1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
|
/************************************************************************************************
* *
* natgridmodule.c: a C extension which exports the following functions to Python: *
* *
* Single precision procedures: *
* *
* natgrids - primary function for gridding. *
* seti - set int parameter values. *
* geti - retrieve values for int parameters. *
* setr - set float parameter values. *
* getr - retrieve values for float parameters *
* setc - set char parameter values. *
* getc - retrieve values for char parameters. *
* getaspects - get aspect values, if calculated. *
* getslopes - get slope values, if calculated. *
* pntinits - initiate single point mode. *
* pnts - interpolate at a single point. *
* pntend _ terminate single point mode. *
* *
* *
* Double precision procedures: *
* *
* natgridd - primary function for gridding. *
* setrd - set float parameter values. *
* getrd - retrieve values for float parameters *
* getaspectd - get aspect values, if calculated. *
* getsloped - get slope values, if calculated. *
* pntinitd - initiate single point mode. *
* pntd - interpolate at a single point. *
* pntendd _ terminate single point mode. *
* *
* where is getwts and getwtd *
* *
*************************************************************************************************/
#include "Python.h"
#include "numpy/arrayobject.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define PRINTNATGRIDS 0
#define WRITENATGRIDS 0
#define PRINTPNTINITS 0
#define WRITEPNTINITS 0
static PyObject *ErrorObject; /* locally raised exception */
/*---------------------------------------- Macros -----------------------------------------------*/
#define onError(message) { PyErr_SetString(ErrorObject, message); return NULL; }
/*--------------------------------- Function Prototypes -----------------------------------------*/
/* ---- external C functions in the library ---- */
extern float *c_natgrids(int npnts, float x[], float y[], float z[], int numxout, int numyout,
float xo[], float yo[], int *ier);
extern void c_nnseti(char *pnam, int ival);
extern void c_nngeti(char *pnam, int *ival);
extern void c_nnsetr(char *pnam, float fval);
extern void c_nngetr(char *pnam, float *fval);
extern void c_nnsetc(char *pnam, char *cval);
extern void c_nngetc(char *pnam, char *cval);
extern void c_nngetaspects(int row, int column, float *aspect, int *ier);
extern void c_nngetslopes(int row, int column, float *slope, int *ier);
extern void c_nnpntinits(int row, float x[], float y[], float z[]);
extern void c_nnpnts(float x, float y, float *z);
extern void c_nnpntend();
extern double *c_natgridd(int n, double x[], double y[], double z[], int numxout, int numyout,
double xo[], double yo[], int *ier);
extern void c_nnsetrd(char *pnam, double dval);
extern void c_nngetrd(char *pnam, double *dval);
extern void c_nngetaspectd(int row, int column, double *aspect, int *ier);
extern void c_nngetsloped(int row, int column, double *slope, int *ier);
extern void c_nnpntinitd(int row, double x[], double y[], double z[]);
extern void c_nnpntd(double x, double y, double *z);
extern void c_nnpntendd();
/* ---- functions in this file called by c extensions ---- */
void write_int(int size, char *title, FILE *fp, int *data);
void write_float(int size, char *title, FILE *fp, float *data);
void print_float(int size, char *title, float *data);
void write_double(int size, char *title, FILE *fp, double *data);
void print_double(int size, char *title, double *data);
/*************************************************************************************************
**************************************************************************************************
* *
* EXPORTED MODULE METHOD-FUNCTIONS *
* *
* *
**************************************************************************************************
**************************************************************************************************/
static char nat_c_natgrids__doc__[] = " \n\
\n\
natgrids - Primary gridding function \n\
\n\
natgrids is the C single precision function that does an interpolation from 2D random data \n\
to a output grid. natgrids is called after all the desired values for the control parameters \n\
have been set using the procedures seti, setr, setc and setd. \n\
\n\
natgrids returns a pointer to a linear array of data that is the interpolated grid stored in \n\
row-major order. That is, if out is declared as \n\
float out; \n\
and we set: \n\
out = natgrids(npnts, x, y, z, numxout, numyout, xo, yo, &ier); \n\
then out[i numyout + j] is the interpolated value at coordinate point (xo[i], y[j]) for \n\
0 <= i < numxout and 0 <= j < numyout. The space for out is allocated internal to natgrids \n\
and is numxout numyout floats in size. \n\
\n\
Prototype: \n\
\n\
extern float c_natgrids(int npnts, float x[], float y[], float z[], \n\
int numxout, int numyout, float xo[], float yo[], int ier); \n\
\n\
Call from Python: \n\
\n\
out, ier = natgrids(npnts, x, y, z, numxout, numyout, xo, yo) \n\
\n\
where: \n\
\n\
npnts -- the number of input data points \n\
\n\
x -- array of size npnts containing the x coordinates of the input data points \n\
\n\
y -- array of size npnts containing the y coordinates of the input data points \n\
\n\
z -- array of size npnts containing the functional values of the input data points. That is, \n\
z[j] is the value of the input function at coordinate (x[j], y[j]), for 0 <= j < npnts. \n\
\n\
numxout -- the number of x values in the output grid, \n\
\n\
numyout -- the number of y values in the output grid. \n\
\n\
xo -- array of size numxout containing the x coordinates of the output data grid. The values \n\
of xo must be increasing, but need not be equally spaced. \n\
\n\
yo -- array of size numyout containing the y coordinates of the output data grid. The values \n\
of yo must be increasing, but need not be equally spaced. \n\
\n\
";
static PyObject *nat_c_natgrids(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int npnts; /* The number of input data points */
PyArrayObject *object_x; /* Object pointer containing the x coordinates of the input data points */
PyArrayObject *object_y; /* Object pointer containing the y coordinates of the input data points */
PyArrayObject *object_z; /* Object pointer containing the functional values of the input data points */
int numxout; /* The number of x values in the output grid */
int numyout; /* The number of y values in the output grid */
PyArrayObject *object_xo; /* Object pointer containing the x coordinates of the output data grid */
PyArrayObject *object_yo; /* Object pointer containing the y coordinates of the output data grid */
/* fields required by call to c function*/
float *out; /* An array with the interpolated values at the output coordinate points */
int ier; /* An error return value. If *ier is returned as 0, then no errors were detected.
