1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
|
"""Interface module.
The interface module handles all functions typically needed by the user in an
interactive environment such as IPython. Many are also used by the
custom IPython shell defined in pybdsf.
"""
from __future__ import print_function
from __future__ import absolute_import
try:
# For Python 2, use raw_input() for input()
input = raw_input
except NameError:
pass
def process(img, **kwargs):
"""Find and measure sources in an image.
This function is used by process_image in __init__.py and by process_image
in pybdsf. It is also used as a method of the Image object in image.py
to allow reprocessing of existing Image objects with the command
img.process().
Any options given as keyword arguments will override existing ones stored
in img.opts.
"""
from . import default_chain, _run_op_list
from .image import Image
from . import mylogger
from .functions import set_up_output_paths
import os
# Start up logger. We need to initialize it each time process() is
# called, in case the quiet or debug options have changed
_, basedir = set_up_output_paths(img.opts)
basename = os.path.basename(img.opts.filename) + '.pybdsf.log'
logfilename = os.path.join(basedir, basename)
img.log = ''
mylogger.init_logger(logfilename, quiet=img.opts.quiet,
debug=img.opts.debug)
add_break_to_logfile(logfilename)
mylog = mylogger.logging.getLogger("PyBDSF.Process")
mylog.info("Processing "+img.opts.filename)
try:
# set options if given
if len(kwargs) > 0:
set_pars(img, **kwargs)
except RuntimeError as err:
# Catch and log error
mylog.error(str(err))
# Re-throw error if the user is not in the interactive shell
if img._is_interactive_shell:
return False
else:
raise
# Run all the op's
try:
# Run op's in chain
img, op_chain = get_op_chain(img)
if op_chain is not None:
_run_op_list(img, op_chain)
img._prev_opts = img.opts.to_dict()
return True
except RuntimeError as err:
# Catch and log error
mylog.error(str(err))
# Re-throw error if the user is not in the interactive shell
if img._is_interactive_shell:
return False
else:
raise
except KeyboardInterrupt:
mylogger.userinfo(mylog, "\n\033[31;1mAborted\033[0m")
if img._is_interactive_shell:
return False
else:
raise
def get_op_chain(img):
"""Determines the optimal Op chain for an Image object.
This is useful when reprocessing an Image object. For example,
if Gaussians were already fit, but the user now wants to use
shapelets, we do not need to re-run Op_gausfit, etc.
Note that any new options added to opts.py should also be
added here. If not, a full reprocessing will be done if the
new option is changed.
"""
from . import default_chain
Op_chain = default_chain[:]
Op_names = ['readimage',
'collapse',
'preprocess',
'rmsimage',
'threshold',
'islands',
'gausfit',
'wavelet_atrous',
'shapelets',
'gaul2srl',
'spectralindex',
'polarisation',
'make_residimage',
'psf_vary',
'outlist',
'cleanup']
prev_opts = img._prev_opts
if prev_opts is None:
return img, default_chain
new_opts = img.opts.to_dict()
# Set the hidden options, which should include any option whose change
# should not trigger a process_image action
hidden_opts = img.opts.get_names(group='hidden')
hidden_opts.append('advanced_opts')
hidden_opts.append('flagging_opts')
hidden_opts.append('multichan_opts')
hidden_opts.append('output_opts')
