1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
"""Tversky index similarity measure"""
from py_stringmatching import utils
from py_stringmatching.similarity_measure.token_similarity_measure import \
TokenSimilarityMeasure
class TverskyIndex(TokenSimilarityMeasure):
"""Tversky index similarity measure class.
Parameters:
alpha, beta (float): Tversky index parameters (defaults to 0.5).
"""
def __init__(self, alpha=0.5, beta=0.5):
# validate alpha and beta
utils.sim_check_tversky_parameters(alpha, beta)
self.alpha = alpha
self.beta = beta
super(TverskyIndex, self).__init__()
def get_raw_score(self, set1, set2):
"""
Computes the Tversky index similarity between two sets.
The Tversky index is an asymmetric similarity measure on sets that compares a variant to a prototype. The
Tversky index can be seen as a generalization of Dice's coefficient and Tanimoto coefficient.
For sets X and Y the Tversky index is a number between 0 and 1 given by:
:math:`tversky_index(X, Y) = \\frac{|X \\cap Y|}{|X \\cap Y| + \\alpha |X-Y| + \\beta |Y-X|}`
where, :math: \\alpha, \\beta >=0
Args:
set1,set2 (set or list): Input sets (or lists). Input lists are converted to sets.
Returns:
Tversly index similarity (float)
Raises:
TypeError : If the inputs are not sets (or lists) or if one of the inputs is None.
Examples:
>>> tvi = TverskyIndex()
>>> tvi.get_raw_score(['data', 'science'], ['data'])
0.6666666666666666
>>> tvi.get_raw_score(['data', 'management'], ['data', 'data', 'science'])
0.5
>>> tvi.get_raw_score({1, 1, 2, 3, 4}, {2, 3, 4, 5, 6, 7, 7, 8})
0.5454545454545454
>>> tvi = TverskyIndex(0.5, 0.5)
>>> tvi.get_raw_score({1, 1, 2, 3, 4}, {2, 3, 4, 5, 6, 7, 7, 8})
0.5454545454545454
>>> tvi = TverskyIndex(beta=0.5)
>>> tvi.get_raw_score(['data', 'management'], ['data', 'data', 'science'])
0.5
"""
# input validations
utils.sim_check_for_none(set1, set2)
utils.sim_check_for_list_or_set_inputs(set1, set2)
# if exact match return 1.0
if utils.sim_check_for_exact_match(set1, set2):
return 1.0
# if one of the strings is empty return 0
if utils.sim_check_for_empty(set1, set2):
return 0
if not isinstance(set1, set):
set1 = set(set1)
if not isinstance(set2, set):
set2 = set(set2)
intersection = float(len(set1 & set2))
return 1.0 * intersection / (intersection +
(self.alpha * len(set1 - set2)) + (self.beta * len(set2 - set1)))
def get_sim_score(self, set1, set2):
"""
Computes the normalized tversky index similarity between two sets.
Args:
set1,set2 (set or list): Input sets (or lists). Input lists are converted to sets.
Returns:
Normalized tversky index similarity (float)
Raises:
TypeError : If the inputs are not sets (or lists) or if one of the inputs is None.
Examples:
>>> tvi = TverskyIndex()
>>> tvi.get_sim_score(['data', 'science'], ['data'])
0.6666666666666666
>>> tvi.get_sim_score(['data', 'management'], ['data', 'data', 'science'])
0.5
>>> tvi.get_sim_score({1, 1, 2, 3, 4}, {2, 3, 4, 5, 6, 7, 7, 8})
0.5454545454545454
>>> tvi = TverskyIndex(0.5, 0.5)
>>> tvi.get_sim_score({1, 1, 2, 3, 4}, {2, 3, 4, 5, 6, 7, 7, 8})
0.5454545454545454
>>> tvi = TverskyIndex(beta=0.5)
>>> tvi.get_sim_score(['data', 'management'], ['data', 'data', 'science'])
0.5
"""
return self.get_raw_score(set1, set2)
def get_alpha(self):
"""
Get alpha
Returns:
alpha (float)
"""
return self.alpha
def get_beta(self):
"""
Get beta
Returns:
beta (float)
"""
return self.beta
def set_alpha(self, alpha):
"""
Set alpha
Args:
alpha (float): Tversky index parameter
"""
self.alpha = alpha
return True
def set_beta(self, beta):
"""
Set beta
Args:
beta (float): Tversky index parameter
"""
self.beta = beta
return True
|