If ier is non-zero, then refer to the list in the error table for details. */
/* fields required to construct the return of result to python */
PyArrayObject *object_out; /* array object to accept the data and return it to Python */
npy_intp dims[2]; /* used in creating object_out */
/* declarations for writes to a file */
FILE *fp; /* File used in ascii write */
char *title[6] = { "x", "y ", "z", "xo", "yo", "result" }; /* Titles for print to file */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "iOOOiiOO", &npnts, &object_x, &object_y, &object_z,
&numxout, &numyout, &object_xo, &object_yo))
{
PyErr_SetString(PyExc_TypeError, "Pass to natgrids is wrong.\n");
return NULL;
}
out = (float *)c_natgrids(npnts, (float *)PyArray_DATA(object_x), (float *)PyArray_DATA(object_y), (float *)PyArray_DATA(object_z),
numxout, numyout, (float *)PyArray_DATA(object_xo), (float *)PyArray_DATA(object_yo), &ier);
/* -------- create a NumPy array housing the C language data out ----------- */
dims[0] = numxout;
dims[1] = numyout;
object_out = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, PyArray_DescrFromType(NPY_FLOAT), 2, dims, NULL, (char *)out, NPY_ARRAY_CARRAY, NULL);
if (PRINTNATGRIDS == 1) {
/* -------- print data to the screen ---------- */
printf("npnts: %d\n", npnts);
printf("numxout: %d\n", numxout);
printf("numyout: %d\n", numyout);
print_float(npnts, title[0], (float *)PyArray_DATA(object_x));
print_float(npnts, title[1], (float *)PyArray_DATA(object_y));
print_float(npnts, title[2], (float *)PyArray_DATA(object_z));
print_float(numxout, title[3], (float *)PyArray_DATA(object_xo));
print_float(numyout, title[4], (float *)PyArray_DATA(object_yo));
print_float(numxout*numyout, title[5], (float *)PyArray_DATA(object_out));
}
if (WRITENATGRIDS == 1) {
/* -------- write data to a file ----------- */
if((fp = fopen("natgrids.asc", "w")) == NULL) {
PyErr_SetString(PyExc_IOError, "Can not open file to write checks");
return NULL;
}
fprintf(fp, "npnts: %d\n", npnts);
fprintf(fp, "numxout: %d\n", numxout);
fprintf(fp, "numyout: %d\n", numyout);
write_float(npnts, title[0], fp, (float *)PyArray_DATA(object_x));
write_float(npnts, title[1], fp, (float *)PyArray_DATA(object_y));
write_float(npnts, title[2], fp, (float *)PyArray_DATA(object_z));
write_float(numxout, title[3], fp, (float *)PyArray_DATA(object_xo));
write_float(numyout, title[4], fp, (float *)PyArray_DATA(object_yo));
write_float(numxout*numyout, title[5], fp, (float *)PyArray_DATA(object_out));
fclose(fp);
}
return Py_BuildValue(("Oi"), object_out, ier);
}
static char nat_c_nnseti__doc__[] =
" \n\
\n\
seti - Set int valued parameters \n\
\n\
seti is used to set values for any of the control parameters that take int values. The \n\
values set by seti remain in effect until changed by subsequent calls to seti. \n\
\n\
Prototype: \n\
\n\
extern void nnseti(char pnam, int ival); \n\
\n\
Call from Python: \n\
\n\
seti(pnam, ival) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter whic is assigned an int value. \n\
\n\
ival -- the value to be assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nnseti(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter to be assigned an int value */
int ival; /* value to be assigned to the control parameter whose name is pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "si", &pnam, &ival))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnseti is wrong.\n");
return NULL;
}
c_nnseti(pnam, ival);
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_nngeti__doc__[] =
" \n\
\n\
geti - Retreive an int valued parameter \n\
\n\
geti is called to obtain current values for any of the int valued control parameters. \n\
\n\
Prototype: \n\
\n\
extern void c_nngeti(char pnam, int ival); \n\
\n\
Call from Python: \n\
\n\
ival = geti(pnam) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter which is assigned an int value. \n\
\n\
ival -- the value currently assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nngeti(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter whose value is to be retrieved */
/* fields required by call to c function*/
int ival; /* the value currently assigned to the control parameter whose name is
pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "s", &pnam))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngeti is wrong.\n");
return NULL;
}
c_nngeti(pnam, &ival);
return Py_BuildValue("i", ival);
}
static char nat_c_nnsetr__doc__[] =
" \n\
\n\
setr - Set float valued parameters \n\
\n\
setr is used to set values for any of the control parameters that take float values. The \n\
values set by setr remain in effect until changed by subsequent calls to setr. \n\
\n\
Prototype: \n\
\n\
extern void c_nnsetr(char pnam, float fval); \n\
\n\
Call from Python: \n\
\n\
setr(pnam, fval) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter to be assigned an float value. \n\
\n\
fval -- the value to be assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nnsetr(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter to be assigned a float value */
float fval; /* value to be assigned to the control parameter whose name is pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "sf", &pnam, &fval))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnsetr is wrong.\n");
return NULL;
}
c_nnsetr(pnam, fval);
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_nngetr__doc__[] =
" \n\
\n\
getr - Retreive an float valued parameter \n\
\n\
getr is called to obtain current values for any of the float valued control parameters. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetr(char pnam, int fval); \n\
\n\
Call from Python: \n\
\n\
fval = getr(pnam) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter which is assigned a float value. \n\
\n\
fval -- the value currently assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nngetr(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter whose value is to be retrieved */
