1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
from __future__ import division
from math import log, sqrt
import collections
from py_stringmatching import utils
from py_stringmatching.similarity_measure.token_similarity_measure import \
TokenSimilarityMeasure
class TfIdf(TokenSimilarityMeasure):
"""Computes TF/IDF measure.
This measure employs the notion of TF/IDF score commonly used in information retrieval (IR) to
find documents that are relevant to keyword queries. The intuition underlying the TF/IDF measure
is that two strings are similar if they share distinguishing terms. See the string matching chapter in the book "Principles of Data Integration"
Args:
corpus_list (list of lists): The corpus that will be used to compute TF and IDF values. This corpus is a list of strings, where each string has been tokenized into a list of tokens (that is, a bag of tokens). The default is set to None. In this case, when we call this TF/IDF measure on two input strings (using get_raw_score or get_sim_score), the corpus is taken to be the list of those two strings.
dampen (boolean): Flag to indicate whether 'log' should be used in TF and IDF formulas (defaults to True).
Attributes:
dampen (boolean): An attribute to store the dampen flag.
"""
def __init__(self, corpus_list=None, dampen=True):
self.__corpus_list = corpus_list
self.__document_frequency = {}
self.__compute_document_frequency()
self.__corpus_size = 0 if self.__corpus_list is None else (
len(self.__corpus_list))
self.dampen = dampen
super(TfIdf, self).__init__()
def get_raw_score(self, bag1, bag2):
"""Computes the raw TF/IDF score between two lists.
Args:
bag1,bag2 (list): Input lists.
Returns:
TF/IDF score between the input lists (float).
Raises:
TypeError : If the inputs are not lists or if one of the inputs is None.
Examples:
>>> # here the corpus is a list of three strings that
>>> # have been tokenized into three lists of tokens
>>> tfidf = TfIdf([['a', 'b', 'a'], ['a', 'c'], ['a']])
>>> tfidf.get_raw_score(['a', 'b', 'a'], ['b', 'c'])
0.7071067811865475
>>> tfidf.get_raw_score(['a', 'b', 'a'], ['a'])
0.0
>>> tfidf = TfIdf([['x', 'y'], ['w'], ['q']])
>>> tfidf.get_raw_score(['a', 'b', 'a'], ['a'])
0.0
>>> tfidf = TfIdf([['a', 'b', 'a'], ['a', 'c'], ['a'], ['b']], False)
>>> tfidf.get_raw_score(['a', 'b', 'a'], ['a', 'c'])
0.25298221281347033
>>> tfidf = TfIdf(dampen=False)
>>> tfidf.get_raw_score(['a', 'b', 'a'], ['a'])
0.7071067811865475
>>> tfidf = TfIdf()
>>> tfidf.get_raw_score(['a', 'b', 'a'], ['a'])
0.0
"""
# input validations
utils.sim_check_for_none(bag1, bag2)
utils.sim_check_for_list_or_set_inputs(bag1, bag2)
# if the strings match exactly return 1.0
if utils.sim_check_for_exact_match(bag1, bag2):
return 1.0
# if one of the strings is empty return 0
if utils.sim_check_for_empty(bag1, bag2):
return 0
# term frequency for input strings
tf_x, tf_y = collections.Counter(bag1), collections.Counter(bag2)
# find unique elements in the input lists and their document frequency
local_df = {}
for element in tf_x:
local_df[element] = local_df.get(element, 0) + 1
for element in tf_y:
local_df[element] = local_df.get(element, 0) + 1
# if corpus is not provided treat input string as corpus
curr_df, corpus_size = (local_df, 2) if self.__corpus_list is None else (
(self.__document_frequency, self.__corpus_size))
idf_element, v_x, v_y, v_x_y, v_x_2, v_y_2 = (0.0, 0.0, 0.0,
0.0, 0.0, 0.0)
# tfidf calculation
for element in local_df.keys():
df_element = curr_df.get(element)
if df_element is None:
continue
idf_element = corpus_size * 1.0 / df_element
v_x = 0 if element not in tf_x else (log(idf_element) * log(tf_x[element] + 1)) if self.dampen else (
idf_element * tf_x[element])
v_y = 0 if element not in tf_y else (log(idf_element) * log(tf_y[element] + 1)) if self.dampen else (
idf_element * tf_y[element])
v_x_y += v_x * v_y
v_x_2 += v_x * v_x
v_y_2 += v_y * v_y
return 0.0 if v_x_y == 0 else v_x_y / (sqrt(v_x_2) * sqrt(v_y_2))
def get_sim_score(self, bag1, bag2):
"""Computes the normalized TF/IDF similarity score between two lists. Simply call get_raw_score.
Args:
bag1,bag2 (list): Input lists.
Returns:
Normalized TF/IDF similarity score between the input lists (float).
Raises:
TypeError : If the inputs are not lists or if one of the inputs is None.
Examples:
>>> # here the corpus is a list of three strings that
>>> # have been tokenized into three lists of tokens
>>> tfidf = TfIdf([['a', 'b', 'a'], ['a', 'c'], ['a']])
>>> tfidf.get_sim_score(['a', 'b', 'a'], ['b', 'c'])
0.7071067811865475
>>> tfidf.get_sim_score(['a', 'b', 'a'], ['a'])
0.0
>>> tfidf = TfIdf([['x', 'y'], ['w'], ['q']])
>>> tfidf.get_sim_score(['a', 'b', 'a'], ['a'])
0.0
>>> tfidf = TfIdf([['a', 'b', 'a'], ['a', 'c'], ['a'], ['b']], False)
>>> tfidf.get_sim_score(['a', 'b', 'a'], ['a', 'c'])
0.25298221281347033
>>> tfidf = TfIdf(dampen=False)
>>> tfidf.get_sim_score(['a', 'b', 'a'], ['a'])
0.7071067811865475
>>> tfidf = TfIdf()
>>> tfidf.get_sim_score(['a', 'b', 'a'], ['a'])
0.0
"""
return self.get_raw_score(bag1, bag2)
def get_dampen(self):
"""Get dampen flag.
Returns:
dampen flag (boolean).
"""
return self.dampen
def get_corpus_list(self):
"""Get corpus list.
Returns:
corpus list (list of lists).
"""
return self.__corpus_list
def set_dampen(self, dampen):
"""Set dampen flag.
Args:
dampen (boolean): Flag to indicate whether 'log' should be applied to TF and IDF formulas.
"""
self.dampen = dampen
return True
def set_corpus_list(self, corpus_list):
"""Set corpus list.
Args:
corpus_list (list of lists): Corpus list.
"""
self.__corpus_list = corpus_list
self.__document_frequency = {}
self.__compute_document_frequency()
self.__corpus_size = 0 if self.__corpus_list is None else (
len(self.__corpus_list))
return True
def __compute_document_frequency(self):
if self.__corpus_list != None:
for document in self.__corpus_list:
for element in set(document):
self.__document_frequency[element] = (
self.__document_frequency.get(element, 0) + 1)
|