# Define lists of options for each Op. Some of these can be defined
# using the "group" parameter of each option.
#
# Op_readimage()
readimage_opts = ['filename', 'beam', 'trim_box', 'frequency',
'beam_spectrum', 'frequency_sp']
# Op_collapse()
collapse_opts = img.opts.get_names(group='multichan_opts')
collapse_opts.append('polarisation_do')
collapse_opts += readimage_opts
# Op_preprocess()
preprocess_opts = ['kappa_clip', 'polarisation_do']
preprocess_opts += collapse_opts
# Op_rmsimage()
rmsimage_opts = ['rms_box', 'rms_box_bright', 'adaptive_rms_box',
'mean_map', 'rms_map', 'adaptive_thresh', 'rms_box_bright']
rmsimage_opts += preprocess_opts
# Op_threshold()
threshold_opts = ['thresh', 'thresh_pix', 'thresh_isl']
threshold_opts += rmsimage_opts
# Op_islands()
islands_opts = threshold_opts
islands_opts.append('minpix_isl')
# Op_gausfit()
gausfit_opts = ['verbose_fitting']
gausfit_opts += islands_opts
gausfit_opts += img.opts.get_names(group='flagging_opts')
# Op_wavelet_atrous()
wavelet_atrous_opts = img.opts.get_names(group='atrous_do')
wavelet_atrous_opts.append('atrous_do')
wavelet_atrous_opts += gausfit_opts
# Op_shapelets()
shapelets_opts = img.opts.get_names(group='shapelet_do')
shapelets_opts.append('shapelet_do')
shapelets_opts += islands_opts
# Op_gaul2srl()
gaul2srl_opts = ['group_tol', 'group_by_isl', 'group_method']
gaul2srl_opts += gausfit_opts
gaul2srl_opts += wavelet_atrous_opts
# Op_spectralindex()
spectralindex_opts = img.opts.get_names(group='spectralindex_do')
spectralindex_opts.append('spectralindex_do')
spectralindex_opts += gaul2srl_opts
# Op_polarisation()
polarisation_opts = img.opts.get_names(group='polarisation_do')
polarisation_opts.append('polarisation_do')
polarisation_opts += gaul2srl_opts
# Op_make_residimage()
make_residimage_opts = ['fittedimage_clip']
make_residimage_opts += gausfit_opts
make_residimage_opts += wavelet_atrous_opts
make_residimage_opts += shapelets_opts
# Op_psf_vary()
psf_vary_opts = img.opts.get_names(group='psf_vary_do')
psf_vary_opts.append('psf_vary_do')
psf_vary_opts += gaul2srl_opts
# Op_outlist() and Op_cleanup() are always done.
# Find whether new opts differ from previous opts (and are not hidden
# opts, which should not be checked). If so, found = True and we reset
# the relevant image parameters and add the relevant Op to the Op_chain.
re_run = False
found = False
for k, v in prev_opts.items():
if v != new_opts[k] and k not in hidden_opts:
re_run = True
if k in readimage_opts:
if hasattr(img, 'use_io'): del img.use_io
if hasattr(img, 'image_arr'): del img.image_arr
while 'readimage' in img.completed_Ops:
img.completed_Ops.remove('readimage')
found = True
if k in collapse_opts:
if hasattr(img, 'mask_arr'): del img.mask_arr
if hasattr(img, 'ch0_arr'): del img.ch0_arr
while 'collapse' in img.completed_Ops:
img.completed_Ops.remove('collapse')
found = True
if k in preprocess_opts:
while 'preprocess' in img.completed_Ops:
img.completed_Ops.remove('preprocess')
found = True
if k in rmsimage_opts:
if hasattr(img, 'rms_arr'): del img.rms_arr
if hasattr(img, 'mean_arr'): del img.mean_arr
if hasattr(img, 'rms_Q_arr'): del img.rms_Q_arr
if hasattr(img, 'mean_Q_arr'): del img.mean_Q_arr
if hasattr(img, 'rms_U_arr'): del img.rms_U_arr
if hasattr(img, 'mean_U_arr'): del img.mean_U_arr
if hasattr(img, 'rms_V_arr'): del img.rms_V_arr
if hasattr(img, 'mean_V_arr'): del img.mean_V_arr
if hasattr(img, '_adapt_rms_isl_pos'): del img._adapt_rms_isl_pos
while 'rmsimage' in img.completed_Ops:
img.completed_Ops.remove('rmsimage')
found = True
if k in threshold_opts:
while 'threshold' in img.completed_Ops:
img.completed_Ops.remove('threshold')
found = True
if k in islands_opts:
if hasattr(img, 'islands'): del img.islands
while 'islands' in img.completed_Ops:
img.completed_Ops.remove('islands')