/* fields required by call to c function*/
float fval; /* the value currently assigned to the control parameter whose name is
pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "s", &pnam))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetr is wrong.\n");
return NULL;
}
c_nngetr(pnam, &fval);
return Py_BuildValue("f", fval);
}
static char nat_c_nnsetc__doc__[] =
" \n\
\n\
setc - Set char valued parameters \n\
\n\
setc is used to set values for any of the control parameters that take string values. The \n\
values set by setc remain in effect until changed by subsequent calls to setc. \n\
\n\
Prototype: \n\
\n\
extern void c_nnsetc(char pnam, char cval); \n\
\n\
Call from Python: \n\
\n\
setc(pnam, cval) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter to be assigned a char value. \n\
\n\
cval -- the value to be assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nnsetc(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter to be assigned a char value */
char *cval; /* value to be assigned to the control parameter whose name is pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "ss", &pnam, &cval))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnsetc is wrong.\n");
return NULL;
}
c_nnsetc(pnam, cval);
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_nngetc__doc__[] =
" \n\
\n\
getc - Retreive an char valued parameter \n\
\n\
getc is called to obtain current values for any of the string valued control parameters. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetc(char pnam, char cval); \n\
\n\
Call from Python: \n\
\n\
cval = getc(pnam) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter which is assigned a string value. \n\
\n\
cval -- the value currently assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nngetc(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter whose value is to be retrieved */
/* fields required by call to c function*/
char cval[128]; /* the value currently assigned to the control parameter whose name is
pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "s", &pnam))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetc is wrong.\n");
return NULL;
}
c_nngetc(pnam, cval);
return Py_BuildValue("s", cval);
}
static char nat_c_nngetaspects__doc__[] =
" \n\
\n\
getaspects - Retreive aspect values, if calculated \n\
\n\
getaspects is called to retrieve an aspect, in single-precision, at a specified coordinate \n\
value. For further details see the module on computing aspects and slopes. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetaspects(int row, int column, float aspect, int ier); \n\
\n\
Call from Python: \n\
\n\
aspect, ier = getaspects(row, column) \n\
\n\
where: \n\
\n\
row -- a subscript indexing the first dimenioned variable in the 2D grid array returned from \n\
the most recent call to natgrids. \n\
\n\
column -- a subscript indexing the second dimenioned variable in the 2D grid array returned \n\
from the most recent call to natgrids. \n\
\n\
aspect -- the aspect at the grid point z[i][j], where z is the output grid in the most recent \n\
call to natgrids. \n\
\n\
ier -- an error return value. If ier is returned as 0, then no errors were detected. If ier \n\
is non-zero, then refer to the list in the error table for details. \n\
\n\
";
static PyObject *nat_c_nngetaspects(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int row; /* A subscript indexing the first dimenioned variable in the 2D grid
array returned from the most recent call to c_natgrids */
int column; /* A subscript indexing the second dimenioned variable in the 2D grid
array returned from the most recent call to c_natgrids */
/* fields required by call to c function*/
float aspect; /* the aspect at the grid point z[i][j], where z is the output grid
in the most recent call to c_natgrids. */
int ier; /* An error return value. If *ier is returned as 0, then no errors were detected.
If *ier is non-zero, then refer to the list in the error table for details. */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "ii", &row, &column))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetaspects is wrong.\n");
return NULL;
}
c_nngetaspects(row, column, &aspect, &ier);
return Py_BuildValue("fi", aspect, ier);
}
static char nat_c_nngetslopes__doc__[] =
" \n\
\n\
getslopes - Retreive slope values, if calculated \n\
\n\
getslopes is called to retrieve a slope, in single-precision, at a specified coordinate \n\
value. For further details see the module on computing slopes and slopes. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetslopes(int row, int column, float slope, int ier); \n\
\n\
Call from Python: \n\
\n\
slope, ier = getslopes(row, column) \n\
\n\
where: \n\
\n\
row -- a subscript indexing the first dimenioned variable in the 2D grid array returned from \n\
the most recent call to natgrids. \n\
\n\
column -- a subscript indexing the second dimenioned variable in the 2D grid array returned \n\
from the most recent call to natgrids. \n\
\n\
slope -- the slope at the grid point z[i][j], where z is the output grid in the most recent \n\
call to natgrids. \n\
\n\
ier -- an error return value. If ier is returned as 0, then no errors were detected. If ier \n\
is non-zero, then refer to the list in the error table for details. \n\
\n\
";
static PyObject *nat_c_nngetslopes(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int row; /* A subscript indexing the first dimenioned variable in the 2D grid
array returned from the most recent call to c_natgrids */
int column; /* A subscript indexing the second dimenioned variable in the 2D grid
array returned from the most recent call to c_natgrids */
/* fields required by call to c function*/
float slope; /* the slope at the grid point z[i][j], where z is the output grid
in the most recent call to c_natgrids. */
int ier; /* An error return value. If *ier is returned as 0, then no errors were detected.
