File: packing.py

package info (click to toggle)
pwntools 4.14.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 18,436 kB
  • sloc: python: 59,156; ansic: 48,063; asm: 45,030; sh: 396; makefile: 256
file content (1202 lines) | stat: -rw-r--r-- 41,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
 # -*- coding: utf-8 -*-
r"""
Module for packing and unpacking integers.

Simplifies access to the standard ``struct.pack`` and ``struct.unpack``
functions, and also adds support for packing/unpacking arbitrary-width
integers.

The packers are all context-aware for ``endian`` and ``signed`` arguments,
though they can be overridden in the parameters.

Examples:

    >>> p8(0)
    b'\x00'
    >>> p32(0xdeadbeef)
    b'\xef\xbe\xad\xde'
    >>> p32(0xdeadbeef, endian='big')
    b'\xde\xad\xbe\xef'
    >>> with context.local(endian='big'): p32(0xdeadbeef)
    b'\xde\xad\xbe\xef'

    Make a frozen packer, which does not change with context.

    >>> p=make_packer('all')
    >>> p(0xff)
    b'\xff'
    >>> p(0x1ff)
    b'\xff\x01'
    >>> with context.local(endian='big'): print(repr(p(0x1ff)))
    b'\xff\x01'
"""
from __future__ import absolute_import
from __future__ import division

import collections
import six
import struct
import sys
import warnings

from six.moves import range

from pwnlib.context import LocalNoarchContext
from pwnlib.context import context
from pwnlib.log import getLogger

from pwnlib.util import iters

mod = sys.modules[__name__]
log = getLogger(__name__)

def pack(number, word_size = None, endianness = None, sign = None, **kwargs):
    r"""pack(number, word_size = None, endianness = None, sign = None, **kwargs) -> str

    Packs arbitrary-sized integer.

    Word-size, endianness and signedness is done according to context.

    `word_size` can be any positive number or the string "all". Choosing the
    string "all" will output a string long enough to contain all the significant
    bits and thus be decodable by :func:`unpack`.

    `word_size` can be any positive number. The output will contain word_size/8
    rounded up number of bytes. If word_size is not a multiple of 8, it will be
    padded with zeroes up to a byte boundary.

    Arguments:
        number (int): Number to convert
        word_size (int): Word size of the converted integer or the string 'all' (in bits).
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer (False/True)
        kwargs: Anything that can be passed to context.local

    Returns:
        The packed number as a string.

    Examples:

        >>> pack(0x414243, 24, 'big', True)
        b'ABC'
        >>> pack(0x414243, 24, 'little', True)
        b'CBA'
        >>> pack(0x814243, 24, 'big', False)
        b'\x81BC'
        >>> pack(0x814243, 24, 'big', True)
        Traceback (most recent call last):
           ...
        ValueError: pack(): number does not fit within word_size
        >>> pack(0x814243, 25, 'big', True)
        b'\x00\x81BC'
        >>> pack(-1, 'all', 'little', True)
        b'\xff'
        >>> pack(-256, 'all', 'big', True)
        b'\xff\x00'
        >>> pack(0x0102030405, 'all', 'little', True)
        b'\x05\x04\x03\x02\x01'
        >>> pack(-1)
        b'\xff\xff\xff\xff'
        >>> pack(0x80000000, 'all', 'big', True)
        b'\x00\x80\x00\x00\x00'
"""
    if sign is None and number < 0:
        sign = True

    if word_size != 'all':
        kwargs.setdefault('word_size', word_size)

    kwargs.setdefault('endianness', endianness)
    kwargs.setdefault('sign', sign)

    with context.local(**kwargs):
        # Lookup in context if not found
        word_size  = 'all' if word_size == 'all' else context.word_size
        endianness = context.endianness
        sign       = context.sign

        if not isinstance(number, six.integer_types):
            raise ValueError("pack(): number must be of type (int,long) (got %r)" % type(number))

        if not isinstance(sign, bool):
            raise ValueError("pack(): sign must be either True or False (got %r)" % sign)

        if endianness not in ['little', 'big']:
            raise ValueError("pack(): endianness must be either 'little' or 'big' (got %r)" % endianness)

        # Verify that word_size make sense
        if word_size == 'all':
            if number == 0:
                word_size = 8
            elif number > 0:
                if sign:
                    word_size = (number.bit_length() | 7) + 1
                else:
                    word_size = ((number.bit_length() - 1) | 7) + 1
            else:
                if not sign:
                    raise ValueError("pack(): number does not fit within word_size")
                word_size = ((number + 1).bit_length() | 7) + 1
        elif not isinstance(word_size, six.integer_types) or word_size <= 0:
            raise ValueError("pack(): word_size must be a positive integer or the string 'all'")

        if sign:
            limit = 1 << (word_size-1)
            if not -limit <= number < limit:
                raise ValueError("pack(): number does not fit within word_size")
        else:
            limit = 1 << word_size
            if not 0 <= number < limit:
                raise ValueError("pack(): number does not fit within word_size [%i, %r, %r]" % (0, number, limit))