found = True
if k in gausfit_opts:
if hasattr(img, 'sources'): del img.sources
if hasattr(img, 'dsources'): del img.dsources
if hasattr(img, 'gaussians'): del img.gaussians
while 'gausfit' in img.completed_Ops:
img.completed_Ops.remove('gausfit')
found = True
if k in wavelet_atrous_opts:
if hasattr(img, 'atrous_gaussians'): del img.atrous_gaussians
if hasattr(img, 'islands'): del img.islands
if hasattr(img, 'sources'): del img.sources
if hasattr(img, 'dsources'): del img.dsources
if hasattr(img, 'gaussians'): del img.gaussians
while 'islands' in img.completed_Ops:
img.completed_Ops.remove('islands')
while 'gausfit' in img.completed_Ops:
img.completed_Ops.remove('gausfit')
while 'wavelet_atrous' in img.completed_Ops:
img.completed_Ops.remove('wavelet_atrous')
found = True
if k in shapelets_opts:
while 'shapelets' in img.completed_Ops:
img.completed_Ops.remove('shapelets')
found = True
if k in gaul2srl_opts:
while 'gaul2srl' in img.completed_Ops:
img.completed_Ops.remove('gaul2srl')
found = True
if k in spectralindex_opts:
while 'spectralindex' in img.completed_Ops:
img.completed_Ops.remove('spectralindex')
found = True
if k in polarisation_opts:
while 'polarisation' in img.completed_Ops:
img.completed_Ops.remove('polarisation')
found = True
if k in make_residimage_opts:
if hasattr(img, 'resid_gaus_arr'):
del img.resid_gaus_arr
img.resid_gaus_arr = None # set to init state
if hasattr(img, 'model_gaus_arr'): del img.model_gaus_arr
if hasattr(img, 'resid_shap_arr'): del img.resid_shap_arr
if hasattr(img, 'model_shap_arr'): del img.model_shap_arr
while 'make_residimage' in img.completed_Ops:
img.completed_Ops.remove('make_residimage')
found = True
if k in psf_vary_opts:
while 'psf_vary' in img.completed_Ops:
img.completed_Ops.remove('psf_vary')
found = True
if not found:
break
# If nothing has changed, ask if user wants to re-run
if not found and not re_run:
prompt = "Analysis appears to be up-to-date. Force reprocessing (y/n)? "
answ = raw_input_no_history(prompt)
while answ.lower() not in ['y', 'n', 'yes', 'no']:
answ = raw_input_no_history(prompt)
if answ.lower() in ['y', 'yes']:
re_run = True # Force re-run
else:
return img, None
# If a changed option is not in any of the above lists,
# force a re-run of all Ops.
if not found:
img.completed_Ops = []
if hasattr(img, 'use_io'): del img.use_io
if hasattr(img, 'image_arr'): del img.image_arr
if hasattr(img, 'mask_arr'): del img.mask_arr
if hasattr(img, 'ch0_arr'): del img.ch0_arr
if hasattr(img, 'rms_arr'): del img.rms_arr
if hasattr(img, 'mean_arr'): del img.mean_arr
if hasattr(img, 'rms_Q_arr'): del img.rms_Q_arr
if hasattr(img, 'mean_Q_arr'): del img.mean_Q_arr
if hasattr(img, 'rms_U_arr'): del img.rms_U_arr
if hasattr(img, 'mean_U_arr'): del img.mean_U_arr
if hasattr(img, 'rms_V_arr'): del img.rms_V_arr
if hasattr(img, 'mean_V_arr'): del img.mean_V_arr
if hasattr(img, 'islands'): del img.islands
if hasattr(img, 'sources'): del img.sources
if hasattr(img, 'dsources'): del img.dsources
if hasattr(img, 'gaussians'): del img.gaussians
if hasattr(img, 'atrous_gaussians'): del img.atrous_gaussians
if hasattr(img, 'resid_gaus_arr'): del img.resid_gaus_arr
if hasattr(img, 'model_gaus_arr'): del img.model_gaus_arr
if hasattr(img, 'resid_shap_arr'): del img.resid_shap_arr
if hasattr(img, 'model_shap_arr'): del img.model_shap_arr
if hasattr(img, '_adapt_rms_isl_pos'): del img._adapt_rms_isl_pos
return img, Op_chain
while 'outlist' in img.completed_Ops:
img.completed_Ops.remove('outlist')
while 'cleanup' in img.completed_Ops:
img.completed_Ops.remove('cleanup')
for completed_Op in img.completed_Ops:
if completed_Op in Op_names:
Op_indx = Op_names.index(completed_Op)
Op_names.pop(Op_indx)
Op_chain.pop(Op_indx)
return img, Op_chain
def load_pars(filename):
"""Load parameters from a save file or dictionary.
