1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
"""Module for calculating CRC-sums.
Contains all crc implementations know on the interwebz. For most implementations
it contains only the core crc algorithm and not e.g. padding schemes.
It is horribly slow, as implements a naive algorithm working direclty on
bit polynomials. This class is exposed as `BitPolynom`.
The current algorithm is super-linear and takes about 4 seconds to calculate
the crc32-sum of ``'A'*40000``.
An obvious optimization would be to actually generate some lookup-tables.
This doctest is to ensure that the known data are accurate:
>>> known = sys.modules['pwnlib.util.crc.known']
>>> known.all_crcs == known.generate()
True
"""
from __future__ import absolute_import
from __future__ import division
import six
import sys
import types
from pwnlib.util import fiddling
from pwnlib.util import packing
from pwnlib.util import safeeval
from pwnlib.util.crc import known
class BitPolynom(object):
"""Class for representing GF(2)[X], i.e. the field of polynomials over
GF(2).
In practice the polynomials are represented as numbers such that `x**n`
corresponds to `1 << n`. In this representation calculations are easy: Just
do everything as normal, but forget about everything the carries.
Addition becomes xor and multiplication becomes carry-less multiplication.
Examples:
>>> p1 = BitPolynom("x**3 + x + 1")
>>> p1
BitPolynom('x**3 + x + 1')
>>> int(p1)
11
>>> p1 == BitPolynom(11)
True
>>> p2 = BitPolynom("x**2 + x + 1")
>>> p1 + p2
BitPolynom('x**3 + x**2')
>>> p1 * p2
BitPolynom('x**5 + x**4 + 1')
>>> p1 // p2
BitPolynom('x + 1')
>>> p1 % p2
BitPolynom('x')
>>> d, r = divmod(p1, p2)
>>> d * p2 + r == p1
True
>>> BitPolynom(-1)
Traceback (most recent call last):
...
ValueError: Polynomials cannot be negative: -1
>>> BitPolynom('y')
Traceback (most recent call last):
...
ValueError: Not a valid polynomial: y
"""
def __init__(self, n):
if isinstance(n, (bytes, six.text_type)):
from pwnlib.util.packing import _need_text
n = _need_text(n)
self.n = 0
x = BitPolynom(2)
try:
for p in n.split('+'):
k = safeeval.values(p.strip(), {'x': x, 'X': x})
assert isinstance(k, (BitPolynom,)+six.integer_types)
k = int(k)
assert k >= 0
self.n ^= k
except (ValueError, NameError, AssertionError):
raise ValueError("Not a valid polynomial: %s" % n)
elif isinstance(n, six.integer_types):
if n >= 0:
self.n = n
else:
raise ValueError("Polynomials cannot be negative: %d" % n)
else:
raise TypeError("Polynomial must be called with a string or integer")
def __int__(self):
return self.n
def __add__(self, other):
return BitPolynom(int(self) ^ int(other))
def __radd__(self, other):
return BitPolynom(int(self) ^ int(other))
def __sub__(self, other):
return BitPolynom(int(self) ^ int(other))
def __rsub__(self, other):
return BitPolynom(int(self) ^ int(other))
def __xor__(self, other):
return BitPolynom(int(self) ^ int(other))
def __rxor__(self, other):
return BitPolynom(int(self) ^ int(other))
def __or__(self, other):
return BitPolynom(int(self) | int(other))
def __ror__(self, other):
return BitPolynom(int(self) | int(other))
def __and__(self, other):
return BitPolynom(int(self) & int(other))
def __rand__(self, other):
return BitPolynom(int(self) & int(other))
def __mul__(self, other):
a, b = int(self), int(other)
if a > b:
a, b = b, a
res = 0
for n in range(a.bit_length()):
if a & (1 << n):
res ^= b << n
return BitPolynom(res)
def __rmul__(self, other):
return self * other
def __divmod__(self, other):
other = BitPolynom(int(other))
if other == 0:
raise ZeroDivisionError
resd = 0
resm = int(self)
for n in range(self.degree() - other.degree(), -1, -1):
if resm & (1 << (n + other.degree())):
resm ^= int(other) << n
resd ^= 1 << n
return (BitPolynom(resd), BitPolynom(resm))
def __rdivmod__(self, other):
return divmod(BitPolynom(int(other)), self)
def __div__(self, other):
return divmod(self, other)[0]
__floordiv__ = __div__
def __rdiv__(self, other):
return divmod(other, self)[0]
__rfloordiv__ = __rdiv__
__floordiv__ = __div__
__rfloordiv__ = __rdiv__
def __mod__(self, other):
return divmod(self, other)[1]
def __rmod__(self, other):
return divmod(other, self)[1]
def __eq__(self, other):
return int(self) == int(other)
def __hash__(self):
return int(self).__hash__()
def __cmp__(self, other):
return int(self).__cmp__(int(other))
def __lshift__(self, other):
return BitPolynom(int(self) << int(other))
def __rlshift__(self, other):
return BitPolynom(int(other) << int(self))
def __rshift__(self, other):
return BitPolynom(int(self) >> int(other))
def __rrshift__(self, other):
return BitPolynom(int(other) >> int(self))
def __pow__(self, other):
r = BitPolynom(1)
for _ in range(other):
r *= self
return r
def degree(self):
"""Returns the degree of the polynomial.