        # Normalize number and size now that we have verified them
        # From now on we can treat positive and negative numbers the same
        number = number & ((1 << word_size) - 1)
        byte_size = (word_size + 7) // 8

        out = []

        for _ in range(byte_size):
            out.append(_p8lu(number & 0xff))
            number = number >> 8

        if endianness == 'little':
            return b''.join(out)
        else:
            return b''.join(reversed(out))

@LocalNoarchContext
def unpack(data, word_size = None):
    r"""unpack(data, word_size = None, endianness = None, sign = None, **kwargs) -> int

    Unpacks arbitrary-sized integer.

    Word-size, endianness and signedness is done according to context.

    `word_size` can be any positive number or the string "all". Choosing the
    string "all" is equivalent to ``len(data)*8``.

    If `word_size` is not a multiple of 8, then the bits used for padding
    are discarded.

    Arguments:
        number (int): String to convert
        word_size (int): Word size of the converted integer or the string "all" (in bits).
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer (False/True)
        kwargs: Anything that can be passed to context.local

    Returns:
        The unpacked number.

    Examples:

        >>> hex(unpack(b'\xaa\x55', 16, endian='little', sign=False))
        '0x55aa'
        >>> hex(unpack(b'\xaa\x55', 16, endian='big', sign=False))
        '0xaa55'
        >>> hex(unpack(b'\xaa\x55', 16, endian='big', sign=True))
        '-0x55ab'
        >>> hex(unpack(b'\xaa\x55', 15, endian='big', sign=True))
        '0x2a55'
        >>> hex(unpack(b'\xff\x02\x03', 'all', endian='little', sign=True))
        '0x302ff'
        >>> hex(unpack(b'\xff\x02\x03', 'all', endian='big', sign=True))
        '-0xfdfd'
    """

    # Lookup in context if not found
    word_size  = word_size  or context.word_size
    endianness = context.endianness
    sign       = context.sign
    data = _need_bytes(data, 2)

    # Verify that word_size make sense
    if word_size == 'all':
        word_size = len(data) * 8
    elif not isinstance(word_size, six.integer_types) or word_size <= 0:
        raise ValueError("unpack(): word_size must be a positive integer or the string 'all'")

    byte_size = (word_size + 7) // 8

    if byte_size != len(data):
        raise ValueError("unpack(): data must have length %d, since word_size was %d" % (byte_size, word_size))

    number = 0

    if endianness == "little":
        data = reversed(data)
    data = bytearray(data)

    for c in data:
        number = (number << 8) + c

    number = number & ((1 << word_size) - 1)

    if not sign:
        return int(number)

    signbit = number & (1 << (word_size-1))
    return int(number - 2*signbit)

@LocalNoarchContext
def unpack_many(data, word_size = None):
    """unpack_many(data, word_size = None, endianness = None, sign = None) -> int list

    Splits `data` into groups of ``word_size//8`` bytes and calls :func:`unpack` on each group.  Returns a list of the results.

    `word_size` must be a multiple of `8` or the string "all".  In the latter case a singleton list will always be returned.

    Args
        number (int): String to convert
        word_size (int): Word size of the converted integers or the string "all" (in bits).
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer (False/True)
        kwargs: Anything that can be passed to context.local

    Returns:
        The unpacked numbers.

    Examples:

        >>> list(map(hex, unpack_many(b'\\xaa\\x55\\xcc\\x33', 16, endian='little', sign=False)))
        ['0x55aa', '0x33cc']
        >>> list(map(hex, unpack_many(b'\\xaa\\x55\\xcc\\x33', 16, endian='big', sign=False)))
        ['0xaa55', '0xcc33']
        >>> list(map(hex, unpack_many(b'\\xaa\\x55\\xcc\\x33', 16, endian='big', sign=True)))
        ['-0x55ab', '-0x33cd']
        >>> list(map(hex, unpack_many(b'\\xff\\x02\\x03', 'all', endian='little', sign=True)))
        ['0x302ff']
        >>> list(map(hex, unpack_many(b'\\xff\\x02\\x03', 'all', endian='big', sign=True)))
        ['-0xfdfd']
    """
    # Lookup in context if None
    word_size  = word_size  or context.word_size
    endianness = context.endianness
    sign       = context.sign

    if word_size == 'all':
        return [unpack(data, word_size)]

    # Currently we only group on byte boundaries
    if word_size % 8 != 0:
        raise ValueError("unpack_many(): word_size must be a multiple of 8")

    out = []
    n = word_size // 8
    for i in range(0, len(data), n):
        out.append(unpack(data[i:i+n], word_size))

    return list(map(int, out))