If a file is given, it must be a pickled opts dictionary.
filename - name of options file to load or a dictionary of opts.
Returns None (and original error) if no file can be loaded successfully.
"""
from .image import Image
from . import mylogger
try:
import cPickle as pickle
except ImportError:
import pickle
# First, check if input is a dictionary
if isinstance(filename, dict):
timg = Image(filename)
return timg, None
else:
try:
pkl_file = open(filename, 'rb')
pars = pickle.load(pkl_file)
pkl_file.close()
timg = Image(pars)
print("--> Loaded parameters from file '" + filename + "'.")
return timg, None
except Exception as err:
return None, err
def save_pars(img, savefile=None, quiet=False):
"""Save parameters to a file.
The save file is a "pickled" opts dictionary.
"""
try:
import cPickle as pickle
except ImportError:
import pickle
from . import tc
import sys
if savefile is None or savefile == '':
basename = os.path.basename(img.opts.filename) + '.pybdsf.sav'
savefile = os.path.join(img.basedir, basename)
# convert opts to dictionary
pars = img.opts.to_dict()
output = open(savefile, 'wb')
pickle.dump(pars, output, protocol=0)
output.close()
if not quiet:
print("--> Saved parameters to file '" + savefile + "'.")
def list_pars(img, opts_list=None, banner=None, use_groups=True):
"""Lists all parameters for the Image object.
opts_list - a list of the parameter names to list;
if None, all parameters are used.
banner - banner text to place at top of listing.
use_groups - whether to use the group information for each
parameter.
"""
from . import tc
import sys
# Get all options as a list sorted by name
opts = img.opts.to_list()
# Filter list
if opts_list is not None:
opts_temp = []
for o in opts:
if o[0] in opts_list:
opts_temp.append(o)
opts = opts_temp
# Move filename, infile, outfile to front of list
for o in opts:
if o[0] == 'filename' or o[0] == 'infile' or o[0] == 'outfile':
opts.remove(o)
opts.insert(0, o)
# Now group options with the same "group" together.
if use_groups:
opts = group_opts(opts)
# Finally, print options, values, and doc strings to screen
print_opts(opts, img, banner=banner)
def set_pars(img, **kwargs):
"""Set parameters using arguments instead of using a dictionary.
Allows partial names for parameters as long as they are unique. Parameters
are set to default values if par = ''.
"""
import re
import sys
from .image import Image
# Enumerate all options
opts = img.opts.get_names()
# Check that parameters are valid options and are unique
full_key = []
for i, key in enumerate(kwargs):
chk_key = checkpars(opts, key)
if chk_key == []:
raise RuntimeError("Input parameter '" + key + "' not recognized.")
if len(chk_key) > 1 and key not in opts:
raise RuntimeError("Input parameter '" + key + "' matches to more than one "\
"possible parameter:\n " + "\n ".join(chk_key))
if key in opts:
full_key.append(key)
else:
full_key.append(chk_key[0])
# Build options dictionary
pars = {}
for i, key in enumerate(kwargs):
if kwargs[key] == '':
temp_img = Image({'filename':''})
opt_names = temp_img.opts.get_names()
for k in opt_names:
if key == k:
kwargs[key] = temp_img.opts.__getattribute__(k)
pars.update({full_key[i]: kwargs[key]})
# Finally, set the options
img.opts.set_opts(pars)
def group_opts(opts):
"""Sorts options by group (as defined in opts.py).
