1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
# -*- coding: utf-8 -*-
"""
Topographical sort
"""
from __future__ import absolute_import
from __future__ import division
from collections import OrderedDict
from collections import defaultdict
from random import randint
from random import shuffle
from pwnlib.context import context
from pwnlib.log import getLogger
log = getLogger(__name__)
def check_cycle(reg, assignments):
"""Walk down the assignment list of a register,
return the path walked if it is encountered again.
Returns:
The list of register involved in the cycle.
If there is no cycle, this is an empty list.
Example:
>>> check_cycle('a', {'a': 1})
[]
>>> check_cycle('a', {'a': 'a'})
['a']
>>> check_cycle('a', {'a': 'b', 'b': 'a'})
['a', 'b']
>>> check_cycle('a', {'a': 'b', 'b': 'c', 'c': 'b', 'd': 'a'})
[]
>>> check_cycle('a', {'a': 'b', 'b': 'c', 'c': 'd', 'd': 'a'})
['a', 'b', 'c', 'd']
"""
return check_cycle_(reg, assignments, [])
def check_cycle_(reg, assignments, path):
target = assignments[reg]
path.append(reg)
# No cycle, some other value (e.g. 1)
if target not in assignments:
return []
# Found a cycle
if target in path:
# Does the cycle *start* with target?
# This determines whether the original register is
# in the cycle, or just depends on registers in one.
if target == path[0]:
return path
# Just depends on one.
return []
# Recurse
return check_cycle_(target, assignments, path)
def extract_dependencies(reg, assignments):
"""Return a list of all registers which directly
depend on the specified register.
Example:
>>> extract_dependencies('a', {'a': 1})
[]
>>> extract_dependencies('a', {'a': 'b', 'b': 1})
[]
>>> extract_dependencies('a', {'a': 1, 'b': 'a'})
['b']
>>> extract_dependencies('a', {'a': 1, 'b': 'a', 'c': 'a'})
['b', 'c']
"""
# sorted() is only for determinism
return sorted([k for k,v in assignments.items() if v == reg])
def resolve_order(reg, deps):
"""
Resolve the order of all dependencies starting at a given register.
Example:
>>> want = {'a': 1, 'b': 'c', 'c': 'd', 'd': 7, 'x': 'd'}
>>> deps = {'a': [], 'b': [], 'c': ['b'], 'd': ['c', 'x'], 'x': []}
>>> resolve_order('a', deps)
['a']
>>> resolve_order('b', deps)
['b']
>>> resolve_order('c', deps)
['b', 'c']
>>> resolve_order('d', deps)
['b', 'c', 'x', 'd']
"""
x = []
for dep in deps[reg]:
x.extend(resolve_order(dep, deps))
x.append(reg)
return x
def depends_on_cycle(reg, assignments, in_cycles):
while reg in assignments:
if reg in in_cycles:
return True
reg = assignments.get(reg, None)
return False
def regsort(in_out, all_regs, tmp = None, xchg = True, randomize = None):
"""
Sorts register dependencies.
Given a dictionary of registers to desired register contents,
return the optimal order in which to set the registers to
those contents.
The implementation assumes that it is possible to move from
any register to any other register.
If a dependency cycle is encountered, one of the following will
occur:
- If ``xchg`` is :const:`True`, it is assumed that dependency cyles can
be broken by swapping the contents of two register (a la the
``xchg`` instruction on i386).
- If ``xchg`` is not set, but not all destination registers in
``in_out`` are involved in a cycle, one of the registers
outside the cycle will be used as a temporary register,
and then overwritten with its final value.
- If ``xchg`` is not set, and all registers are involved in
a dependency cycle, the named register ``temporary`` is used
as a temporary register.
- If the dependency cycle cannot be resolved as described above,
an exception is raised.
Arguments:
in_out(dict):
Dictionary of desired register states.
Keys are registers, values are either registers or any other value.
all_regs(list):
List of all possible registers.
Used to determine which values in ``in_out`` are registers, versus
regular values.
tmp(obj, str):
Named register (or other sentinel value) to use as a temporary
register. If ``tmp`` is a named register **and** appears
as a source value in ``in_out``, dependencies are handled
appropriately. ``tmp`` cannot be a destination register
in ``in_out``.