#
# Make individual packers, e.g. _p8lu
#
ops   = ['p','u']
sizes = {8:'b', 16:'h', 32:'i', 64:'q'}
ends  = ['b','l']
signs = ['s','u']

op_verbs         = {'p': 'pack', 'u': 'unpack'}


def make_single(op,size,end,sign):
    name = '_%s%s%s%s' % (op, size, end, sign)
    fmt  = sizes[size]
    end = '>' if end == 'b' else '<'

    if sign == 'u':
        fmt = fmt.upper()
    fmt = end+fmt

    struct_op = getattr(struct.Struct(fmt), op_verbs[op])
    if op == 'u':
        def routine(data, stacklevel=1):
            data = _need_bytes(data, stacklevel)
            return struct_op(data)[0]
    else:
        def routine(data, stacklevel=None):
            return struct_op(data)
    routine.__name__ = routine.__qualname__ = name

    return name, routine


for op,size,end,sign in iters.product(ops, sizes, ends, signs):
    name, routine = make_single(op,size,end,sign)
    setattr(mod, name, routine)


#
# Make normal user-oriented packers, e.g. p8
#
def _do_packing(op, size, number):

    name = "%s%s" % (op,size)
    mod = sys.modules[__name__]

    ls = getattr(mod, "_%sls" % (name))
    lu = getattr(mod, "_%slu" % (name))
    bs = getattr(mod, "_%sbs" % (name))
    bu = getattr(mod, "_%sbu" % (name))

    endian = context.endian
    signed = context.signed
    return {("little", True ):  ls,
            ("little", False):  lu,
            ("big",    True ):  bs,
            ("big",    False):  bu}[endian, signed](number, 3)

@LocalNoarchContext
def p8(number, endianness = None, sign = None, **kwargs):
    """p8(number, endianness, sign, ...) -> bytes

    Packs an 8-bit integer

    Arguments:
        number (int): Number to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The packed number as a byte string
    """
    return _do_packing('p', 8, number)

@LocalNoarchContext
def p16(number, endianness = None, sign = None, **kwargs):
    """p16(number, endianness, sign, ...) -> bytes

    Packs an 16-bit integer

    Arguments:
        number (int): Number to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The packed number as a byte string
    """
    return _do_packing('p', 16, number)

@LocalNoarchContext
def p32(number, endianness = None, sign = None, **kwargs):
    """p32(number, endianness, sign, ...) -> bytes

    Packs an 32-bit integer

    Arguments:
        number (int): Number to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The packed number as a byte string
    """
    return _do_packing('p', 32, number)

@LocalNoarchContext
def p64(number, endianness = None, sign = None, **kwargs):
    """p64(number, endianness, sign, ...) -> bytes

    Packs an 64-bit integer

    Arguments:
        number (int): Number to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The packed number as a byte string
    """
    return _do_packing('p', 64, number)

@LocalNoarchContext
def u8(data, endianness = None, sign = None, **kwargs):
    """u8(data, endianness, sign, ...) -> int

    Unpacks an 8-bit integer

    Arguments:
        data (bytes): Byte string to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The unpacked number
    """
    return _do_packing('u', 8, data)

@LocalNoarchContext
def u16(data, endianness = None, sign = None, **kwargs):
    """u16(data, endianness, sign, ...) -> int

    Unpacks an 16-bit integer

    Arguments:
        data (bytes): Byte string to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The unpacked number
    """
    return _do_packing('u', 16, data)

@LocalNoarchContext
def u32(data, endianness = None, sign = None, **kwargs):
    """u32(data, endianness, sign, ...) -> int

    Unpacks an 32-bit integer

    Arguments:
        data (bytes): Byte string to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The unpacked number
    """
    return _do_packing('u', 32, data)

@LocalNoarchContext
def u64(data, endianness = None, sign = None, **kwargs):
    """u64(data, endianness, sign, ...) -> int

    Unpacks an 64-bit integer

    Arguments:
        data (bytes): Byte string to convert
        endianness (str): Endianness of the converted integer ("little"/"big")
        sign (str): Signedness of the converted integer ("unsigned"/"signed")
        kwargs (dict): Arguments passed to context.local(), such as
            ``endian`` or ``signed``.

    Returns:
        The unpacked number
    """
    return _do_packing('u', 64, data)

def make_packer(word_size = None, sign = None, **kwargs):
    """make_packer(word_size = None, endianness = None, sign = None) -> number → str

    Creates a packer by "freezing" the given arguments.

    Semantically calling ``make_packer(w, e, s)(data)`` is equivalent to calling
    ``pack(data, w, e, s)``. If word_size is one of 8, 16, 32 or 64, it is however
    faster to call this function, since it will then use a specialized version.