Returns a list of options, with suboptions arranged in a list inside the
main list and directly following the main options. Options belonging to the
"hidden" group are excluded from the returned list (as defined in opts.py).
"""
groups = []
gp = []
for i in range(len(opts)):
grp = opts[i][1].group()
if grp is not None and grp not in groups:
groups.append(opts[i][1].group())
groups.sort()
# Now, make a list for each group with its options. Don't include
# "hidden" options, as they should never by seen by the user.
for g in groups:
g_list = []
for i in range(len(opts)):
if isinstance(opts[i], tuple):
if g == str(opts[i][1].group()):
g_list.append(opts[i])
for gs in g_list:
opts.remove(gs)
for i in range(len(opts)):
if g == str(opts[i][0]) and g != 'hidden':
opts.insert(i+1, g_list)
break
return opts
def print_opts(grouped_opts_list, img, banner=None):
"""Print options to screen.
Options can be sorted by group (defined in opts.py) previously defined by
group_opts. Output of grouped items is suppressed if parent option is
False. The layout is as follows:
[20 spaces par name with ...] = [at least 49 spaces for value]
[at least 49 spaces for doc]
When more than one line is required for the doc, the next line is:
[25 blank spaces][at least 47 spaces for doc]
As in casapy, print non-defaults in blue, options with suboptions in
47m and suboptions in green. Option Values are printed in bold, to help
to distinguish them from the descriptions. NOTE: in iTerm, one needs
to set the bold color in the profiles to white, as it defaults to red,
which is a bit hard on the eyes in this case.
"""
from .image import Image
import os
from . import functions as func
termy, termx = func.getTerminalSize() # note: returns row, col -> y, x
minwidth = 28 # minimum width for parameter names and values
# Define colors for output
dc = '\033[1;34m' # Blue: non-default option text color
ec = '\033[0;47m' # expandable option text color
sc = '\033[0;32m' # Green: suboption text color
nc = '\033[0m' # normal text color
ncb = '\033[1m' # normal text color bold
if banner is not None:
print(banner)
spcstr = ' ' * minwidth # spaces string for second or later lines
infix = nc + ': ' + nc # infix character used to separate values from comments
print('=' * termx) # division string for top of parameter listing
for indx, o in enumerate(grouped_opts_list):
if isinstance(o, tuple):
# Print main options, which are always tuples, before printing
# suboptions (if any).
k = o[0]
v = o[1]
val = img.opts.__getattribute__(k)
v1 = v2 = ''
if val == v._default:
# value is default
v1 = ncb
v2 = nc
else:
# value is non-default
v1 = dc
v2 = nc
if isinstance(val, str):
valstr = v1 + repr(val) + v2
if k == 'filename':
# Since we can check whether filename is valid,
# do so here and print in red if not.
if not os.path.exists(val):
valstr = '\033[31;1m' + repr(val) + nc
width_par_val = max(minwidth, len(k) + len(str(val)) + 5)
else:
if isinstance(val, float):
val = round_float(val)
if isinstance(val, tuple):
val = round_tuple(val)
valstr = v1 + str(val) + v2
width_par_val = max(minwidth, len(k) + len(str(val)) + 4)
width_desc = max(termx - width_par_val - 3, 44)
# Get the option description text from the doc string, which
# is defined in opts.py. By convention, print_opts will only
# show the short description; help('option_name') will
# print both the short and long description. The versions
# are separated in the doc string by '\n', which is split
# on here:
desc_text = wrap(str(v.doc()).split('\n')[0], width_desc)
fmt = '%' + str(minwidth) + 's' + infix + '%44s'
# Now loop over lines of description
if indx < len(grouped_opts_list)-1:
# Here we check if next entry in options list is a tuple or a
# list. If it is a list, then the current option has
# suboptions and should be in the ec color. Since we check the
# next option, we can't do this if we let indx go to the end.
if isinstance(grouped_opts_list[indx+1], tuple):
parvalstr = nc + k + nc + ' ..'