If *ier is non-zero, then refer to the list in the error table for details. */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "ii", &row, &column))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetslopes is wrong.\n");
return NULL;
}
c_nngetslopes(row, column, &slope, &ier);
return Py_BuildValue("fi", slope, ier);
}
static char nat_c_nnpntinits__doc__[] =
" \n\
\n\
pntinits - Enter single-point mode \n\
\n\
This function calculates all naturnal neighbor relationships in an input data array and sets \n\
some internal parameters so that pnts can be called to interpolate at individual points. \n\
\n\
Prototype: \n\
\n\
extern void c_nnpntinits(int row, float x[], float y[], float z[]); \n\
\n\
Call from Python: \n\
\n\
pntinits(n, x, y, z) \n\
\n\
where: \n\
\n\
n -- the number of input data points \n\
\n\
x -- array of size npnts containing the x coordinates of the input data points \n\
\n\
y -- array of size npnts containing the y coordinates of the input data points \n\
\n\
z -- array of size npnts containing the functional values of the input data points. That is, \n\
z[j] is the value of the input function at coordinate (x[j], y[j]), for 0 <= j < npnts. \n\
\n\
";
static PyObject *nat_c_nnpntinits(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int npnts; /* the number of input data points (npnts > 3 )*/
PyArrayObject *object_x; /* object pointer containing the x coordinates of the input data points */
PyArrayObject *object_y; /* object pointer containing the y coordinates of the input data points */
PyArrayObject *object_z; /* object pointer containing the functional values at the input data points */
/* declarations for writes to a file */
FILE *fp; /* File used in ascii write */
char *title[3] = {"x", "y ", "z"}; /* Titles for print to file */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "iOOO", &npnts, &object_x, &object_y, &object_z))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnpntinits is wrong.\n");
return NULL;
}
/* -------- write input data to a file ----------- */
c_nnpntinits(npnts, (float *)PyArray_DATA(object_x), (float *)PyArray_DATA(object_y), (float *)PyArray_DATA(object_z));
if (PRINTPNTINITS == 1) {
/* -------- print data to the screen ---------- */
printf("npnts: %d\n", npnts);
print_float(npnts, title[0], (float *)PyArray_DATA(object_x));
print_float(npnts, title[1], (float *)PyArray_DATA(object_y));
print_float(npnts, title[2], (float *)PyArray_DATA(object_z));
}
if (WRITEPNTINITS == 1) {
/* -------- write data to a file ----------- */
if((fp = fopen("pntinits.asc", "w")) == NULL) {
PyErr_SetString(PyExc_IOError, "Can not open file to write checks");
return NULL;
}
fprintf(fp, "npnts: %d\n", npnts);
write_float(npnts, title[0], fp, (float *)PyArray_DATA(object_x));
write_float(npnts, title[1], fp, (float *)PyArray_DATA(object_y));
write_float(npnts, title[2], fp, (float *)PyArray_DATA(object_z));
fclose(fp);
}
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_nnpnts__doc__[] =
" \n\
\n\
pnts - Interpolate at a single point \n\
\n\
This function is called to interpolate at a specified point. Before calling this function, \n\
pntinits must be called. \n\
\n\
Prototype: \n\
\n\
extern void c_nnpnts(float x, float y, float z); \n\
\n\
Call from Python: \n\
\n\
z = pnts(x, y) \n\
\n\
where: \n\
\n\
x -- x coordinate of the point where interpolation is desired. \n\
\n\
y -- y coordinate of the point where interpolation is desired. \n\
\n\
z -- the interpolated functional value at (x,y). \n\
\n\
";
static PyObject *nat_c_nnpnts(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
float x; /* x coordinate of the point where interpolation is desired */
float y; /* y coordinate of the point where interpolation is desired */
/* fields required by call to c function*/
float z; /* the interpolated functional value at (x,y) */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "ff", &x, &y))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnpnts is wrong.\n");
return NULL;
}
c_nnpnts(x, y, &z);
return Py_BuildValue("f", z);
}
static char nat_c_nnpntend__doc__[] =
" \n\
\n\
pntend - Exit single-point mode \n\
\n\
This function is called to terminate interpolation at single points. It is called after having \n\
made previous calls to pntinits and pnts. \n\
\n\
Prototype: \n\
\n\
extern void c_nnpntend(); \n\
\n\
Call from Python: \n\
\n\
pntend() \n\
\n\
";
static PyObject *nat_c_nnpntend(PyObject *self, PyObject *args)
{
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, ""))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnpntend is wrong.\n");
return NULL;
}
c_nnpntend();
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_natgridd__doc__[] =
" \n\
\n\
natgridd - Primary gridding function \n\
\n\
natgridd is the C double-precision function that does an interpolation from 2D random data \n\
to a output grid. natgridd is called after all the desired values for the control parameters \n\
have been set using the procedures seti, setr and setc. \n\
\n\
natgridd returns a pointer to a linear array of data that is the interpolated grid stored in \n\
row-major order. That is, if out is declared as \n\
double out; \n\
and we set: \n\
out = natgridd(npnts, x, y, z, numxout, numyout, xo, yo, &ier); \n\
then out[i numyout + j] is the interpolated value at coordinate point (xo[i], y[j]) for \n\
0 <= i < numxout and 0 <= j < numyout. The space for out is allocated internal to natgridd \n\
and is numxout numyout floats in size. \n\
\n\
Prototype: \n\
\n\
extern double c_natgridd(int n, double x[], double y[], double z[], int numxout, \n\
int numyout, double xo[], double yo[], int ier); \n\
\n\
Call from Python: \n\
\n\
out, ier = natgridd(npnts, x, y, z, numxout, numyout, xi, yi) \n\
\n\
where: \n\
\n\
npnts -- the number of input data points \n\
\n\
x -- array of size npnts containing the x coordinates of the input data points \n\
\n\
y -- array of size npnts containing the y coordinates of the input data points \n\
\n\
z -- array of size npnts containing the functional values of the input data points. That is, \n\
z[j] is the value of the input function at coordinate (x[j], y[j]), for 0 <= j < npnts. \n\
\n\
numxout -- the number of x values in the output grid, \n\
\n\
numyout -- the number of y values in the output grid. \n\
\n\
xo -- array of size numxout containing the x coordinates of the output data grid. The values \n\
of xo must be increasing, but need not be equally spaced. \n\
\n\
yo -- array of size numyout containing the y coordinates of the output data grid. The values \n\
of yo must be increasing, but need not be equally spaced. \n\
\n\
";
static PyObject *nat_c_natgridd(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int npnts; /* the number of input data points */
int numxout; /* the number of x values in the output grid */
int numyout; /* the number of y values in the output grid */
PyArrayObject *object_x; /* object pointer containing the x coordinates of the input data points */
PyArrayObject *object_y; /* object pointer containing the y coordinates of the input data points */
PyArrayObject *object_z; /* Object pointer containing the functional values of the input data points */
PyArrayObject *object_xo; /* object pointer containing the x coordinates of the output data grid */
PyArrayObject *object_yo; /* object pointer containing the y coordinates of the output data grid */
/* fields required by call to c function*/
double *out; /* An array with the interpolated values at the coordinate points */
int ier; /* An error return value. If *ier is returned as 0, then no errors were detected.
