, the stack permissions are `set according to it`__:
.. __: https://github.com/bminor/glibc/blob/glibc-2.37/elf/dl-load.c#L1218-L1220
.. code-block:: c
case PT_GNU_STACK:
stack_flags = ph->p_flags;
break;
Else, the stack permissions are set according to the architecture defaults
as `defined by`__ ``DEFAULT_STACK_PERMS``:
.. __: https://github.com/bminor/glibc/blob/glibc-2.37/elf/dl-load.c#L1093-L1096
.. code-block:: c
/* On most platforms presume that PT_GNU_STACK is absent and the stack is
* executable. Other platforms default to a nonexecutable stack and don't
* need PT_GNU_STACK to do so. */
uint_fast16_t stack_flags = DEFAULT_STACK_PERMS;
By searching the source for ``DEFAULT_STACK_PERMS``, we can see which
architectures have which settings.
::
$ git grep '#define DEFAULT_STACK_PERMS' | grep -v PF_X
sysdeps/aarch64/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R|PF_W)
sysdeps/arc/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R|PF_W)
sysdeps/csky/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R|PF_W)
sysdeps/ia64/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R|PF_W)
sysdeps/loongarch/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R | PF_W)
sysdeps/nios2/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R|PF_W)
sysdeps/riscv/stackinfo.h: #define DEFAULT_STACK_PERMS (PF_R | PF_W)
"""
if not self.executable:
return False
# If the ``PT_GNU_STACK`` program header is preset, use it's premissions.
for seg in self.iter_segments_by_type('GNU_STACK'):
return bool(seg.header.p_flags & P_FLAGS.PF_X)
# If the ``PT_GNU_STACK`` program header is missing, then use the
# default rules. Out of the supported architectures, only AArch64,
# IA-64, and RISC-V get a non-executable stack by default.
return self.arch not in ['aarch64', 'ia64', 'riscv32', 'riscv64']
@property
def canary(self):
""":class:`bool`: Whether the current binary uses stack canaries."""
# Sometimes there is no function for __stack_chk_fail,
# but there is an entry in the GOT
return '__stack_chk_fail' in (set(self.symbols) | set(self.got))
@property
def packed(self):
""":class:`bool`: Whether the current binary is packed with UPX."""
return b'UPX!' in self.get_data()[:0xFF]
@property
def stripped(self):
""":class:`bool`: Whether the current binary has been stripped of symbols"""
return not any(section['sh_type'] == 'SHT_SYMTAB' for section in self.iter_sections())
@property
def debuginfo(self):
""":class:`bool`: Whether the current binary has debug information"""
return self.get_section_by_name('.debug_info') is not None
@property
def pie(self):
""":class:`bool`: Whether the current binary is position-independent."""
return self.elftype == 'DYN'
aslr=pie
@property
def rpath(self):
""":class:`bool`: Whether the current binary has an ``RPATH``."""
dt_rpath = self.dynamic_by_tag('DT_RPATH')
if not dt_rpath:
return None
return self.dynamic_string(dt_rpath.entry.d_ptr)
@property
def runpath(self):
""":class:`bool`: Whether the current binary has a ``RUNPATH``."""
dt_runpath = self.dynamic_by_tag('DT_RUNPATH')
if not dt_runpath:
return None
return self.dynamic_string(dt_runpath.entry.d_ptr)
def checksec(self, banner=True, color=True):
"""checksec(banner=True, color=True)
Prints out information in the binary, similar to ``checksec.sh``.
Arguments:
banner(bool): Whether to print the path to the ELF binary.
color(bool): Whether to use colored output.
"""
red = text.red if color else str
green = text.green if color else str
yellow = text.yellow if color else str
res = []
# Kernel version?
if self.version and self.version != (0,):
res.append('Version:'.ljust(12) + '.'.join(map(str, self.version)))
if self.build:
res.append('Build:'.ljust(12) + self.build)
res.extend([
"RELRO:".ljust(12) + {
'Full': green("Full RELRO"),
'Partial': yellow("Partial RELRO"),
None: red("No RELRO")
}[self.relro],
"Stack:".ljust(12) + {
True: green("Canary found"),
False: red("No canary found")
}[self.canary],
"NX:".ljust(12) + {
True: green("NX enabled"),
False: red("NX disabled"),
None: yellow("NX unknown - GNU_STACK missing"),
}[self.nx],
"PIE:".ljust(12) + {
True: green("PIE enabled"),
False: red("No PIE (%#x)" % self.address)
}[self.pie],
])
# Execstack may be a thing, even with NX enabled, because of glibc
if self.execstack and self.nx is not False:
res.append("Stack:".ljust(12) + red("Executable"))
