1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
"""Infer an annotation from a set of concrete runtime type signatures.
The main entry point is 'infer_annotation'.
"""
from typing import Dict, Iterable, List, Optional, Set, Tuple
from pyannotate_tools.annotations.parse import parse_type_comment
from pyannotate_tools.annotations.types import (
AbstractType,
AnyType,
ARG_POS,
Argument,
ClassType,
is_optional,
TupleType,
UnionType,
NoReturnType,
)
IGNORED_ITEMS = {
'unittest.mock.Mock',
'unittest.mock.MagicMock',
'mock.mock.Mock',
'mock.mock.MagicMock',
}
class InferError(Exception):
"""Raised if we can't infer a signature for some reason."""
def infer_annotation(type_comments):
# type: (List[str]) -> Tuple[List[Argument], AbstractType]
"""Given some type comments, return a single inferred signature.
Args:
type_comments: Strings of form '(arg1, ... argN) -> ret'
Returns: Tuple of (argument types and kinds, return type).
"""
assert type_comments
args = {} # type: Dict[int, Set[Argument]]
returns = set()
for comment in type_comments:
arg_types, return_type = parse_type_comment(comment)
for i, arg_type in enumerate(arg_types):
args.setdefault(i, set()).add(arg_type)
returns.add(return_type)
combined_args = []
for i in sorted(args):
arg_infos = list(args[i])
kind = argument_kind(arg_infos)
if kind is None:
raise InferError('Ambiguous argument kinds:\n' + '\n'.join(type_comments))
types = [arg.type for arg in arg_infos]
combined = combine_types(types)
if str(combined) == 'None':
# It's very rare for an argument to actually be typed `None`, more likely than
# not we simply don't have any data points for this argument.
combined = UnionType([ClassType('None'), AnyType()])
if kind != ARG_POS and (len(str(combined)) > 120 or isinstance(combined, UnionType)):
# Avoid some noise.
combined = AnyType()
combined_args.append(Argument(combined, kind))
combined_return = combine_types(returns)
return combined_args, combined_return
def argument_kind(args):
# type: (List[Argument]) -> Optional[str]
"""Return the kind of an argument, based on one or more descriptions of the argument.
Return None if every item does not have the same kind.
"""
kinds = set(arg.kind for arg in args)
if len(kinds) != 1:
return None
return kinds.pop()
def combine_types(types):
# type: (Iterable[AbstractType]) -> AbstractType
"""Given some types, return a combined and simplified type.
For example, if given 'int' and 'List[int]', return Union[int, List[int]]. If given
'int' and 'int', return just 'int'.
"""
items = simplify_types(types)
if len(items) == 1:
return items[0]
else:
return UnionType(items)
def simplify_types(types):
# type: (Iterable[AbstractType]) -> List[AbstractType]
"""Given some types, give simplified types representing the union of types."""
flattened = flatten_types(types)
items = filter_ignored_items(flattened)
items = [simplify_recursive(item) for item in items]
items = merge_items(items)
items = dedupe_types(items)
# We have to remove reundant items after everything has been simplified and
# merged as this simplification may be what makes items redundant.
items = remove_redundant_items(items)
if len(items) > 3:
return [AnyType()]
else:
return items
def simplify_recursive(typ):
# type: (AbstractType) -> AbstractType
"""Simplify all components of a type."""
if isinstance(typ, UnionType):
return combine_types(typ.items)
elif isinstance(typ, ClassType):
simplified = ClassType(typ.name, [simplify_recursive(arg) for arg in typ.args])
args = simplified.args
if (simplified.name == 'Dict' and len(args) == 2
and isinstance(args[0], ClassType) and args[0].name in ('str', 'Text')
and isinstance(args[1], UnionType) and not is_optional(args[1])):
# Looks like a potential case for TypedDict, which we don't properly support yet.
return ClassType('Dict', [args[0], AnyType()])
return simplified
elif isinstance(typ, TupleType):
return TupleType([simplify_recursive(item) for item in typ.items])
return typ
def flatten_types(types):
# type: (Iterable[AbstractType]) -> List[AbstractType]
flattened = []
for item in types:
if not isinstance(item, UnionType):
flattened.append(item)
else:
flattened.extend(flatten_types(item.items))
return flattened
def dedupe_types(types):
# type: (Iterable[AbstractType]) -> List[AbstractType]
return sorted(set(types), key=lambda t: str(t))
def filter_ignored_items(items):
# type: (List[AbstractType]) -> List[AbstractType]
result = [item for item in items
if not isinstance(item, ClassType) or
item.name not in IGNORED_ITEMS]
return result or [AnyType()]
def remove_redundant_items(items):
# type: (List[AbstractType]) -> List[AbstractType]
"""Filter out redundant union items."""
result = []
for item in items:
for other in items:
if item is not other and is_redundant_union_item(item, other):
break
else:
result.append(item)
return result
def is_redundant_union_item(first, other):
# type: (AbstractType, AbstractType) -> bool
"""If union has both items, is the first one redundant?
For example, if first is 'str' and the other is 'Text', return True.
If items are equal, return False.
"""
if isinstance(first, ClassType) and isinstance(other, ClassType):
if first.name == 'str' and other.name == 'Text':
return True
elif first.name == 'bool' and other.name == 'int':
return True
elif first.name == 'int' and other.name == 'float':
return True
elif (first.name in ('List', 'Dict', 'Set') and
other.name == first.name):
if not first.args and other.args:
return True
elif len(first.args) == len(other.args) and first.args:
result = all(first_arg == other_arg or other_arg == AnyType()
for first_arg, other_arg
in zip(first.args, other.args))
return result
return False
def merge_items(items):
# type: (List[AbstractType]) -> List[AbstractType]
"""Merge union items that can be merged."""
result = []
while items:
item = items.pop()
merged = None
for i, other in enumerate(items):
merged = merged_type(item, other)
if merged:
break
if merged:
del items[i]
items.append(merged)
else:
result.append(item)
return list(reversed(result))
def merged_type(t, s):
# type: (AbstractType, AbstractType) -> Optional[AbstractType]
"""Return merged type if two items can be merged in to a different, more general type.
Return None if merging is not possible.
"""
if isinstance(t, TupleType) and isinstance(s, TupleType):
if len(t.items) == len(s.items):
return TupleType([combine_types([ti, si]) for ti, si in zip(t.items, s.items)])
all_items = t.items + s.items
if all_items and all(item == all_items[0] for item in all_items[1:]):
# Merge multiple compatible fixed-length tuples into a variable-length tuple type.
return ClassType('Tuple', [all_items[0]])
elif (isinstance(t, TupleType) and isinstance(s, ClassType) and s.name == 'Tuple'
and len(s.args) == 1):
if all(item == s.args[0] for item in t.items):
# Merge fixed-length tuple and variable-length tuple.
return s
elif isinstance(s, TupleType) and isinstance(t, ClassType) and t.name == 'Tuple':
return merged_type(s, t)
elif isinstance(s, NoReturnType):
return t
elif isinstance(t, NoReturnType):
return s
elif isinstance(s, AnyType):
# This seems to be usually desirable, since Anys tend to come from unknown types.
return t
elif isinstance(t, AnyType):
# Similar to above.
return s
return None
|