If ``bool(tmp)==True``, this mode is enabled.
xchg(obj):
Indicates the existence of an instruction which can swap the
contents of two registers without use of a third register.
If ``bool(xchg)==False``, this mode is disabled.
random(bool):
Randomize as much as possible about the order or registers.
Returns:
A list of tuples of ``(src, dest)``.
Each register may appear more than once, if a register is used
as a temporary register, and later overwritten with its final
value.
If ``xchg`` is :const:`True` and it is used to break a dependency cycle,
then ``reg_name`` will be :const:`None` and ``value`` will be a tuple
of the instructions to swap.
Example:
>>> R = ['a', 'b', 'c', 'd', 'x', 'y', 'z']
If order doesn't matter for any subsequence, alphabetic
order is used.
>>> regsort({'a': 1, 'b': 2}, R)
[('mov', 'a', 1), ('mov', 'b', 2)]
>>> regsort({'a': 'b', 'b': 'a'}, R)
[('xchg', 'a', 'b')]
>>> regsort({'a': 'b', 'b': 'a'}, R, tmp='X') #doctest: +NORMALIZE_WHITESPACE
[('mov', 'X', 'a'),
('mov', 'a', 'b'),
('mov', 'b', 'X')]
>>> regsort({'a': 1, 'b': 'a'}, R) #doctest: +NORMALIZE_WHITESPACE
[('mov', 'b', 'a'),
('mov', 'a', 1)]
>>> regsort({'a': 'b', 'b': 'a', 'c': 3}, R) #doctest: +NORMALIZE_WHITESPACE
[('mov', 'c', 3),
('xchg', 'a', 'b')]
>>> regsort({'a': 'b', 'b': 'a', 'c': 'b'}, R) #doctest: +NORMALIZE_WHITESPACE
[('mov', 'c', 'b'),
('xchg', 'a', 'b')]
>>> regsort({'a':'b', 'b':'a', 'x':'b'}, R, tmp='y', xchg=False) #doctest: +NORMALIZE_WHITESPACE
[('mov', 'x', 'b'),
('mov', 'y', 'a'),
('mov', 'a', 'b'),
('mov', 'b', 'y')]
>>> regsort({'a':'b', 'b':'a', 'x':'b'}, R, tmp='x', xchg=False) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
PwnlibException: Cannot break dependency cycles ...
>>> regsort({'a':'b','b':'c','c':'a','x':'1','y':'z','z':'c'}, R) #doctest: +NORMALIZE_WHITESPACE
[('mov', 'x', '1'),
('mov', 'y', 'z'),
('mov', 'z', 'c'),
('xchg', 'a', 'b'),
('xchg', 'b', 'c')]
>>> regsort({'a':'b','b':'c','c':'a','x':'1','y':'z','z':'c'}, R, tmp='x') #doctest: +NORMALIZE_WHITESPACE
[('mov', 'y', 'z'),
('mov', 'z', 'c'),
('mov', 'x', 'a'),
('mov', 'a', 'b'),
('mov', 'b', 'c'),
('mov', 'c', 'x'),
('mov', 'x', '1')]
>>> regsort({'a':'b','b':'c','c':'a','x':'1','y':'z','z':'c'}, R, xchg=0) #doctest: +NORMALIZE_WHITESPACE
[('mov', 'y', 'z'),
('mov', 'z', 'c'),
('mov', 'x', 'a'),
('mov', 'a', 'b'),
('mov', 'b', 'c'),
('mov', 'c', 'x'),
('mov', 'x', '1')]
>>> regsort({'a': 'b', 'b': 'c'}, ['a','b','c'], xchg=0)
[('mov', 'a', 'b'), ('mov', 'b', 'c')]
"""
if randomize is None:
randomize = context.randomize
sentinel = object()
# Drop all registers which will be set to themselves.
#
# For example, {'eax': 'eax'}
in_out = {k:v for k,v in in_out.items() if k != v}
# Collapse constant values
#
# For eaxmple, {'eax': 0, 'ebx': 0} => {'eax': 0, 'ebx': 'eax'}
v_k = defaultdict(list)
for k,v in sorted(in_out.items()):
if v not in all_regs and v != 0:
v_k[v].append(k)
post_mov = {}
for v,ks in sorted(v_k.items(), key=repr):
for k in ks[1:]:
post_mov[k] = ks[0]
in_out.pop(k)
# Check input
if not all(k in all_regs for k in in_out):
log.error("Unknown register! Know: %r. Got: %r" % (all_regs, list(in_out)))
