File: notes.html

package info (click to toggle)
pyasn1 0.0.8a-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 356 kB
  • ctags: 959
  • sloc: python: 3,800; makefile: 5
file content (382 lines) | stat: -rw-r--r-- 11,443 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
<html>
<title>
ASN.1 tools for Python
</title>
<body>
<center>
<table width=70%>
<tr>
<td>
<h3>
ASN.1 tools for Python
</h3>

<p>
Whenever data structures are described in some machine and programming language
independent and unambiguous way, such specification is called 
<a href=http://en.wikipedia.org/wiki/Abstract_syntax>abstract syntax</a>,
by contrast with machine/language specific methods, which are called 'concrete'
or 'transfer' syntaxes.
</p>

<p>
Abstract syntaxes appear useful in networking as a tool for engineering
protocols in a clear and portable way. Moreover, once a protocol 
is described in some abstract language, protocol parsers and builders
could be automatically generated for various computing
architectures/programming languages, thus saving engineers from implementing 
low-level transport details by hand.
</p>

<p>
Abstract Syntax Notation One (
<a href=http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_1x>ASN.1</a>
) is a set of 
<a href=http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-X.693-0207w.zip>
ITU standards</a> defining particular implementation of abstract data
description language accompanied by a collection of transfer encoding methods.
Perhaps the most widely used among these data serialization methods is Basic
Encoding Rules (
<a href=http://en.wikipedia.org/wiki/Basic_encoding_rules>BER</a>
) together with its derivatives (
<a href=http://en.wikipedia.org/wiki/Distinguished_encoding_rules>DER</a>
and
<a href=http://en.wikipedia.org/wiki/Canonical_encoding_rules>CER</a>
), while Packed Encoding Rules
<a href=http://en.wikipedia.org/wiki/Packed_encoding_rules>PER</a>
) aims at most compact data representation whilst in the wire.
</p>

<p>
This project is dedicated to implementation of ASN.1 types (concrete 
syntax) and codecs (transfer syntaxes) for Python programming environment.
ASN.1 compiler is planned for implementation in the future.
</p>

<h3>
Data model for ASN.1 types
</h3>

<p>
The ASN.1 standard defines a set of <i>primitive</i>, scalar data types
(such as Integer, String etc) and a few <i>constructed</i> types, each
holding one or many other ASN.1 types as its components (constructed
types may be viewed as Pascal "records" or C "struct"ures).
</p>

<p>
In pyasn1, those primitive ASN.1 types are implemented as 
immutable scalar objects. They could be used just like corresponding
native Python types (integers, strings etc).
</p>

<pre>
>>> from pyasn1.type import univ
>>> univ.Integer(12) - 2
10
>>> univ.OctetString('abc') == 'abc'
True
>>>
</pre>

<p>
In ASN.1, constructed types (Sequence, SequenceOf, Set, SetOf, Choice)
differ from each other by allowed components combination and ordering, which
also projects to component addressing methods.
</p>

<p>
In this Python implementation, constructed ASN.1 types behave like 
Python sequence, and also support additional component addressing methods,
specific to particular constructed type.
</p>

<p>
Components of <i>Sequence</i>s can be addressed by their position in sequence:
</p>

<pre>
>>> from pyasn1.type import univ, namedtype
>>> seq = univ.Sequence(componentType=namedtype.NamedTypes(namedtype.NamedType('version', univ.Integer())))
>>> seq.setComponentByPosition(0, univ.Integer())
>>> seq.getComponentByPosition(0)
Integer(0)
>>>
</pre>

<p>
and by [textual] component type name (also valid for <i>Set</i> and 
<i>Choice</i>), 
</p>

<pre>
>>> seq.getComponentByName('version')
Integer(0)
>>>
</pre>

<p>
as well as by type for Set and Choice:
</p>

<pre>
>>> set = univ.Set(componentType=namedtype.NamedTypes(namedtype.NamedType('version', univ.Integer())))
>>> set.setComponentByPosition(0, univ.Integer())
>>> set.getComponentByType(univ.Integer().getTagSet())
Integer(0)
>>>
</pre>