    Arguments:
        word_size (int): The word size to be baked into the returned packer or the string all (in bits).
        endianness (str): The endianness to be baked into the returned packer. ("little"/"big")
        sign (str): The signness to be baked into the returned packer. ("unsigned"/"signed")
        kwargs: Additional context flags, for setting by alias (e.g. ``endian=`` rather than index)

    Returns:
        A function, which takes a single argument in the form of a number and returns a string
        of that number in a packed form.

    Examples:

        >>> p = make_packer(32, endian='little', sign='unsigned')
        >>> p
        <function _p32lu at 0x...>
        >>> p(42)
        b'*\\x00\\x00\\x00'
        >>> p(-1)
        Traceback (most recent call last):
            ...
        error: integer out of range for 'I' format code
        >>> make_packer(33, endian='little', sign='unsigned')
        <function ...<lambda> at 0x...>
"""
    with context.local(sign=sign, **kwargs):
        word_size  = word_size or context.word_size
        endianness = context.endianness
        sign       = sign if sign is None else context.sign

        if word_size in [8, 16, 32, 64]:
            packer = {
                (8, 0, 0):  _p8lu,
                (8, 0, 1):  _p8ls,
                (8, 1, 0):  _p8bu,
                (8, 1, 1):  _p8bs,
                (16, 0, 0): _p16lu,
                (16, 0, 1): _p16ls,
                (16, 1, 0): _p16bu,
                (16, 1, 1): _p16bs,
                (32, 0, 0): _p32lu,
                (32, 0, 1): _p32ls,
                (32, 1, 0): _p32bu,
                (32, 1, 1): _p32bs,
                (64, 0, 0): _p64lu,
                (64, 0, 1): _p64ls,
                (64, 1, 0): _p64bu,
                (64, 1, 1): _p64bs,
            }.get((word_size, {'big': 1, 'little': 0}[endianness], sign))

            if packer:
                return packer

        return lambda number: pack(number, word_size, endianness, sign)

@LocalNoarchContext
def make_unpacker(word_size = None, endianness = None, sign = None, **kwargs):
    """make_unpacker(word_size = None, endianness = None, sign = None,  **kwargs) -> str → number

    Creates an unpacker by "freezing" the given arguments.

    Semantically calling ``make_unpacker(w, e, s)(data)`` is equivalent to calling
    ``unpack(data, w, e, s)``. If word_size is one of 8, 16, 32 or 64, it is however
    faster to call this function, since it will then use a specialized version.

    Arguments:
        word_size (int): The word size to be baked into the returned packer (in bits).
        endianness (str): The endianness to be baked into the returned packer. ("little"/"big")
        sign (str): The signness to be baked into the returned packer. ("unsigned"/"signed")
        kwargs: Additional context flags, for setting by alias (e.g. ``endian=`` rather than index)

    Returns:
        A function, which takes a single argument in the form of a string and returns a number
        of that string in an unpacked form.

    Examples:

        >>> u = make_unpacker(32, endian='little', sign='unsigned')
        >>> u
        <function _u32lu at 0x...>
        >>> hex(u(b'/bin'))
        '0x6e69622f'
        >>> u(b'abcde')
        Traceback (most recent call last):
            ...
        error: unpack requires a string argument of length 4
        >>> make_unpacker(33, endian='little', sign='unsigned')
        <function ...<lambda> at 0x...>
"""
    word_size  = word_size or context.word_size
    endianness = context.endianness
    sign       = context.sign

    if word_size in [8, 16, 32, 64]:
        endianness = 1 if endianness == 'big'    else 0

        return {
            (8, 0, 0):  _u8lu,
            (8, 0, 1):  _u8ls,
            (8, 1, 0):  _u8bu,
            (8, 1, 1):  _u8bs,
            (16, 0, 0): _u16lu,
            (16, 0, 1): _u16ls,
            (16, 1, 0): _u16bu,
            (16, 1, 1): _u16bs,
            (32, 0, 0): _u32lu,
            (32, 0, 1): _u32ls,
            (32, 1, 0): _u32bu,
            (32, 1, 1): _u32bs,
            (64, 0, 0): _u64lu,
            (64, 0, 1): _u64ls,
            (64, 1, 0): _u64bu,
            (64, 1, 1): _u64bs,
        }[word_size, endianness, sign]
    else:
        return lambda number: unpack(number, word_size, endianness, sign)

def _fit(pieces, preprocessor, packer, filler, stacklevel=1):

    # Pulls bytes from `filler` and adds them to `pad` until it ends in `key`.
    # Returns the index of `key` in `pad`.
    pad = bytearray()
    def fill(key):
        key = bytearray(key)
        offset = pad.find(key)
        while offset == -1:
            pad.append(next(filler))
            offset = pad.find(key, -len(key))
        return offset