Examples:
>>> BitPolynom(0).degree()
0
>>> BitPolynom(1).degree()
0
>>> BitPolynom(2).degree()
1
>>> BitPolynom(7).degree()
2
>>> BitPolynom((1 << 10) - 1).degree()
9
>>> BitPolynom(1 << 10).degree()
10
"""
return max(0, int(self).bit_length()-1)
def __repr__(self):
if int(self) == 0:
return '0'
out = []
for n in range(self.degree(), 1, -1):
if int(self) & (1 << n):
out.append("x**%d" % n)
if int(self) & 2:
out.append("x")
if int(self) & 1:
out.append("1")
return 'BitPolynom(%r)' % ' + '.join(out)
class Module(types.ModuleType):
def __init__(self):
super(Module, self).__init__(__name__)
self._cached_crcs = None
self.BitPolynom = BitPolynom
self.__dict__.update({
'__file__' : __file__,
'__package__' : __package__,
})
def __getattr__(self, attr):
crcs = known.all_crcs
if attr == '__all__':
return ['BitPolynom', 'generic_crc', 'cksum', 'find_crc_function'] + sorted(crcs.keys())
info = crcs.get(attr, None)
if not info:
raise AttributeError("'module' object has no attribute %r" % attr)
func = self._make_crc(info['name'], info['poly'], info['width'], info['init'], info['refin'], info['refout'], info['xorout'], info['check'], 'See also: ' + info['link'])
setattr(self, attr, func)
return func
def __dir__(self):
return self.__all__
@staticmethod
def generic_crc(data, polynom, width, init, refin, refout, xorout):
"""A generic CRC-sum function.
This is suitable to use with:
https://reveng.sourceforge.io/crc-catalogue/all.htm
The "check" value in the document is the CRC-sum of the string "123456789".
Arguments:
data(str): The data to calculate the CRC-sum of. This should either be a string or a list of bits.
polynom(int): The polynomial to use.
init(int): If the CRC-sum was calculated in hardware, then this would b
the initial value of the checksum register.
refin(bool): Should the input bytes be reflected?
refout(bool): Should the checksum be reflected?
xorout(int): The value to xor the checksum with before outputting
"""
polynom = BitPolynom(int(polynom)) | (1 << width)
if polynom.degree() != width:
raise ValueError("Polynomial is too large for that width")
init &= (1 << width)-1
xorout &= (1 << width)-1
if isinstance(data, list):
# refin is not meaningful in this case
inlen = len(data)
p = BitPolynom(int(''.join('1' if v else '0' for v in data), 2))
elif isinstance(data, six.binary_type):
inlen = len(data)*8
if refin:
data = fiddling.bitswap(data)
p = BitPolynom(packing.unpack(data, 'all', endian='big', sign=False))
else:
raise ValueError("Don't know how to crc %s()" % type(data).__name__)
p = p << width
p ^= init << inlen
p = p % polynom
res = p.n
if refout:
res = fiddling.bitswap_int(res, width)
res ^= xorout
return res
@staticmethod
def _make_crc(name, polynom, width, init, refin, refout, xorout, check, extra_doc = ''):
def inner(data):
return crc.generic_crc(data, polynom, width, init, refin, refout, xorout)
inner.func_name = 'crc_' + name
inner.__name__ = 'crc_' + name
inner.__qualname__ = 'crc_' + name
inner.__doc__ = """%s(data) -> int
Calculates the %s checksum.
This is simply the :func:`generic_crc` with these frozen arguments:
* polynom = 0x%x
* width = %d
* init = 0x%x
* refin = %s
* refout = %s
* xorout = 0x%x
%s
Arguments:
data(str): The data to checksum.
Example:
>>> print(%s(b'123456789'))
%d
""" % (name, name, polynom, width, init, refin, refout, xorout, extra_doc, name, check)
return inner
@staticmethod
def cksum(data):
"""cksum(data) -> int
Calculates the same checksum as returned by the UNIX-tool ``cksum``.
Arguments:
data(str): The data to checksum.
Example:
>>> print(cksum(b'123456789'))
930766865
"""
l = len(data)
data += packing.pack(l, 'all', endian='little', sign=False)
return crc.crc_32_cksum(data)
@staticmethod
def find_crc_function(data, checksum):
"""Finds all known CRC functions that hashes a piece of data into a specific
checksum. It does this by trying all known CRC functions one after the other.
Arguments:
data(str): Data for which the checksum is known.
Example:
>>> find_crc_function(b'test', 46197)
[<function crc_crc_16_dnp at ...>]
"""
candidates = []
for v in known.all_crcs.keys():
func = getattr(crc, v)
if func(data) == checksum:
candidates.append(func)
return candidates
tether = sys.modules[__name__]
crc = sys.modules[__name__] = Module()
crc.__doc__ = tether.__doc__
|