else:
parvalstr = ec + k + nc + ' ..'
else:
# Since this is the last entry in the options list and is a
# tuple, it cannot be an expandable option, so make it nc color
parvalstr = nc + k + nc + ' ..'
if "'" in valstr:
len_without_formatting = len(k) + len(str(val)) + 5
else:
len_without_formatting = len(k) + len(str(val)) + 4
for i in range(len_without_formatting, minwidth):
parvalstr += '.'
parvalstr += ' ' + valstr
if "'" not in valstr:
parvalstr += ' '
for dt_indx, dt in enumerate(desc_text):
if dt_indx == 0:
print(fmt % (parvalstr.ljust(minwidth), dt.ljust(44)))
else:
print(nc + spcstr + ' %44s' % dt.ljust(44))
else:
# Print suboptions, indented 2 spaces from main options in sc color
parent_opt = grouped_opts_list[indx-1]
parent_val = img.opts.__getattribute__(parent_opt[0])
if parent_val == True:
for og in o:
k = og[0]
v = og[1]
val = img.opts.__getattribute__(k)
v1 = v2 = ''
if val == v._default:
# value is default
v1 = ncb
v2 = nc
else:
# value is non-default
v1 = dc
v2 = nc
if isinstance(val, str):
valstr = v1 + repr(val) + v2
width_par_val = max(minwidth, len(k) + len(str(val)) + 7)
else:
if isinstance(val, float):
val = round_float(val)
if k == 'beam_spectrum' and val is not None:
val = round_list_of_tuples(val)
if k == 'frequency_sp' and val is not None:
val = round_list(val)
valstr = v1 + str(val) + v2
width_par_val = max(minwidth, len(k) + len(str(val)) + 6)
width_desc = max(termx - width_par_val - 3, 44)
desc_text = wrap(str(v.doc()).split('\n')[0], width_desc)
fmt = ' ' + '%' + str(minwidth) + 's' + infix + '%44s'
parvalstr = sc + k + nc + ' ..'
if "'" in valstr:
len_without_formatting = len(k) + len(str(val)) + 7
else:
len_without_formatting = len(k) + len(str(val)) + 6
for i in range(len_without_formatting, minwidth):
parvalstr += '.'
parvalstr += ' ' + valstr
if "'" not in valstr:
parvalstr += ' '
for dt_indx, dt in enumerate(desc_text):
if dt_indx == 0:
print(fmt % (parvalstr.ljust(minwidth-2), dt.ljust(44)))
else:
print(nc + spcstr + ' %44s' % dt.ljust(44))
def wrap(text, width=80):
"""Wraps text to given width and returns list of lines."""
lines = []
for paragraph in text.split('\n'):
line = []
len_line = 0
for word in paragraph.split(' '):
word.strip()
len_word = len(word)
if len_line + len_word <= width:
line.append(word)
len_line += len_word + 1
else:
lines.append(' '.join(line))
line = [word]
len_line = len_word + 1
lines.append(' '.join(line))
return lines
def checkpars(lines, regex):
"""Checks that parameters are unique"""
import re
result = []
for l in lines:
match = re.match(regex,l)
if match:
result += [l]
return result
def in_ipython():
"""Checks if interpreter is IPython."""
try:
__IPYTHON__
except NameError:
return False
else:
return True
def raw_input_no_history(prompt):
"""Removes user input from readline history."""