    # Key conversion:
    # - convert str/unicode keys to offsets
    # - convert large int (no null-bytes in a machine word) keys to offsets
    pieces_ = dict()
    large_key = 2**(context.word_size-8)
    for k, v in pieces.items():
        if isinstance(k, six.integer_types):
            if k >= large_key:
                k = fill(pack(k))
        elif isinstance(k, (six.text_type, bytearray, bytes)):
            k = fill(_need_bytes(k, stacklevel, 0x80))
        else:
            raise TypeError("flat(): offset must be of type int or str, but got '%s'" % type(k))
        if k in pieces_:
            raise ValueError("flag(): multiple values at offset %d" % k)
        pieces_[k] = v
    pieces = pieces_

    # We must "roll back" `filler` so each recursive call to `_flat` gets it in
    # the right position
    filler = iters.chain(pad, filler)

    # Build output
    out = b''

    # Negative indices need to be removed and then re-submitted
    negative = {k:v for k,v in pieces.items() if isinstance(k, int) and k<0}

    for k in negative:
        del pieces[k]

    # Positive output
    for k, v in sorted(pieces.items()):
        if k < len(out):
            raise ValueError("flat(): data at offset %d overlaps with previous data which ends at offset %d" % (k, len(out)))

        # Fill up to offset
        while len(out) < k:
            out += p8(next(filler))

        # Recursively flatten data
        out += _flat([v], preprocessor, packer, filler, stacklevel + 1)

    # Now do negative indices
    out_negative = b''
    if negative:
        most_negative = min(negative.keys())
        for k, v in sorted(negative.items()):
            k += -most_negative

            if k < len(out_negative):
                raise ValueError("flat(): data at offset %d overlaps with previous data which ends at offset %d" % (k, len(out)))

            # Fill up to offset
            while len(out_negative) < k:
                out_negative += p8(next(filler))

            # Recursively flatten data
            out_negative += _flat([v], preprocessor, packer, filler, stacklevel + 1)

    return filler, out_negative + out

def _flat(args, preprocessor, packer, filler, stacklevel=1):
    out = []
    for arg in args:

        if not isinstance(arg, (list, tuple, dict)):
            arg_ = preprocessor(arg)
            if arg_ is not None:
                arg = arg_

        if hasattr(arg, '__flat__'):
            val = arg.__flat__()
        elif isinstance(arg, (list, tuple)):
            val = _flat(arg, preprocessor, packer, filler, stacklevel + 1)
        elif isinstance(arg, dict):
            filler, val = _fit(arg, preprocessor, packer, filler, stacklevel + 1)
        elif isinstance(arg, bytes):
            val = arg
        elif isinstance(arg, six.text_type):
            val = _need_bytes(arg, stacklevel + 1)
        elif isinstance(arg, six.integer_types):
            val = packer(arg)
        elif isinstance(arg, bytearray):
            val = bytes(arg)
        else:
            raise ValueError("flat(): Flat does not support values of type %s" % type(arg))

        out.append(val)

        # Advance `filler` for "non-recursive" values
        if not isinstance(arg, (list, tuple, dict)):
            for _ in range(len(val)):
                next(filler)

    return b''.join(out)

@LocalNoarchContext
def flat(*args, **kwargs):
    r"""flat(\*args, preprocessor = None, length = None, filler = de_bruijn(),
     word_size = None, endianness = None, sign = None) -> str

    Flattens the arguments into a string.

    This function takes an arbitrary number of arbitrarily nested lists, tuples
    and dictionaries.  It will then find every string and number inside those
    and flatten them out.  Strings are inserted directly while numbers are
    packed using the :func:`pack` function.  Unicode strings are UTF-8 encoded.

    Dictionary keys give offsets at which to place the corresponding values
    (which are recursively flattened).  Offsets are relative to where the
    flattened dictionary occurs in the output (i.e. ``{0: 'foo'}`` is equivalent
    to ``'foo'``).  Offsets can be integers, unicode strings or regular strings.
    Integer offsets >= ``2**(word_size-8)`` are converted to a string using
    :func:`pack`.  Unicode strings are UTF-8 encoded.  After these conversions
    offsets are either integers or strings.  In the latter case, the offset will
    be the lowest index at which the string occurs in `filler`.  See examples
    below.

    Space between pieces of data is filled out using the iterable `filler`.  The
    `n`'th byte in the output will be byte at index ``n % len(iterable)`` byte
    in `filler` if it has finite length or the byte at index `n` otherwise.

    If `length` is given, the output will be padded with bytes from `filler` to
    be this size.  If the output is longer than `length`, a :py:exc:`ValueError`
    exception is raised.

    The three kwargs `word_size`, `endianness` and `sign` will default to using
    values in :mod:`pwnlib.context` if not specified as an argument.