If *ier is non-zero, then refer to the list in the error table for details. */
/* fields required to construct the return of result to python */
PyArrayObject *object_out; /* array object to accept the data and return it to Python */
npy_intp dims[2]; /* used in creating object_out */
/* declarations for writes to a file */
FILE *fp; /* File used in ascii write */
char *title[6] = {"x", "y ", "z", "xo", "yo", "result"}; /* Titles for print to file */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "iOOOiiOO", &npnts, &object_x, &object_y, &object_z,
&numxout, &numyout, &object_xo, &object_yo))
{
PyErr_SetString(PyExc_TypeError, "Pass to natgridd is wrong.\n");
return NULL;
}
out = (double *)c_natgridd(npnts, (double *)PyArray_DATA(object_x), (double *)PyArray_DATA(object_y), (double *)PyArray_DATA(object_z),
numxout, numyout, (double *)PyArray_DATA(object_xo), (double *)PyArray_DATA(object_yo), &ier);
/* -------- create a NumPy array housing the c language data out ----------- */
dims[0] = numxout;
dims[1] = numyout;
object_out = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, PyArray_DescrFromType(NPY_DOUBLE), 2, dims, NULL, (char *)out, NPY_ARRAY_CARRAY, NULL);
if (PRINTNATGRIDS == 1) {
/* -------- print data to the screen ---------- */
printf("npnts: %d\n", npnts);
printf("numxout: %d\n", numxout);
printf("numyout: %d\n", numyout);
print_double(npnts, title[0], (double *)PyArray_DATA(object_x));
print_double(npnts, title[1], (double *)PyArray_DATA(object_y));
print_double(npnts, title[2], (double *)PyArray_DATA(object_z));
print_double(numxout, title[3], (double *)PyArray_DATA(object_xo));
print_double(numyout, title[4], (double *)PyArray_DATA(object_yo));
print_double(numxout*numyout, title[5], (double *)PyArray_DATA(object_out));
}
if (WRITENATGRIDS == 1) {
/* -------- write data to a file ----------- */
if((fp = fopen("natgridd.asc", "w")) == NULL) {
PyErr_SetString(PyExc_IOError, "Can not open file to write checks");
return NULL;
}
fprintf(fp, "npnts: %d\n", npnts);
fprintf(fp, "numxout: %d\n", numxout);
fprintf(fp, "numyout: %d\n", numyout);
write_double(npnts, title[0], fp, (double *)PyArray_DATA(object_x));
write_double(npnts, title[1], fp, (double *)PyArray_DATA(object_y));
write_double(npnts, title[2], fp, (double *)PyArray_DATA(object_z));
write_double(numxout, title[3], fp, (double *)PyArray_DATA(object_xo));
write_double(numyout, title[4], fp, (double *)PyArray_DATA(object_yo));
write_double(numxout*numyout, title[5], fp, (double *)PyArray_DATA(object_out));
fclose(fp);
}
return Py_BuildValue(("Oi"), object_out, ier);
}
static char nat_c_nnsetrd__doc__[] =
" \n\
\n\
setrd - Set double-precision parameters values \n\
\n\
setrd is used to set values for any of the control parameters that take double-precision \n\
values. The values set by setd remain in effect until changed by subsequent calls to \n\
setrd. \n\
\n\
Prototype: \n\
\n\
extern void c_nnsetrd(char pnam, double dval); \n\
\n\
Call from Python: \n\
\n\
setrd(pnam, dval) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter to be assigned an double-precision value. \n\
\n\
dval -- the value to be assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nnsetrd(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter to be assigned a double value */
double dval; /* value to be assigned to the control parameter whose name is pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "sd", &pnam, &dval))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnsetrd is wrong.\n");
return NULL;
}
c_nnsetrd(pnam, dval);
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_nngetrd__doc__[] =
" \n\
\n\
getrd - Retreive an double precision parameter \n\
\n\
getrd is called to obtain current values for any of the double-precision control parameters. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetrd(char pnam, int dval); \n\
\n\
Call from Python: \n\
\n\
dval = getrd(pnam) \n\
\n\
where: \n\
\n\
pnam -- the name of the control parameter which is assigned a double precision value. \n\
\n\
dval -- the value currently assigned to the control parameter whose name is pointed to by pnam. \n\
\n\
";