<p>
ASN.1 types are identified by a numeric ID called <i>tag</i>. In pyasn1, 
tags are implemented as immutable objects referred by ASN.1 type objects:
</p>

<pre>
from pyasn1.type import tag
>>> tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 3)
Tag(tagClass=0, tagFormat=0, tagId=3)
>>>
</pre>

<p>
For the purpose of making same-typed objects distinguishable from one 
another, the standard allows for assigning custom tags to 
ASN.1 types. These <i>tagged types</i> preserve all properties of their 
parent type but possess different IDs.
</p>

<p>
There are two methods of tagging: <i>implicit</i> and <i>explicit</i>. The
first one replaces base tag with arbitrary custom tag thus dropping all
previously existing tag information for type:
</p>

<pre>
>>> t = tag.TagSet(tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 3))
>>> t.tagImplicitly(tag.Tag(tag.tagClassPrivate, tag.tagFormatSimple, 32))
TagSet(Tag(tagClass=192, tagFormat=0, tagId=32))
>>>
</pre>

<p>
The explicit tag is build by appending new custom tag to already
existing set of type's tags. Important property of explicit tagging
is that it preserves base type information.
</p>

<pre>
>>> t = tag.TagSet(tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 3)
>>> t.tagExplicitly(tag.Tag(tag.tagClassPrivate, tag.tagFormatSimple, 32))
TagSet(Tag(tagClass=192, tagFormat=32, tagId=32), Tag(tagClass=0, tagFormat=0, tagId=3))
>>>
</pre>

<p>
Besides tags, certain restrictions may be put upon ASN.1 types' values thus 
creating <i>subtypes</i> from base types (in computer science, a 
<a href=http://en.wikipedia.org/wiki/Data_type>data type</a>
is a name of a collection of possible values). These restrictions are called
<i>subtype constraints</i> in the ASN.1 standard.
</p>

<p>
Several different flavors of <i>constraints</i> exist. Some obvious
include <i>ValueRangeConstraint</i>, <i>ValueSizeConstraint</i> and others.
In pyasn1, constraints take shape of immutable objects capable
of evaluating given value against constraint's specific logic.
</p>

<pre>
>>> from pyasn1.type import constraint
>>> constraint.ValueRangeConstraint(1,2)
ValueRangeConstraint(1,2)
>>>
</pre>

<p>
Multiple constraints can be combined altogether into sets with three basic
boolean operations (<i>ConstraintsUnion</i>, <i>ConstraintsIntersection</i> and
<i>ConstraintsExclusion</i>), which could be applied recursively. 
</p>

<pre>
>>> c = constraint.ConstraintsUnion(constraint.SingleValueConstraint(4), constraint.ValueRangeConstraint(-1, 2))
>>> c(1)
>>> c(3)
pyasn1.type.error.ValueConstraintError: ConstraintsUnion(SingleValueConstraint(4), ValueRangeConstraint(-1, 2)) failed at: all of (SingleValueConstraint(4), ValueRangeConstraint(-1, 2)) failed for 5
>>>
</pre>

<p>
A constrainted ASN.1 type would then hold a reference to a top-most constraint
object in a set and pass it a value, being assigned, for verification.
</p>

<p>
By evaluating the inclusion of all tags and constraints of one type in
tag and constraint sets of another, it's possible to figure out the
relationships between types. By way of background, types matching is used
in constructed types for by-type component addressing.
</p>

<pre>
>>> i1 = univ.Integer(subtypeSpec=constraint.SingleValueConstraint(0,3))
>>> i2 = univ.Integer(subtypeSpec=constraint.ConstraintsIntersection(constraint.SingleValueConstraint(0,3),
                      constraint.SingleValueConstraint(6,8)))
>>> i1.isSameTypeWith(i2)
False
>>> i1.isSuperTypeOf(i2)
True
>>>
</pre>

<p>
While complete documentation on the API to all these ASN.1 items is not
yet written, please, refer to example uses and source code for additional
information.
</p>