    Arguments:
      args: Values to flatten
      preprocessor (function): Gets called on every element to optionally
         transform the element before flattening. If :const:`None` is
         returned, then the original value is used.
      length: The length of the output.
      filler: Iterable to use for padding.
      word_size (int): Word size of the converted integer.
      endianness (str): Endianness of the converted integer ("little"/"big").
      sign (str): Signedness of the converted integer (False/True)

    Examples:

        (Test setup, please ignore)
    
        >>> context.clear()

        Basic usage of :meth:`flat` works similar to the pack() routines.

        >>> flat(4)
        b'\x04\x00\x00\x00'

        :meth:`flat` works with strings, bytes, lists, and dictionaries.

        >>> flat(b'X')
        b'X'
        >>> flat([1,2,3])
        b'\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
        >>> flat({4:b'X'})
        b'aaaaX'

        :meth:`.flat` flattens all of the values provided, and allows nested lists
        and dictionaries.

        >>> flat([{4:b'X'}] * 2)
        b'aaaaXaaacX'
        >>> flat([[[[[[[[[1]]]], 2]]]]])
        b'\x01\x00\x00\x00\x02\x00\x00\x00'

        You can also provide additional arguments like endianness, word-size, and
        whether the values are treated as signed or not.

        >>> flat(1, b"test", [[[b"AB"]*2]*3], endianness = 'little', word_size = 16, sign = False)
        b'\x01\x00testABABABABABAB'

        A preprocessor function can be provided in order to modify the values in-flight.
        This example converts increments each value by 1, then converts to a byte string.

        >>> flat([1, [2, 3]], preprocessor = lambda x: str(x+1).encode())
        b'234'

        Using dictionaries is a fast way to get specific values at specific offsets,
        without having to do ``data += "foo"`` repeatedly.

        >>> flat({12: 0x41414141,
        ...       24: b'Hello',
        ...      })
        b'aaaabaaacaaaAAAAeaaafaaaHello'

        Dictionary usage permits directly using values derived from :func:`.cyclic`.
        See :func:`.cyclic`, :function:`pwnlib.context.context.cyclic_alphabet`, and :data:`.context.cyclic_size`
        for more options.  

        The cyclic pattern can be provided as either the text or hexadecimal offset.

        >>> flat({ 0x61616162: b'X'})
        b'aaaaX'
        >>> flat({'baaa': b'X'})
        b'aaaaX'

        Fields do not have to be in linear order, and can be freely mixed.
        This also works with cyclic offsets.

        >>> flat({2: b'A', 0:b'B'})
        b'BaA'
        >>> flat({0x61616161: b'x', 0x61616162: b'y'})
        b'xaaay'
        >>> flat({0x61616162: b'y', 0x61616161: b'x'})
        b'xaaay'

        Fields do not have to be in order, and can be freely mixed.

        >>> flat({'caaa': b'XXXX', 16: b'\x41', 20: 0xdeadbeef})
        b'aaaabaaaXXXXdaaaAaaa\xef\xbe\xad\xde'
        >>> flat({ 8: [0x41414141, 0x42424242], 20: b'CCCC'})
        b'aaaabaaaAAAABBBBeaaaCCCC'
        >>> fit({
        ...     0x61616161: b'a',
        ...     1: b'b',
        ...     0x61616161+2: b'c',
        ...     3: b'd',
        ... })
        b'abadbaaac'

        By default, gaps in the data are filled in with the :meth:`.cyclic` pattern.
        You can customize this by providing an iterable or method for the ``filler``
        argument.

        >>> flat({12: b'XXXX'}, filler = b'_', length = 20)
        b'____________XXXX____'
        >>> flat({12: b'XXXX'}, filler = b'AB', length = 20)
        b'ABABABABABABXXXXABAB'

        Nested dictionaries also work as expected.

        >>> flat({4: {0: b'X', 4: b'Y'}})
        b'aaaaXaaaY'
        >>> fit({4: {4: b'XXXX'}})
        b'aaaabaaaXXXX'

        Negative indices are also supported, though this only works for integer
        keys.
    
        >>> flat({-4: b'x', -1: b'A', 0: b'0', 4: b'y'})
        b'xaaA0aaay'
    """
    # HACK: To avoid circular imports we need to delay the import of `cyclic`
    from pwnlib.util import cyclic

    preprocessor = kwargs.pop('preprocessor', lambda x: None)
    filler       = kwargs.pop('filler', cyclic.de_bruijn())
    length       = kwargs.pop('length', None)
    stacklevel   = kwargs.pop('stacklevel', 0)

    if isinstance(filler, (str, six.text_type)):
        filler = bytearray(_need_bytes(filler))

    if kwargs != {}:
        raise TypeError("flat() does not support argument %r" % kwargs.popitem()[0])

    filler = iters.cycle(filler)
    out = _flat(args, preprocessor, make_packer(), filler, stacklevel + 2)

    if length:
        if len(out) > length:
            raise ValueError("flat(): Arguments does not fit within `length` (= %d) bytes" % length)
        out += b''.join(p8(next(filler)) for _ in range(length - len(out)))

    return out

def fit(*args, **kwargs):
    """Legacy alias for :func:`flat`"""
    kwargs['stacklevel'] = kwargs.get('stacklevel', 0) + 1
    return flat(*args, **kwargs)

"""
    Generates a string from a dictionary mapping offsets to data to place at
    that offset.

