File: editex.py

package info (click to toggle)
py-stringmatching 0.4.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,956 kB
  • sloc: python: 3,979; makefile: 174; sh: 7
file content (270 lines) | stat: -rw-r--r-- 8,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# coding=utf-8
"""Editex distance measure"""

from __future__ import division
from __future__ import unicode_literals
import unicodedata
import six

import numpy as np

from py_stringmatching import utils
from six.moves import xrange
from six import text_type
from py_stringmatching.similarity_measure.sequence_similarity_measure import \
                                                    SequenceSimilarityMeasure


class Editex(SequenceSimilarityMeasure):
    """Editex distance measure class.

    Parameters:
        match_cost (int): Weight to give the correct char match, default=0
        group_cost (int): Weight to give if the chars are in the same editex group, default=1
        mismatch_cost (int): Weight to give the incorrect char match, default=2
        local (boolean): Local variant on/off, default=False
    """
    def __init__(self, match_cost=0, group_cost=1, mismatch_cost=2,
                 local=False):
        self.match_cost = match_cost
        self.group_cost = group_cost
        self.mismatch_cost = mismatch_cost
        self.local = local
        super(Editex, self).__init__()

    def get_raw_score(self, string1, string2):
        """
        Computes the editex distance between two strings.

        As described on pages 3 & 4 of
        Zobel, Justin and Philip Dart. 1996. Phonetic string matching: Lessons from
        information retrieval. In: Proceedings of the ACM-SIGIR Conference on
        Research and Development in Information Retrieval, Zurich, Switzerland.
        166–173. http://goanna.cs.rmit.edu.au/~jz/fulltext/sigir96.pdf

        The local variant is based on
        Ring, Nicholas and Alexandra L. Uitdenbogerd. 2009. Finding ‘Lucy in
        Disguise’: The Misheard Lyric Matching Problem. In: Proceedings of the 5th
        Asia Information Retrieval Symposium, Sapporo, Japan. 157-167.
        http://www.seg.rmit.edu.au/research/download.php?manuscript=404

        Args:
            string1,string2 (str): Input strings

        Returns:
            Editex distance (int)

        Raises:
            TypeError : If the inputs are not strings

        Examples:
            >>> ed = Editex()
            >>> ed.get_raw_score('cat', 'hat')
            2
            >>> ed.get_raw_score('Niall', 'Neil')
            2
            >>> ed.get_raw_score('aluminum', 'Catalan')
            12
            >>> ed.get_raw_score('ATCG', 'TAGC')
            6

        References:
            * Abydos Library - https://github.com/chrislit/abydos/blob/master/abydos/distance.py

        """
        # input validations
        utils.sim_check_for_none(string1, string2)
        utils.sim_check_for_string_inputs(string1, string2)
        if utils.sim_check_for_exact_match(string1, string2):
            return 0

        # convert both the strings to NFKD normalized unicode
        string1 = unicodedata.normalize('NFKD', text_type(string1.upper()))
        string2 = unicodedata.normalize('NFKD', text_type(string2.upper()))

        # convert ß to SS (for Python2)
        string1 = string1.replace('ß', 'SS')
        string2 = string2.replace('ß', 'SS')

        if len(string1) == 0:
            return len(string2) * self.mismatch_cost
        if len(string2) == 0:
            return len(string1) * self.mismatch_cost

        d_mat = np.zeros((len(string1) + 1, len(string2) + 1), dtype=int)
        len1 = len(string1)
        len2 = len(string2)
        string1 = ' ' + string1
        string2 = ' ' + string2
        editex_helper = EditexHelper(self.match_cost, self.mismatch_cost,
                                     self.group_cost)

        if not self.local:
            for i in xrange(1, len1 + 1):
                d_mat[i, 0] = d_mat[i - 1, 0] + editex_helper.d_cost(
                                                    string1[i - 1], string1[i])

        for j in xrange(1, len2 + 1):
            d_mat[0, j] = d_mat[0, j - 1] + editex_helper.d_cost(string2[j - 1],
                                                                 string2[j])

        for i in xrange(1, len1 + 1):
            for j in xrange(1, len2 + 1):
                d_mat[i, j] = min(d_mat[i - 1, j] + editex_helper.d_cost(
                                                    string1[i - 1], string1[i]),
                                  d_mat[i, j - 1] + editex_helper.d_cost(
                                                    string2[j - 1], string2[j]),
                                  d_mat[i - 1, j - 1] + editex_helper.r_cost(
                                                        string1[i], string2[j]))

        return d_mat[len1, len2]

    def get_sim_score(self, string1, string2):
        """
        Computes the normalized editex similarity between two strings.