<h3>
Codec notes
</h3>

<p>
In ASN.1 context, 
<a href=http://en.wikipedia.org/wiki/Codec>codec</a>
is a program that transforms between concrete data structures and a stream
of octets suitable for transmission over the wire. This serialized form of
data is sometimes called <i>substrate</i> or <i>essence</i>.
</p>

<p>
One of the properties of a codec is its ability to cope with incomplete
data and/or substrate what implies codec to be stateful. In other words, 
when decoder runs out of substrate and data item being recovered is still 
incomplete, stateful codec would suspend and complete data item recovery 
whenever the rest of substrate becomes available. Similarly, stateful encoder
would encode data items in multiple steps waiting for source data to
arrive.
</p>

<p>
Codec restartability is especially important when application deals with large
volumes of data and/or runs on low RAM.
</p>

<p>
For an interesting discussion on codecs options and design choices, refer to
<a href=http://directory.apache.org/subprojects/asn1/>Apache ASN.1 project</a>
.
</p>

<p>
As of this writing, codecs implemented in pyasn1 are all stateless, mostly
to keep the code simple.
</p>

<p>
The pyasn1 package currently supports BER codec and its derivates -- CER and
DER. Encoder is used for transforming ASN.1 object into substrate:
</p>

<pre>
>>> from pyasn1.type import univ
>>> from pyasn1.codec.ber import encoder
>>> encoder.encode(univ.Integer(12))
'\x02\x01\x0c'
>>>
</pre>

<p>
while decoder recovers ASN.1 objects from substrate:
</p>

<pre>
>>> from pyasn1.codec.ber import decoder
>>> decoder.decode('\x02\x01\x0c')
Integer(12), ''
>>>
</pre>

<p>
Depending of encoding and tagging methods used, decoder may require
to know ASN.1 syntax of data structure to be decoded. For example,
PER-encoded or implicitly tagged values would not recover from substrate
without knowing ASN.1 syntax of encoded data. Whenever decoder is
given ASN.1 specification, this operation mode will be referred to as 
<i>guided</i> throughout this document.
</p>

<p>
The ASN.1 specification passed to decoder running in guided mode is simply
a reference to the top-most ASN.1 type object of the concrete specification.
Decoder would neither modify this specification object in any way nor use
its current values, but rather use it as a pattern when creating new objects:
</p>

<pre>
>>> from pyasn1.codec.ber import decoder
>>> decoder.decode('\x02\x01\x0c', asn1Spec=univ.Integer())
Integer(12), ''
>>>
</pre>

<p>
One of the properties of BER codec is its use of either definite or indefinite
length specification for serialized data. Although indefinite length form
is especially important for stateful codec (which could produce&consume 
substrate in chunks), pyasn1 codecs fully support both length forms.
</p>

<p>
Constructed encoding is another feature of BER, closely related to indefinite
length form. In essence, large scalar value (such as ASN.1 <i>character</i> or
<i>BitString</i> type) could be chopped into smaller chunks by encoder and
transmitted incrementally.
</p>

<p>
The following code would BER encode ASN.1 <i>OctetString</i> object using 
constructed (chopped by 4th octet) and indefinite length form:
</p>

<pre>
>>> from pyasn1.type import univ
>>> from pyasn1.codec.ber import encoder
>>> encoder.encode(univ.OctetString('Quick brown fox'), defMode=0, maxChunkSize=4)
'$\x80\x04\x04Quic\x04\x04k br\x04\x04own \x04\x03fox\x00\x00'
>>>
</pre>

<p>
Nothing special is required on decoding side to recover from various encoding
forms. BER decoder transparently handles all of them.
</p>

<h3>
Availability
</h3>

<p>
The pyasn1 package is distributed under terms and conditions of BSD-style
license. See LICENSE file in the distribution. Source code is freely
available from <a href=http://www.sf.net/projects/pyasn1/>project home</a>.
</p>

<h3>
Feedback
</h3>

<p>
Comments and fixes are welcome at
<a href="mailto:ilya@glas.net">ilya@glas.net</a>
.
</p>

</td>
</tr>
</table>
</center>
</body>
</html>