import readline
userinput = input(prompt)
if userinput != '':
readline.remove_history_item(readline.get_current_history_length()-1)
return userinput
# The following functions just make the printing of
# parameters look better
def round_tuple(val):
valstr_list = []
for v in val:
vstr = '%s' % (round(v, 5))
if len(vstr) > 7:
vstr = '%.5f' % (v,)
valstr_list.append(vstr)
valstr = '(' + ','.join(valstr_list) + ')'
return valstr
def round_float(val):
vstr = '%s' % (round(val, 5))
if len(vstr) > 7 and val < 1e3:
vstr = '%.5f' % (val,)
elif len(vstr) > 7 and val >= 1e3:
vstr = '%.2e' % (val,)
return vstr
def round_list(val):
valstr_list = []
for v in val:
valstr_list.append('%.2e' % (v,))
valstr = '[' + ','.join(valstr_list) + ']'
return valstr
def round_list_of_tuples(val):
valstr_list = []
valstr_list_tot = []
for l in val:
for v in l:
vstr = '%s' % (round(v, 5))
if len(vstr) > 7:
vstr = '%.5f' % (v,)
valstr_list.append(vstr)
valstr = '(' + ','.join(valstr_list) + ')'
valstr_list_tot.append(valstr)
valstr = '[' + ','.join(valstr_list_tot) + ']'
return valstr
# The following functions give convenient access to the output functions in
# output.py
def export_image(img, outfile=None, img_format='fits', pad_image = False,
img_type='gaus_resid', mask_dilation=0, clobber=False):
"""Write an image to a file. Returns True if successful, False if not.
outfile - name of resulting file; if None, file is
named automatically.
img_type - type of image to export; see below
img_format - format of resulting file: 'fits' or 'casa'
incl_wavelet - include wavelet Gaussians in model
and residual images?
clobber - overwrite existing file?
The following images may be exported:
'ch0' - image used for source detection
'rms' - rms map image
'mean' - mean map image
'pi' - polarized intensity image
'gaus_resid' - Gaussian model residual image
'gaus_model' - Gaussian model image
'shap_resid' - Shapelet model residual image
'shap_model' - Shapelet model image
'psf_major' - PSF major axis FWHM image (FWHM in arcsec)
'psf_minor' - PSF minor axis FWHM image (FWHM in arcsec)
'psf_pa' - PSF position angle image (degrees east of north)
'psf_ratio' - PSF peak-to-total flux ratio (in units of 1/beam)
'psf_ratio_aper' - PSF peak-to-aperture flux ratio (in units of 1/beam)
'island_mask' - Island mask image (0 = outside island, 1 = inside island)
"""
import os
from . import functions as func
from .const import fwsig
from . import mylogger
mylog = mylogger.logging.getLogger("PyBDSF."+img.log+"ExportImage")
# First some checking:
if not 'gausfit' in img.completed_Ops and 'gaus' in img_type:
print('\033[91mERROR\033[0m: Gaussians have not been fit. Please run process_image first.')
return False
elif not 'shapelets' in img.completed_Ops and 'shap' in img_type:
print('\033[91mERROR\033[0m: Shapelets have not been fit. Please run process_image first.')
return False
elif not 'polarisation' in img.completed_Ops and 'pi' in img_type:
print('\033[91mERROR\033[0m: Polarization properties have not been calculated. Please run process_image first.')
return False
elif not 'psf_vary' in img.completed_Ops and 'psf' in img_type:
print('\033[91mERROR\033[0m: PSF variations have not been calculated. Please run process_image first.')
return False
elif not 'collapse' in img.completed_Ops and 'ch0' in img_type:
print('\033[91mERROR\033[0m: ch0 image has not been calculated. Please run process_image first.')
return False
elif not 'rmsimage' in img.completed_Ops and ('rms' in img_type or 'mean' in img_type):
print('\033[91mERROR\033[0m: Mean and rms maps have not been calculated. Please run process_image first.')
