1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
from __future__ import division
import collections
import six
from six.moves import range
def partition(lst, f, save_keys = False):
"""partition(lst, f, save_keys = False) -> list
Partitions an iterable into sublists using a function to specify which
group they belong to.
It works by calling `f` on every element and saving the results into
an :class:`collections.OrderedDict`.
Arguments:
lst: The iterable to partition
f(function): The function to use as the partitioner.
save_keys(bool): Set this to True, if you want the OrderedDict
returned instead of just the values
Example:
>>> partition([1,2,3,4,5], lambda x: x&1)
[[1, 3, 5], [2, 4]]
>>> partition([1,2,3,4,5], lambda x: x%3, save_keys=True) == collections.OrderedDict([(1, [1, 4]), (2, [2, 5]), (0, [3])])
True
"""
d = collections.OrderedDict()
for l in lst:
c = f(l)
s = d.setdefault(c, [])
s.append(l)
if save_keys:
return d
else:
return list(d.values())
def group(n, lst, underfull_action = 'ignore', fill_value = None):
"""group(n, lst, underfull_action = 'ignore', fill_value = None) -> list
Split sequence into subsequences of given size. If the values cannot be
evenly distributed among into groups, then the last group will either be
returned as is, thrown out or padded with the value specified in fill_value.
Arguments:
n (int): The size of resulting groups
lst: The list, tuple or string to group
underfull_action (str): The action to take in case of an underfull group at the end. Possible values are 'ignore', 'drop' or 'fill'.
fill_value: The value to fill into an underfull remaining group.
Returns:
A list containing the grouped values.
Example:
>>> group(3, "ABCDEFG")
['ABC', 'DEF', 'G']
>>> group(3, 'ABCDEFG', 'drop')
['ABC', 'DEF']
>>> group(3, 'ABCDEFG', 'fill', 'Z')
['ABC', 'DEF', 'GZZ']
>>> group(3, list('ABCDEFG'), 'fill')
[['A', 'B', 'C'], ['D', 'E', 'F'], ['G', None, None]]
>>> group(2, tuple('1234'), 'fill')
[('1', '2'), ('3', '4')]
"""
if underfull_action not in ['ignore', 'drop', 'fill']:
raise ValueError("group(): underfull_action must be either 'ignore', 'drop' or 'fill'")
if underfull_action == 'fill':
if isinstance(lst, tuple):
fill_value = (fill_value,)
elif isinstance(lst, list):
fill_value = [fill_value]
elif isinstance(lst, (bytes, six.text_type)):
if not isinstance(fill_value, (bytes, six.text_type)):
raise ValueError("group(): cannot fill a string with a non-string")
else:
raise ValueError("group(): 'lst' must be either a tuple, list or string")
out = []
for i in range(0, len(lst), n):
out.append(lst[i:i+n])
if out and len(out[-1]) < n:
if underfull_action == 'ignore':
pass
elif underfull_action == 'drop':
out.pop()
else:
out[-1] = out[-1] + fill_value * (n - len(out[-1]))
return out
def concat(l):
"""concat(l) -> list
Concats a list of lists into a list.
Example:
>>> concat([[1, 2], [3]])
[1, 2, 3]
"""
res = []
for k in l:
res.extend(k)
return res
def concat_all(*args):
"""concat_all(*args) -> list
Concats all the arguments together.
Example:
>>> concat_all(0, [1, (2, 3)], [([[4, 5, 6]])])
[0, 1, 2, 3, 4, 5, 6]
"""
def go(arg, output):
if isinstance(arg, (tuple, list)):
for e in arg:
go(e, output)
else:
output.append(arg)
return output
return go(args, [])
def ordlist(s):
"""ordlist(s) -> list
Turns a string into a list of the corresponding ascii values.
Example:
>>> ordlist("hello")
[104, 101, 108, 108, 111]
"""
return list(map(ord, s))
def unordlist(cs):
"""unordlist(cs) -> str
Takes a list of ascii values and returns the corresponding string.
Example:
>>> unordlist([104, 101, 108, 108, 111])
'hello'
"""
return ''.join(chr(c) for c in cs)
def findall(haystack, needle):
"""findall(l, e) -> l
Generate all indices of needle in haystack, using the
Knuth-Morris-Pratt algorithm.
Example:
>>> foo = findall([1,2,3,4,4,3,4,2,1], 4)
>>> next(foo)
3
>>> next(foo)
4
>>> next(foo)
6
>>> list(foo) # no more appearances
[]
>>> list(findall("aaabaaabc", "aab"))
[1, 5]
"""
def __kmp_table(W):
pos = 1
cnd = 0
T = []
T.append(-1)
T.append(0)
while pos < len(W):
if W[pos] == W[cnd]:
cnd += 1
pos += 1
T.append(cnd)
elif cnd > 0:
cnd = T[cnd]
else:
pos += 1
T.append(0)
return T
def __kmp_search(S, W):
m = 0
i = 0
T = __kmp_table(W)
while m + i < len(S):
if S[m + i] == W[i]:
i += 1
if i == len(W):
yield m
m += i - T[i]
i = max(T[i], 0)
else:
m += i - T[i]
i = max(T[i], 0)
def __single_search(S, w):
for i, v in enumerate(S):
if v == w:
yield i
if type(haystack) != type(needle):
needle = [needle]
if len(needle) == 1:
return __single_search(haystack, needle[0])
else:
return __kmp_search(haystack, needle)
|