static PyObject *nat_c_nngetrd(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
char *pnam; /* the name of the control parameter whose value is to be retrieved */
/* fields required by call to c function*/
double dval; /* the value currently assigned to the control parameter whose name is
pointed to by pnam */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "s", &pnam))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetrd is wrong.\n");
return NULL;
}
c_nngetrd(pnam, &dval);
return Py_BuildValue("d", dval);
}
static char nat_c_nngetaspectd__doc__[] =
" \n\
\n\
getaspectd - Retreive aspect values, if calculated \n\
\n\
getaspectd is called to retrieve an aspect, in double-precision, at a specified coordinate \n\
value. For further details see the module on computing aspects and slopes. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetaspectd(int row, int column, double aspect, int ier); \n\
\n\
Call from Python: \n\
\n\
aspect, ier = getaspectd(row, column) \n\
\n\
where: \n\
\n\
row -- a subscript indexing the first dimenioned variable in the 2D grid array returned from \n\
the most recent call to natgridd. \n\
\n\
column -- a subscript indexing the second dimenioned variable in the 2D grid array returned \n\
from the most recent call to natgridd. \n\
\n\
aspect -- the aspect at the grid point z[i][j], where z is the output grid in the most recent \n\
call to natgridd. \n\
\n\
ier -- an error return value. If ier is returned as 0, then no errors were detected. If ier \n\
is non-zero, then refer to the list in the error table for details. \n\
\n\
";
static PyObject *nat_c_nngetaspectd(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int row; /* A subscript indexing the first dimenioned variable in the 2D grid
array returned from the most recent call to c_natgridd */
int column; /* A subscript indexing the second dimenioned variable in the 2D grid
array returned from the most recent call to c_natgridd */
/* fields required by call to c function*/
double aspect; /* the aspect at the grid point z[i][j], where z is the output grid
in the most recent call to c_natgridd. */
int ier; /* An error return value. If *ier is returned as 0, then no errors were detected.
If *ier is non-zero, then refer to the list in the error table for details. */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "ii", &row, &column))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetaspectd is wrong.\n");
return NULL;
}
c_nngetaspectd(row, column, &aspect, &ier);
return Py_BuildValue("di", aspect, ier);
}
static char nat_c_nngetsloped__doc__[] =
" \n\
\n\
getsloped - Retreive slope values, if calculated \n\
\n\
getsloped is called to retrieve a slope, in single precision, at a specified coordinate \n\
value. For further details see the module on computing slopes and slopes. \n\
\n\
Prototype: \n\
\n\
extern void c_nngetsloped(int row, int column, double slope, int ier); \n\
\n\
Call from Python: \n\
\n\
slope, ier = getsloped(row, column) \n\
\n\
where: \n\
\n\
row -- a subscript indexing the first dimenioned variable in the 2D grid array returned from \n\
the most recent call to natgridd. \n\
\n\
column -- a subscript indexing the second dimenioned variable in the 2D grid array returned \n\
from the most recent call to natgridd. \n\
\n\
slope -- the slope at the grid point z[i][j], where z is the output grid in the most recent \n\
call to natgridd. \n\
\n\
ier -- an error return value. If ier is returned as 0, then no errors were detected. If ier \n\
is non-zero, then refer to the list in the error table for details. \n\
\n\
";
static PyObject *nat_c_nngetsloped(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int row; /* A subscript indexing the first dimenioned variable in the 2D grid
array returned from the most recent call to c_natgridd */
int column; /* A subscript indexing the second dimenioned variable in the 2D grid
array returned from the most recent call to c_natgridd */
/* fields required by call to c function*/
double slope; /* the slope at the grid point z[i][j], where z is the output grid
in the most recent call to c_natgridd. */
int ier; /* An error return value. If *ier is returned as 0, then no errors were detected.