# Are there any RWX areas in the binary?
#
# This will occur if NX is disabled and *any* area is
# RW, or can expressly occur.
if self.rwx_segments or (not self.nx and self.writable_segments):
res += [ "RWX:".ljust(12) + red("Has RWX segments") ]
if self.rpath:
res += [ "RPATH:".ljust(12) + red(repr(self.rpath)) ]
if self.runpath:
res += [ "RUNPATH:".ljust(12) + red(repr(self.runpath)) ]
if self.packed:
res.append('Packer:'.ljust(12) + red("Packed with UPX"))
if self.fortify:
res.append("FORTIFY:".ljust(12) + green("Enabled"))
if self.asan:
res.append("ASAN:".ljust(12) + green("Enabled"))
if self.msan:
res.append("MSAN:".ljust(12) + green("Enabled"))
if self.ubsan:
res.append("UBSAN:".ljust(12) + green("Enabled"))
if self.shadowstack:
res.append("SHSTK:".ljust(12) + green("Enabled"))
if self.ibt:
res.append("IBT:".ljust(12) + green("Enabled"))
if not self.stripped:
res.append("Stripped:".ljust(12) + red("No"))
if self.debuginfo:
res.append("Debuginfo:".ljust(12) + red("Yes"))
# Check for Linux configuration, it must contain more than
# just the version.
if len(self.config) > 1:
config_opts = collections.defaultdict(list)
for checker in kernel_configuration:
result, message = checker(self.config)
if not result:
config_opts[checker.title].append((checker.name, message))
for title, values in config_opts.items():
res.append(title + ':')
for name, message in sorted(values):
line = '{} = {}'.format(name, red(str(self.config.get(name, None))))
if message:
line += ' ({})'.format(message)
res.append(' ' + line)
# res.extend(sorted(config_opts))
return '\n'.join(res)
@property
def buildid(self):
""":class:`bytes`: GNU Build ID embedded into the binary"""
section = self.get_section_by_name('.note.gnu.build-id')
if section:
return section.data()[16:]
return None
@property
def fortify(self):
""":class:`bool`: Whether the current binary was built with
Fortify Source (``-DFORTIFY``)."""
if any(s.endswith('_chk') for s in self.plt):
return True
return False
@property
def asan(self):
""":class:`bool`: Whether the current binary was built with
Address Sanitizer (``ASAN``)."""
return any(s.startswith('__asan_') for s in self.symbols)
@property
def msan(self):
""":class:`bool`: Whether the current binary was built with
Memory Sanitizer (``MSAN``)."""
return any(s.startswith('__msan_') for s in self.symbols)
@property
def ubsan(self):
""":class:`bool`: Whether the current binary was built with
Undefined Behavior Sanitizer (``UBSAN``)."""