    For each key-value pair in `pieces`, the key is either an offset or a byte
    sequence.  In the latter case, the offset will be the lowest index at which
    the sequence occurs in `filler`.  See examples below.

    Each piece of data is passed to :meth:`flat` along with the keyword
    arguments `word_size`, `endianness` and `sign`.

    Space between pieces of data is filled out using the iterable `filler`.  The
    `n`'th byte in the output will be byte at index ``n % len(iterable)`` byte
    in `filler` if it has finite length or the byte at index `n` otherwise.

    If `length` is given, the output will padded with bytes from `filler` to be
    this size.  If the output is longer than `length`, a :py:exc:`ValueError`
    exception is raised.

    If entries in `pieces` overlap, a :py:exc:`ValueError` exception is
    raised.

    Arguments:
      pieces: Offsets and values to output.
      length: The length of the output.
      filler: Iterable to use for padding.
      preprocessor (function): Gets called on every element to optionally
         transform the element before flattening. If :const:`None` is
         returned, then the original value is used.
      word_size (int): Word size of the converted integer (in bits).
      endianness (str): Endianness of the converted integer ("little"/"big").
      sign (str): Signedness of the converted integer (False/True)

    Examples:

    """

def signed(integer):
    return unpack(pack(integer), signed=True)

def unsigned(integer):
    return unpack(pack(integer))

def dd(dst, src, count = 0, skip = 0, seek = 0, truncate = False):
    """dd(dst, src, count = 0, skip = 0, seek = 0, truncate = False) -> dst

    Inspired by the command line tool ``dd``, this function copies `count` byte
    values from offset `seek` in `src` to offset `skip` in `dst`.  If `count` is
    0, all of ``src[seek:]`` is copied.

    If `dst` is a mutable type it will be updated.  Otherwise, a new instance of
    the same type will be created.  In either case the result is returned.

    `src` can be an iterable of characters or integers, a unicode string or a
    file object.  If it is an iterable of integers, each integer must be in the
    range [0;255].  If it is a unicode string, its UTF-8 encoding will be used.

    The seek offset of file objects will be preserved.

    Arguments:
        dst: Supported types are :class:`file`, :class:`list`, :class:`tuple`,
             :class:`str`, :class:`bytearray` and :class:`unicode`.
        src: An iterable of byte values (characters or integers), a unicode
             string or a file object.
        count (int): How many bytes to copy.  If `count` is 0 or larger than
                     ``len(src[seek:])``, all bytes until the end of `src` are
                     copied.
        skip (int): Offset in `dst` to copy to.
        seek (int): Offset in `src` to copy from.
        truncate (bool): If :const:`True`, `dst` is truncated at the last copied
                         byte.

    Returns:
        A modified version of `dst`.  If `dst` is a mutable type it will be
        modified in-place.

    Examples:

        >>> dd(tuple('Hello!'), b'?', skip = 5)
        ('H', 'e', 'l', 'l', 'o', b'?')
        >>> dd(list('Hello!'), (63,), skip = 5)
        ['H', 'e', 'l', 'l', 'o', b'?']
        >>> _ = open('/tmp/foo', 'w').write('A' * 10)
        >>> dd(open('/tmp/foo'), open('/dev/zero'), skip = 3, count = 4).read()
        'AAA\\x00\\x00\\x00\\x00AAA'
        >>> _ = open('/tmp/foo', 'w').write('A' * 10)
        >>> dd(open('/tmp/foo'), open('/dev/zero'), skip = 3, count = 4, truncate = True).read()
        'AAA\\x00\\x00\\x00\\x00'
    """

    # Re-open file objects to make sure we have the mode right
    if hasattr(src, 'name'):
        src = open(src.name, 'rb')
    if hasattr(dst, 'name'):
        real_dst = dst
        dst = open(dst.name, 'rb+')

    # Special case: both `src` and `dst` are files, so we don't need to hold
    # everything in memory
    if hasattr(src, 'seek') and hasattr(dst, 'seek'):
        src.seek(seek)
        dst.seek(skip)
        n = 0
        if count:
            while n < count:
                s = src.read(min(count - n, 0x1000))
                if not s:
                    break
                n += len(s)
                dst.write(s)
        else:
            while True:
                s = src.read(0x1000)
                if not s:
                    break
                n += len(s)
                dst.write(s)
        if truncate:
            dst.truncate(skip + n)
        src.close()
        dst.close()
        return real_dst