If *ier is non-zero, then refer to the list in the error table for details. */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "ii", &row, &column))
{
PyErr_SetString(PyExc_TypeError, "Pass to nngetsloped is wrong.\n");
return NULL;
}
c_nngetsloped(row, column, &slope, &ier);
return Py_BuildValue("di", slope, ier);
}
static char nat_c_nnpntinitd__doc__[] =
" \n\
\n\
pntinitd - Enter single-point mode \n\
\n\
This function calculates all naturnal neighbor relationships in an input data array and sets \n\
some internal parameters so that pnts can be called to interpolate at individual points. \n\
\n\
Prototype: \n\
\n\
extern void c_nnpntinitd(int row, double x[], double y[], double z[]); \n\
\n\
Call from Python: \n\
\n\
pntinitd(n, x, y, z) \n\
\n\
where: \n\
\n\
npnts -- the number of input data points \n\
\n\
x -- array of size npnts containing the x coordinates of the input data points \n\
\n\
y -- array of size npnts containing the y coordinates of the input data points \n\
\n\
z -- array of size npnts containing the functional values of the input data points. That is, \n\
z[j] is the value of the input function at coordinate (x[j], y[j]), for 0 <= j < npnts. \n\
\n\
";
static PyObject *nat_c_nnpntinitd(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
int npnts; /* the number of input data points (npnts > 3)*/
PyArrayObject *object_x; /* object pointer containing the x coordinates of the input data points */
PyArrayObject *object_y; /* object pointer containing the y coordinates of the input data points */
PyArrayObject *object_z; /* object pointer containing the functional values at the input data points */
/* declarations for writes to a file */
FILE *fp; /* File used in ascii write */
char *title[3] = { "x", "y ", "z" }; /* Titles for print to file */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "iOOO", &npnts, &object_x, &object_y, &object_z))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnpntinitd is wrong.\n");
return NULL;
}
c_nnpntinitd(npnts, (double *)PyArray_DATA(object_x), (double *)PyArray_DATA(object_y), (double *)PyArray_DATA(object_z));
if (PRINTPNTINITS == 1) {
/* -------- print data to the screen ---------- */
printf("npnts: %d\n", npnts);
print_double(npnts, title[0], (double *)PyArray_DATA(object_x));
print_double(npnts, title[1], (double *)PyArray_DATA(object_y));
print_double(npnts, title[2], (double *)PyArray_DATA(object_z));
}
if (WRITEPNTINITS == 1) {
/* -------- write data to a file ----------- */
if((fp = fopen("pntinitd.asc", "w")) == NULL) {
PyErr_SetString(PyExc_IOError, "Can not open file to write checks");
return NULL;
}
fprintf(fp, "npnts: %d\n", npnts);
write_double(npnts, title[0], fp, (double *)PyArray_DATA(object_x));
write_double(npnts, title[1], fp, (double *)PyArray_DATA(object_y));
write_double(npnts, title[2], fp, (double *)PyArray_DATA(object_z));
fclose(fp);
}
Py_INCREF(Py_None);
return Py_None;
}
static char nat_c_nnpntd__doc__[] =
" \n\
\n\
pntd - Interpolate at a single point \n\
\n\
This function is called to interpolate at a specified point. Before calling this function, \n\
pntinitd must be called. \n\
\n\
Prototype: \n\
\n\
extern void c_nnpnts(double x, double y, double z); \n\
\n\
Call from Python: \n\
\n\
z = pntd(x, y) \n\
\n\
where: \n\
\n\
x -- x coordinate of the point where interpolation is desired. \n\
\n\
y -- y coordinate of the point where interpolation is desired. \n\
\n\
z -- the interpolated functional value at (x,y). \n\
\n\
";
static PyObject *nat_c_nnpntd(PyObject *self, PyObject *args)
{
/* ----------------------- Declarations ------------------------------------*/
/* fields which are passed from Python in the args tuple */
double x; /* x coordinate of the point where interpolation is desired */
double y; /* y coordinate of the point where interpolation is desired */
/* fields required by call to c function*/
double z; /* the interpolated functional value at (x,y) */
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, "dd", &x, &y))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnpntd is wrong.\n");
return NULL;
}
c_nnpntd(x, y, &z);
return Py_BuildValue("d", z);
}
static char nat_c_nnpntendd__doc__[] =
" \n\
\n\
pntend - Exit single-point mode \n\
\n\
This function is called to terminate interpolation at single points. It is called after having \n\
made previous calls to pntinitd and pntd. \n\
\n\
Prototype: \n\
\n\
extern void c_nnpntendd(); \n\
\n\
Call from Python: \n\
\n\
pntendd() \n\
\n\
";
static PyObject *nat_c_nnpntendd(PyObject *self, PyObject *args)
{
/* ----------------------- Start Execution ------------------------------------*/
if(!PyArg_ParseTuple(args, ""))
{
PyErr_SetString(PyExc_TypeError, "Pass to nnpntendd is wrong.\n");
return NULL;
}
c_nnpntendd();
Py_INCREF(Py_None);
return Py_None;
}
/*************************************************************************
* *
* METHOD REGISTRATION TABLE: NAME-STRING -> FUNCTION-POINTER
*
* *
\**************************************************************************/
static struct PyMethodDef nat_methods[] = {
{ "natgrids", (PyCFunction)nat_c_natgrids, METH_VARARGS, nat_c_natgrids__doc__ },
{ "seti", (PyCFunction)nat_c_nnseti, METH_VARARGS, nat_c_nnseti__doc__ },
{ "geti", (PyCFunction)nat_c_nngeti, METH_VARARGS, nat_c_nngeti__doc__ },
{ "setr", (PyCFunction)nat_c_nnsetr, METH_VARARGS, nat_c_nnsetr__doc__ },
{ "getr", (PyCFunction)nat_c_nngetr, METH_VARARGS, nat_c_nngetr__doc__ },
{ "setc", (PyCFunction)nat_c_nnsetc, METH_VARARGS, nat_c_nnsetc__doc__ },
{ "getc", (PyCFunction)nat_c_nngetc, METH_VARARGS, nat_c_nngetc__doc__ },
{ "getaspects", (PyCFunction)nat_c_nngetaspects, METH_VARARGS, nat_c_nngetaspects__doc__},
{ "getslopes", (PyCFunction)nat_c_nngetslopes, METH_VARARGS, nat_c_nngetslopes__doc__ },
{ "pntinits", (PyCFunction)nat_c_nnpntinits, METH_VARARGS, nat_c_nnpntinits__doc__ },
{ "pnts", (PyCFunction)nat_c_nnpnts, METH_VARARGS, nat_c_nnpnts__doc__ },