return any(s.startswith('__ubsan_') for s in self.symbols)
@property
def shadowstack(self):
""":class:`bool`: Whether the current binary was built with
Shadow Stack (``SHSTK``)"""
if self.arch not in ['i386', 'amd64']:
return False
for prop in self.iter_properties():
if prop.pr_type != 'GNU_PROPERTY_X86_FEATURE_1_AND':
continue
return prop.pr_data & ENUM_GNU_PROPERTY_X86_FEATURE_1_FLAGS['GNU_PROPERTY_X86_FEATURE_1_SHSTK'] > 0
return False
@property
def ibt(self):
""":class:`bool`: Whether the current binary was built with
Indirect Branch Tracking (``IBT``)"""
if self.arch not in ['i386', 'amd64']:
return False
for prop in self.iter_properties():
if prop.pr_type != 'GNU_PROPERTY_X86_FEATURE_1_AND':
continue
return prop.pr_data & ENUM_GNU_PROPERTY_X86_FEATURE_1_FLAGS['GNU_PROPERTY_X86_FEATURE_1_IBT'] > 0
return False
def _update_args(self, kw):
kw.setdefault('arch', self.arch)
kw.setdefault('bits', self.bits)
kw.setdefault('endian', self.endian)
def p64(self, address, data, *a, **kw):
"""Writes a 64-bit integer ``data`` to the specified ``address``"""
self._update_args(kw)
return self.write(address, packing.p64(data, *a, **kw))
def p32(self, address, data, *a, **kw):
"""Writes a 32-bit integer ``data`` to the specified ``address``"""
self._update_args(kw)
return self.write(address, packing.p32(data, *a, **kw))
def p16(self, address, data, *a, **kw):
"""Writes a 16-bit integer ``data`` to the specified ``address``"""
self._update_args(kw)
return self.write(address, packing.p16(data, *a, **kw))
def p8(self, address, data, *a, **kw):
"""Writes a 8-bit integer ``data`` to the specified ``address``"""
self._update_args(kw)
return self.write(address, packing.p8(data, *a, **kw))
def pack(self, address, data, *a, **kw):
"""Writes a packed integer ``data`` to the specified ``address``"""
self._update_args(kw)
return self.write(address, packing.pack(data, *a, **kw))
def u64(self, address, *a, **kw):
"""Unpacks an integer from the specified ``address``."""
self._update_args(kw)
return packing.u64(self.read(address, 8), *a, **kw)
def u32(self, address, *a, **kw):
"""Unpacks an integer from the specified ``address``."""
self._update_args(kw)
return packing.u32(self.read(address, 4), *a, **kw)
def u16(self, address, *a, **kw):
"""Unpacks an integer from the specified ``address``."""
self._update_args(kw)
return packing.u16(self.read(address, 2), *a, **kw)
def u8(self, address, *a, **kw):
"""Unpacks an integer from the specified ``address``."""
self._update_args(kw)
return packing.u8(self.read(address, 1), *a, **kw)
def unpack(self, address, *a, **kw):
"""Unpacks an integer from the specified ``address``."""
self._update_args(kw)
return packing.unpack(self.read(address, self.bytes), *a, **kw)
def string(self, address):
"""string(address) -> str
Reads a null-terminated string from the specified ``address``
Returns:
A ``str`` with the string contents (NUL terminator is omitted),
or an empty string if no NUL terminator could be found.
"""
data = b''
while True:
read_size = 0x1000
partial_page = address & 0xfff
if partial_page:
read_size -= partial_page
c = self.read(address, read_size)
if not c:
return b''
data += c
if b'\x00' in c:
return data[:data.index(b'\x00')]
address += len(c)
def flat(self, address, *a, **kw):
"""Writes a full array of values to the specified address.
See: :func:`.packing.flat`
"""
return self.write(address, packing.flat(*a,**kw))
def fit(self, address, *a, **kw):
"""Writes fitted data into the specified address.
See: :func:`.packing.fit`
"""
return self.write(address, packing.fit(*a, **kw))
def parse_kconfig(self, data):
self.config.update(parse_kconfig(data))
def disable_nx(self):
"""Disables NX for the ELF.
Zeroes out the ``PT_GNU_STACK`` program header ``p_type`` field.
"""
PT_GNU_STACK = packing.p32(ENUM_P_TYPE['PT_GNU_STACK'])
if not self.executable:
log.error("Can only make stack executable with executables")
for i, segment in enumerate(self.iter_segments()):
if not segment.header.p_type:
continue
if 'GNU_STACK' not in segment.header.p_type:
continue
phoff = self.header.e_phoff
phentsize = self.header.e_phentsize
offset = phoff + phentsize * i
if self.mmap[offset:offset+4] == PT_GNU_STACK:
self.mmap[offset:offset+4] = b'\x00' * 4
self.save()
# Invalidate the cached segments, ``PT_GNU_STACK`` was removed.
self._segments = None
return
log.error("Could not find PT_GNU_STACK, stack should already be executable")
@staticmethod
def set_runpath(exepath, runpath):
r"""set_runpath(str, str) -> ELF
Patches the RUNPATH of the ELF to the given path using the `patchelf utility <https://github.com/NixOS/patchelf>`_.