    # Otherwise get `src` in canonical form, i.e. a string of at most `count`
    # bytes
    if isinstance(src, six.text_type):
        if count:
            # The only way to know where the `seek`th byte is, is to decode, but
            # we only need to decode up to the first `seek + count` code points
            src = src[:seek + count].encode('utf8')
            # The code points may result in more that `seek + count` bytes
            src = src[seek : seek + count]
        else:
            src = src.encode('utf8')[seek:]

    elif hasattr(src, 'seek'):
        src.seek(seek)
        src_ = b''
        if count:
            while len(src_) < count:
                s = src.read(count - len(src_))
                if not s:
                    break
                src_ += s
        else:
            while True:
                s = src.read()
                if not s:
                    break
                src_ += s
        src.close()
        src = src_

    elif isinstance(src, bytes):
        if count:
            src = src[seek : seek + count]
        else:
            src = src[seek:]

    elif hasattr(src, '__iter__'):
        src = src[seek:]
        src_ = b''
        for i, b in enumerate(src, seek):
            if count and i > count + seek:
                break
            if isinstance(b, bytes):
                src_ += b
            elif isinstance(b, six.integer_types):
                if b > 255 or b < 0:
                    raise ValueError("dd(): Source value %d at index %d is not in range [0;255]" % (b, i))
                src_ += _p8lu(b)
            else:
                raise TypeError("dd(): Unsupported `src` element type: %r" % type(b))
        src = src_

    else:
        raise TypeError("dd(): Unsupported `src` type: %r" % type(src))

    # If truncate, then where?
    if truncate:
        truncate = skip + len(src)

    # UTF-8 encode unicode `dst`
    if isinstance(dst, six.text_type):
        dst = dst.encode('utf8')
        utf8 = True
    else:
        utf8 = False

    # Match on the type of `dst`
    if   hasattr(dst, 'seek'):
        dst.seek(skip)
        dst.write(src)
        if truncate:
            dst.truncate(truncate)
        dst.close()
        dst = real_dst

    elif isinstance(dst, (list, bytearray)):
        dst[skip : skip + len(src)] = list(map(p8, bytearray(src)))
        if truncate:
            while len(dst) > truncate:
                dst.pop()

    elif isinstance(dst, tuple):
        tail = dst[skip + len(src):]
        dst = dst[:skip] + tuple(map(p8, bytearray(src)))
        if not truncate:
            dst = dst + tail

    elif isinstance(dst, bytes):
        tail = dst[skip + len(src):]
        dst = dst[:skip] + src
        if not truncate:
            dst = dst + tail

    else:
        raise TypeError("dd(): Unsupported `dst` type: %r" % type(dst))

    if utf8:
        dst = dst.decode('utf8')

    return dst

def _need_bytes(s, level=1, min_wrong=0):
    if isinstance(s, (bytes, bytearray)):
        return s   # already bytes

    encoding = context.encoding
    errors = 'strict'
    worst = -1
    if encoding == 'auto':
        worst = s and max(map(ord, s)) or 0
        if worst > 255:
            encoding = 'UTF-8'
            errors = 'surrogateescape'
        elif worst > 127:
            encoding = 'ISO-8859-1'
        else:
            encoding = 'ASCII'

    if worst >= min_wrong:
        warnings.warn("Text is not bytes; assuming {}, no guarantees. See https://docs.pwntools.com/#bytes"
                      .format(encoding), BytesWarning, level + 2)
    return s.encode(encoding, errors)

def _need_text(s, level=1):
    if isinstance(s, (str, six.text_type)):
        return s   # already text

    if not isinstance(s, (bytes, bytearray)):
        return repr(s)

    encoding = context.encoding
    errors = 'strict'
    if encoding == 'auto':
        for encoding in 'ASCII', 'UTF-8', 'ISO-8859-1':
            try:
                s.decode(encoding)
            except UnicodeDecodeError:
                pass
            else:
                break

    warnings.warn("Bytes is not text; assuming {}, no guarantees. See https://docs.pwntools.com/#bytes"
                  .format(encoding), BytesWarning, level + 2)
    return s.decode(encoding, errors)

def _encode(s):
    if isinstance(s, (bytes, bytearray)):
        return s   # already bytes

    if context.encoding == 'auto':
        try:
            return s.encode('latin1')
        except UnicodeEncodeError:
            return s.encode('utf-8', 'surrogateescape')
    return s.encode(context.encoding)

def _decode(b):
    if isinstance(b, (str, six.text_type)):
        return b   # already text

    if context.encoding == 'auto':
        try:
            return b.decode('utf-8')
        except UnicodeDecodeError:
            return b.decode('latin1')
        except AttributeError:
            return b
    return b.decode(context.encoding)

del op, size, end, sign
del name, routine, mod