        Args:
            string1,string2 (str): Input strings

        Returns:
            Normalized editex similarity (float)

        Raises:
            TypeError : If the inputs are not strings

        Examples:
            >>> ed = Editex()
            >>> ed.get_sim_score('cat', 'hat')
            0.66666666666666674
            >>> ed.get_sim_score('Niall', 'Neil')
            0.80000000000000004
            >>> ed.get_sim_score('aluminum', 'Catalan')
            0.25
            >>> ed.get_sim_score('ATCG', 'TAGC')
            0.25

        References:
            * Abydos Library - https://github.com/chrislit/abydos/blob/master/abydos/distance.py
        """
        raw_score = self.get_raw_score(string1, string2)
        string1_len = len(string1)
        string2_len = len(string2)
        if string1_len == 0 and string2_len == 0:
            return 1.0
        return 1 - (raw_score / max(string1_len * self.mismatch_cost,
                                    string2_len * self.mismatch_cost))

    def get_match_cost(self):
        """
        Get match cost

        Returns:
            match cost (int)
        """
        return self.match_cost

    def get_group_cost(self):
        """
        Get group cost

        Returns:
            group cost (int)
        """
        return self.group_cost

    def get_mismatch_cost(self):
        """
        Get mismatch cost

        Returns:
            mismatch cost (int)
        """
        return self.mismatch_cost

    def get_local(self):
        """
        Get local flag

        Returns:
            local flag (boolean)
        """
        return self.local

    def set_match_cost(self, match_cost):
        """
        Set match cost

        Args:
            match_cost (int): Weight to give the correct char match
        """
        self.match_cost = match_cost
        return True

    def set_group_cost(self, group_cost):
        """
        Set group cost

        Args:
            group_cost (int): Weight to give if the chars are in the same editex group
        """
        self.group_cost = group_cost
        return True

    def set_mismatch_cost(self, mismatch_cost):
        """
        Set mismatch cost

        Args:
            mismatch_cost (int): Weight to give the incorrect char match
        """
        self.mismatch_cost = mismatch_cost
        return True

    def set_local(self, local):
        """
        Set local flag

        Args:
            local (boolean): Local variant on/off
        """
        self.local = local
        return True


class EditexHelper:
    letter_groups = dict()
    letter_groups['A'] = letter_groups['E'] = letter_groups['I'] = letter_groups['O'] \
        = letter_groups['U'] = letter_groups['Y'] = 0
    letter_groups['B'] = letter_groups['P'] = 1
    letter_groups['C'] = letter_groups['K'] = letter_groups['Q'] = 2
    letter_groups['D'] = letter_groups['T'] = 3
    letter_groups['L'] = letter_groups['R'] = 4
    letter_groups['M'] = letter_groups['N'] = 5
    letter_groups['G'] = letter_groups['J'] = 6
    letter_groups['F'] = letter_groups['P'] = letter_groups['V'] = 7
    letter_groups['S'] = letter_groups['X'] = letter_groups['Z'] = 8
    letter_groups['C'] = letter_groups['S'] = letter_groups['J'] = 9
    all_letters = frozenset('AEIOUYBPCKQDTLRMNGJFVSXZ')

    def __init__(self, match_cost, mismatch_cost, group_cost):
        self.match_cost = match_cost
        self.mismatch_cost = mismatch_cost
        self.group_cost = group_cost

    def r_cost(self, ch1, ch2):
        """Return r(a,b) according to Zobel & Dart's definition
        """
        if ch1 == ch2:
            return self.match_cost
        if ch1 in EditexHelper.all_letters and ch2 in EditexHelper.all_letters:
            if (EditexHelper.letter_groups[ch1] ==
                EditexHelper.letter_groups[ch2]):
                return self.group_cost
        return self.mismatch_cost

    def d_cost(self, ch1, ch2):
        """Return d(a,b) according to Zobel & Dart's definition
        """
        if ch1 != ch2 and (ch1 == 'H' or ch1 == 'W'):
            return self.group_cost
        return self.r_cost(ch1, ch2)