The dynamic loader will look for any needed shared libraries in the given path first,
before trying the system library paths. This is useful to run a binary with a different
libc binary.
Arguments:
exepath(str): Path to the binary to patch.
runpath(str): Path containing the needed libraries.
Returns:
A new ELF instance is returned after patching the binary with the external ``patchelf`` tool.
Example:
>>> tmpdir = tempfile.mkdtemp()
>>> ls_path = os.path.join(tmpdir, 'ls')
>>> _ = shutil.copy(which('ls'), ls_path)
>>> e = ELF.set_runpath(ls_path, './libs')
>>> e.runpath == b'./libs'
True
"""
if not which('patchelf'):
log.error('"patchelf" tool not installed. See https://github.com/NixOS/patchelf')
return None
try:
subprocess.check_output(['patchelf', '--set-rpath', runpath, exepath], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
log.failure('Patching RUNPATH failed (%d): %r', e.returncode, e.stdout)
return ELF(exepath, checksec=False)
@staticmethod
def set_interpreter(exepath, interpreter_path):
r"""set_interpreter(str, str) -> ELF
Patches the interpreter of the ELF to the given binary using the `patchelf utility <https://github.com/NixOS/patchelf>`_.
When running the binary, the new interpreter will be used to load the ELF.
Arguments:
exepath(str): Path to the binary to patch.
interpreter_path(str): Path to the ld.so dynamic loader.
Returns:
A new ELF instance is returned after patching the binary with the external ``patchelf`` tool.
Example:
>>> tmpdir = tempfile.mkdtemp()
>>> ls_path = os.path.join(tmpdir, 'ls')
>>> _ = shutil.copy(which('ls'), ls_path)
>>> e = ELF.set_interpreter(ls_path, '/tmp/correct_ld.so')
>>> e.linker == b'/tmp/correct_ld.so'
True
"""
# patch the interpreter
if not which('patchelf'):
log.error('"patchelf" tool not installed. See https://github.com/NixOS/patchelf')
return None
try:
subprocess.check_output(['patchelf', '--set-interpreter', interpreter_path, exepath], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
log.failure('Patching interpreter failed (%d): %r', e.returncode, e.stdout)
return ELF(exepath, checksec=False)
@staticmethod
def patch_custom_libraries(exe_path, custom_library_path, create_copy=True, suffix='_remotelibc'):
r"""patch_custom_libraries(str, str, bool, str) -> ELF
Looks for the interpreter binary in the given path and patches the binary to use
it if available. Also patches the RUNPATH to the given path using the `patchelf utility <https://github.com/NixOS/patchelf>`_.
Arguments:
exe_path(str): Path to the binary to patch.
custom_library_path(str): Path to a folder containing the libraries.
create_copy(bool): Create a copy of the binary and apply the patches to the copy.
suffix(str): Suffix to append to the filename when creating the copy to patch.
Returns:
A new ELF instance is returned after patching the binary with the external ``patchelf`` tool.
Example:
>>> tmpdir = tempfile.mkdtemp()
>>> linker_path = os.path.join(tmpdir, 'ld-mock.so')
>>> write(linker_path, b'loader')
>>> ls_path = os.path.join(tmpdir, 'ls')
>>> _ = shutil.copy(which('ls'), ls_path)
>>> e = ELF.patch_custom_libraries(ls_path, tmpdir)
>>> e.runpath.decode() == tmpdir
True
>>> e.linker.decode() == linker_path
True
"""
if not which('patchelf'):
log.error('"patchelf" tool not installed. See https://github.com/NixOS/patchelf')
return None
# Create a copy of the ELF to patch instead of the original file.
if create_copy:
import shutil
patched_path = exe_path + suffix
shutil.copy2(exe_path, patched_path)
exe_path = patched_path
# Set interpreter in ELF to the one in the library path.
interpreter_name = [filename for filename in os.listdir(custom_library_path) if filename.startswith('ld-')]
if interpreter_name:
interpreter_path = os.path.realpath(os.path.join(custom_library_path, interpreter_name[0]))
ELF.set_interpreter(exe_path, interpreter_path)
else:
log.warn("Couldn't find ld.so in library path. Interpreter not set.")
# Set RUNPATH to library path in order to find other libraries.
return ELF.set_runpath(exe_path, custom_library_path)
|