1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
"""Emulates instructions in the PLT to locate symbols more accurately.
"""
from __future__ import division
import logging
from pwnlib.args import args
from pwnlib.log import getLogger
from pwnlib.util import fiddling
from pwnlib.util import packing
log = getLogger(__name__)
def emulate_plt_instructions(elf, got, address, data, targets):
"""Emulates instructions in ``data``
Arguments:
elf(ELF): ELF that we are emulating
got(int): Address of the GOT, as expected in e.g. EBX
address(int): Address of ``data`` for emulation
data(str): Array of bytes to emulate
targets(list): List of target addresses
Returns:
:class:`dict`: Map of ``{address: target}`` for each address which
reaches one of the selected targets.
"""
rv = {}
if not args.PLT_DEBUG:
log.setLevel(logging.DEBUG + 1)
# Unicorn doesn't support big-endian for everything yet.
if elf.endian == 'big' and elf.arch == 'mips':
data = packing.unpack_many(data, bits=32, endian='little')
data = packing.flat(data, bits=32, endian='big')
uc, ctx = prepare_unicorn_and_context(elf, got, address, data)
# Brute force addresses, assume that PLT entry points are at 4-byte aligned
# Do not emulate more than a handful of instructions.
for i, pc in enumerate(range(address, address + len(data), 4)):
if log.isEnabledFor(logging.DEBUG):
log.debug('%s %#x', fiddling.enhex(data[i*4:(i+1) * 4]), pc)
log.debug(elf.disasm(pc, 4))
uc.context_restore(ctx)
target = emulate_plt_instructions_inner(uc, elf, got, pc, data[i*4:])
if target in targets:
log.debug("%#x -> %#x", pc, target)
rv[pc] = target
return rv
def __ensure_memory_to_run_unicorn():
"""
Check if there is enough memory to run Unicorn Engine.
Unicorn Engine requires 1GB of memory to run, if there isn't enough memory it calls exit(1).
This is a bug in Unicorn Engine, see: https://github.com/unicorn-engine/unicorn/issues/1766
"""
try:
from mmap import mmap, MAP_ANON, MAP_PRIVATE, PROT_EXEC, PROT_READ, PROT_WRITE
mm = mmap(
-1, 1024 * 1024 * 1024, MAP_PRIVATE | MAP_ANON, PROT_WRITE | PROT_READ | PROT_EXEC
)
mm.close()
except OSError:
raise OSError("Cannot allocate 1GB memory to run Unicorn Engine")
except ImportError:
# Can only mmap files on Windows, would need to use VirtualAlloc.
pass
def prepare_unicorn_and_context(elf, got, address, data):
import unicorn as U
__ensure_memory_to_run_unicorn()
# Instantiate the emulator with the correct arguments for the current
# architecutre.
arch = {
'aarch64': U.UC_ARCH_ARM64,
'amd64': U.UC_ARCH_X86,
'arm': U.UC_ARCH_ARM,
'i386': U.UC_ARCH_X86,
'mips': U.UC_ARCH_MIPS,
'mips64': U.UC_ARCH_MIPS,
# 'powerpc': U.UC_ARCH_PPC, <-- Not actually supported
'thumb': U.UC_ARCH_ARM,
'riscv32': U.UC_ARCH_RISCV,
'riscv64': U.UC_ARCH_RISCV,
}.get(elf.arch, None)
if arch is None:
log.warn("Could not emulate PLT instructions for %r" % elf)
return {}
emulation_bits = elf.bits
# x32 uses 64-bit instructions, just restricts itself to a 32-bit
# address space.
if elf.arch == 'amd64' and elf.bits == 32:
emulation_bits = 64
mode = {
32: U.UC_MODE_32,
64: U.UC_MODE_64
}.get(emulation_bits)
if elf.arch in ('arm', 'aarch64'):
mode = U.UC_MODE_ARM
uc = U.Uc(arch, mode)
# Map the page of memory, and fill it with the contents
start = address & (~0xfff)
stop = (address + len(data) + 0xfff) & (~0xfff)
if not (0 <= start <= stop <= (1 << elf.bits)):
return None
uc.mem_map(start, stop-start)
uc.mem_write(address, data)
assert uc.mem_read(address, len(data)) == data
# MIPS is unique in that it relies entirely on _DYNAMIC, at the beginning
# of the GOT. Each PLT stub loads an address stored here.
# Because of this, we have to support loading memory from this location.
#
# https://www.cr0.org/paper/mips.elf.external.resolution.txt
magic_addr = 0x7c7c7c7c
if elf.arch == 'mips':
# Map the GOT so that MIPS can access it
p_magic = packing.p32(magic_addr)
start = got & (~0xfff)
try:
uc.mem_map(start, 0x1000)
except Exception:
# Ignore double-mapping
pass
uc.mem_write(got, p_magic)
return uc, uc.context_save()
def emulate_plt_instructions_inner(uc, elf, got, pc, data):
import unicorn as U
# Hook invalid addresses and any accesses out of the specified address range
stopped_addr = []
# For MIPS. Explanation at prepare_unicorn_and_context.
magic_addr = 0x7c7c7c7c
def hook_mem(uc, access, address, size, value, user_data):
# Special case to allow MIPS to dereference the _DYNAMIC pointer
# in the GOT.
if elf.arch == 'mips' and address == got:
return True
user_data.append(address)
uc.emu_stop()
return False
hooks = [
uc.hook_add(U.UC_HOOK_MEM_READ, hook_mem, stopped_addr),
uc.hook_add(U.UC_HOOK_MEM_READ_UNMAPPED, hook_mem, stopped_addr),
]
# callback for tracing instructions
# def hook_code(uc, address, size, user_data):
# print(">>> Tracing instruction at %#x, instr size = %#x, data=%r"
# % (address, size, uc.mem_read(address, size)))
# hooks.append(uc.hook_add(U.UC_HOOK_CODE, hook_code))
# For Intel, set the value of EBX
if elf.arch == 'i386':
uc.reg_write(U.x86_const.UC_X86_REG_EBX, got)
# Special case for MIPS, which is the most silly architecture
# https://sourceware.org/ml/binutils/2004-11/msg00116.html
if elf.arch == 'mips' and elf.bits == 32:
OFFSET_GP_GOT = 0x7ff0
uc.reg_write(U.mips_const.UC_MIPS_REG_GP, got + 0x7ff0)
try:
uc.emu_start(pc, until=-1, count=5)
except U.UcError as error:
UC_ERR = next(k for k,v in \
U.unicorn_const.__dict__.items()
if error.errno == v and k.startswith('UC_ERR_'))
log.debug("%#x: %s (%s)", pc, error, UC_ERR)
if elf.arch == 'mips':
pc = uc.reg_read(U.mips_const.UC_MIPS_REG_PC)
if pc == magic_addr:
t8 = uc.reg_read(U.mips_const.UC_MIPS_REG_T8)
stopped_addr.append(elf._mips_got.get(t8, 0))
retval = 0
if stopped_addr:
retval = stopped_addr.pop()
for hook in hooks:
uc.hook_del(hook)
return retval
|