# In the simplest case, no registers are 'inputs'
# which are also 'outputs'.
#
# For example, {'eax': 1, 'ebx': 2, 'ecx': 'edx'}
if not any(v in in_out for k,v in in_out.items()):
result = [('mov', k,in_out[k]) for k in sorted(in_out)]
if randomize:
shuffle(result)
for dreg, sreg in sorted(post_mov.items()):
result.append(('mov', dreg, sreg))
return result
# Invert so we have a dependency graph.
#
# Input: {'A': 'B', 'B': '1', 'C': 'B'}
# Output: {'A': [], 'B': ['A', 'C'], 'C': []}
#
# In this case, both A and C must be set before B.
deps = {r: extract_dependencies(r, in_out) for r in in_out}
# Final result which will be returned
result = []
# Find all of the cycles.
#
# Given that everything is single-assignment, the cycles
# are guarnteed to be disjoint.
cycle_candidates = sorted(list(in_out))
cycles = []
in_cycle = []
not_in_cycle = []
if randomize:
shuffle(cycle_candidates)
while cycle_candidates:
reg = cycle_candidates[0]
cycle = check_cycle(reg, in_out)
if cycle:
if randomize:
x = randint(0, len(cycle))
cycle = cycle[x:] + cycle[:x]
cycles.append(cycle)
in_cycle.extend(cycle)
for reg in cycle:
cycle_candidates.remove(reg)
else:
not_in_cycle.append(cycle_candidates.pop(0))
#
# If there are cycles, ensure that we can break them.
#
# If the temporary register itself is in, or ultimately
# depends on a register which is in a cycle, we cannot use
# it as a temporary register.
#
# In this example below, X, Y, or Z cannot be a temporary register,
# as the following must occur before resolving the cycle:
#
# - X = Y
# - Y = Z
# - Z = C
#
# X → Y → Z → ───╮
# ↓
# ╭─ (A) → (B) → (C) ─╮
# ╰──────── ← ────────╯
if depends_on_cycle(tmp, in_out, in_cycle):
tmp = None
# If XCHG is expressly disabled, and there is no temporary register,
# try to see if there is any register which can be used as a temp
# register instead.
#
# If there are no cycles, there's no need for a temporary register.
if in_cycle and not (xchg or tmp):
for reg in in_out:
if not depends_on_cycle(reg, in_out, in_cycle):
tmp = reg
break
else:
nope = sorted((k,v) for k,v in in_out.items())
log.error("Cannot break dependency cycles in %r" % nope)
# Don't set the temporary register now
if tmp in not_in_cycle:
not_in_cycle.remove(tmp)
# Resolve everything *not* in a cycle.
if randomize:
shuffle(not_in_cycle)
while not_in_cycle:
reg = not_in_cycle[0]
order = resolve_order(reg, deps)
for reg in order:
# Did we already handle this reg?
if reg not in not_in_cycle:
continue
src = in_out[reg]
result.append(('mov', reg, src))
not_in_cycle.remove(reg)
# Mark this as resolved
if reg in deps.get(src, []):
deps[src].remove(reg)
# If using a temporary register, break each cycle individually
#
# ╭─ (A) → (B) → (C) ─╮
# ╰──────── ← ────────╯
#
# Becomes separete actions:
#
# tmp = A
# A = B
# B = C
# C = tmp
#
# ╭─ (A) → (B) → (C) ─╮
# ╰──────── ← ────────╯
if randomize:
shuffle(cycles)
if tmp:
for cycle in cycles:
first = cycle[0]
last = cycle[-1]
deps[first].remove(last)
in_out[last] = tmp
order = resolve_order(last, deps)
result.append(('mov', tmp, first))
for reg in order:
result.append(('mov', reg, in_out[reg]))
else:
for cycle in cycles:
size = len(cycle)
for i in range(size-1):
result.append(('xchg', cycle[i], cycle[(i+1) % size]))
# Finally, set the temp register's final value
if tmp and tmp in in_out:
result.append(('mov', tmp, in_out[tmp]))
for dreg, sreg in sorted(post_mov.items()):
result.append(('mov', dreg, sreg))
return result
|