{ "pntend", (PyCFunction)nat_c_nnpntend, METH_VARARGS, nat_c_nnpntend__doc__ },
{ "natgridd", (PyCFunction)nat_c_natgridd, METH_VARARGS, nat_c_natgridd__doc__ },
{ "setrd", (PyCFunction)nat_c_nnsetrd, METH_VARARGS, nat_c_nnsetrd__doc__ },
{ "getrd", (PyCFunction)nat_c_nngetrd, METH_VARARGS, nat_c_nngetrd__doc__ },
{ "getaspectd", (PyCFunction)nat_c_nngetaspectd, METH_VARARGS, nat_c_nngetaspectd__doc__},
{ "getsloped", (PyCFunction)nat_c_nngetsloped, METH_VARARGS, nat_c_nngetsloped__doc__ },
{ "pntinitd", (PyCFunction)nat_c_nnpntinitd, METH_VARARGS, nat_c_nnpntinitd__doc__ },
{ "pntd", (PyCFunction)nat_c_nnpntd, METH_VARARGS, nat_c_nnpntd__doc__ },
{ "pntendd", (PyCFunction)nat_c_nnpntendd, METH_VARARGS, nat_c_nnpntendd__doc__ },
{ NULL, NULL, 0, NULL }
};
/*************************************************************************
* *
* INITIALIZATION FUNCTION
*
* *
\**************************************************************************/
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef natgridmodule =
{
PyModuleDef_HEAD_INIT,
"natgridmodule", /* name of module */
"", /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module, or -1 if the module keeps state in global variables. */
nat_methods
};
PyMODINIT_FUNC
PyInit_natgridmodule(void)
{
import_array();
return PyModule_Create(&natgridmodule);
}
#else
void initnatgridmodule()
{
PyObject *m, *d;
/* create this module and add the functions */
m = Py_InitModule("natgridmodule", nat_methods);
import_array();
/* add symbolic constants to the module */
d = PyModule_GetDict(m);
ErrorObject = Py_BuildValue("s", "natgridmodule.error");
PyDict_SetItemString(d, "error", ErrorObject);
/* check for errors */
if(PyErr_Occurred())
Py_FatalError("can't initialize module natgridmodule");
}
#endif
/*************************************************************************
* *
* C FUNCTIONS USED IN THE C-EXTENSIONS
* *
\**************************************************************************/
/********************************************************************************
* Function: write_int.c
*
* Procedure: Uses 5d format to write 6 numbers per line
* Purpose: write ascii data for one horizontal field or one cross section
*
* Passed: Data, pointer to start of data
********************************************************************************/
void write_int(int size, char *title, FILE *fp, int *data)
{
int n; /* data counter */
int line; /* counter to insert a line after each six numbers */
int *d; /* pointer to increment through data */
d = data;
line = 0;
fprintf(fp, "\n%s\n", title);
for(n=0; n<size; n++) {
fprintf(fp, "%5d", *d);
d++;
line++;
if(line == 16) { /* add newline after writing 16 numbers */
fprintf(fp, "\n");
line = 0;
}
}
}
/********************************************************************************
* Function: write_float.c
*
* Procedure: Uses 10.3e format to write 6 numbers per line
* Purpose: write ascii data for one horizontal field or one cross section
*
* Passed: Data, pointer to start of data
********************************************************************************/
void write_float(int size, char *title, FILE *fp, float *data)
{
int n; /* data counter */
int line; /* counter to insert a line after each six numbers */
float *d; /* pointer to increment through data */
d = data;
line = 0;
fprintf(fp, "\n%s\n", title);
for(n=0; n<size; n++) {
fprintf(fp, "%10.3e", *d);
d++;
line++;
if(line == 8) { /* add newline after writing 8 numbers */
fprintf(fp, "\n");
line = 0;
}
}
}
/********************************************************************************
* Function: print _float.c
*
* Procedure: Uses 10.3e format to write 6 numbers per line
* Purpose: write ascii data for one horizontal field or one cross section
*
* Passed: Data, pointer to start of data
********************************************************************************/
void print_float(int size, char *title, float *data)
{
int n; /* data counter */
int line; /* counter to insert a line after each six numbers */
float *d; /* pointer to increment through data */
d = data;
line = 0;
printf("\n%s\n", title);
for(n=0; n<size; n++) {
printf("%10.3e", *d);
d++;
line++;
if(line == 8) { /* add newline after writing 8 numbers */
printf("\n");
line = 0;
}
}
}
/********************************************************************************
* Function: write_double.c
*
* Procedure: Uses 21.15lf format to write 4 numbers per line
* Purpose: write ascii data for one horizontal field or one cross section
*
* Passed: data, pointer to start of data
* size, length of data
* title, label
* fp, file pointer
********************************************************************************/
void write_double(int size, char *title, FILE *fp, double *data)
{
int n; /* data counter */
int line; /* counter to insert a line after each six numbers */
double *d; /* pointer to increment through data */
d = data;
line = 0;
fprintf(fp, "\n%s\n", title);
for(n=0; n<size; n++) {
fprintf(fp, "%21.15lf", *d);
d++;
line++;
if(line == 4) { /* add newline after writing 8 numbers */
fprintf(fp, "\n");
line = 0;
}
}
}
/********************************************************************************
* Function: print_double.c
*
* Procedure: Uses 21.15lf format to write 4 numbers per line
* Purpose: write ascii data for one horizontal field or one cross section
*
* Passed: data, pointer to start of data
* size, length of data
* title, label
* fp, file pointer
********************************************************************************/
void print_double(int size, char *title, double *data)
{
int n; /* data counter */
int line; /* counter to insert a line after each six numbers */
double *d; /* pointer to increment through data */
d = data;
line = 0;
printf("\n%s\n", title);
for(n=0; n<size; n++) {
printf("%21.15lf", *d);
d++;
line++;
if(line == 4) { /* add newline after writing 8 numbers */
printf("\n");
line = 0;
}
}
}
|