return False
elif not 'make_residimage' in img.completed_Ops and ('resid' in img_type or 'model' in img_type):
print('\033[91mERROR\033[0m: Residual and model maps have not been calculated. Please run process_image first.')
return False
format = img_format.lower()
if (format in ['fits', 'casa']) == False:
print('\033[91mERROR\033[0m: img_format must be "fits" or "casa"')
return False
filename = outfile
if filename is None or filename == '':
filename = img.imagename + '_' + img_type + '.' + format
if os.path.exists(filename) and clobber == False:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
if format == 'fits':
use_io = 'fits'
if format == 'casa':
use_io = 'rap'
bdir = ''
try:
if img_type == 'ch0':
func.write_image_to_file(use_io, filename,
img.ch0_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'rms':
func.write_image_to_file(use_io, filename,
img.rms_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'mean':
func.write_image_to_file(use_io, filename,
img.mean_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'pi':
func.write_image_to_file(use_io, filename,
img.ch0_pi_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'psf_major':
func.write_image_to_file(use_io, filename,
img.psf_vary_maj_arr*fwsig, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'psf_minor':
func.write_image_to_file(use_io, filename,
img.psf_vary_min_arr*fwsig, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'psf_pa':
func.write_image_to_file(use_io, filename,
img.psf_vary_pa_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'psf_ratio':
func.write_image_to_file(use_io, filename,
img.psf_vary_ratio_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'psf_ratio_aper':
func.write_image_to_file(use_io, filename,
img.psf_vary_ratio_aper_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'gaus_resid':
im = img.resid_gaus_arr
func.write_image_to_file(use_io, filename,
im, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'gaus_model':
im = img.model_gaus_arr
func.write_image_to_file(use_io, filename,
im, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'shap_resid':
func.write_image_to_file(use_io, filename,
img.resid_shap_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'shap_model':
func.write_image_to_file(use_io, filename,
img.model_shap_arr, img, bdir, pad_image,
clobber=clobber)
elif img_type == 'island_mask':
import numpy as N
import scipy.ndimage as nd
island_mask_bool = img.pyrank + 1 > 0
if mask_dilation > 0:
# Dilate the mask by specified number of iterations
island_mask_bool = nd.binary_dilation(island_mask_bool,
iterations=mask_dilation)
# Perform a binary closing to remove small holes/gaps. The
# structure array is chosen to be about the size of the
# beam (assuming a normally sampled psf), so that holes/gaps
# smaller than the beam are removed.
pbeam = int(round(img.beam2pix(img.beam)[0] * 1.5))
island_mask_bool = nd.binary_closing(island_mask_bool,
structure=N.ones((pbeam, pbeam)))
# Check for telescope, needed for CASA clean masks
if img._telescope is None:
print('\033[91mWARNING\033[0m: Telescope is unknown. Mask may not work correctly in CASA.')
island_mask = N.array(island_mask_bool, dtype=N.float32)
func.write_image_to_file(use_io, filename,
island_mask, img, bdir, pad_image,
clobber=clobber, is_mask=True)
else:
print("\n\033[91mERROR\033[0m: img_type not recognized.")
return False
if filename == 'SAMP':
print('--> Image sent to SMAP hub')
else:
print('--> Wrote file ' + repr(filename))
if use_io == 'rap':
# remove the temporary fits file used as a casacore template
import os
os.remove(filename+'.fits')
return True
except RuntimeError as err:
# Catch and log error
mylog.error(str(err))
# Re-throw error if the user is not in the interactive shell
if img._is_interactive_shell:
return False
else:
raise
except KeyboardInterrupt:
mylogger.userinfo(mylog, "\n\033[31;1mAborted\033[0m")
if img._is_interactive_shell:
return False
else:
raise
def write_catalog(img, outfile=None, format='bbs', srcroot=None, catalog_type='gaul',
bbs_patches=None, incl_chan=False, incl_empty=False, clobber=False,
force_output=False, correct_proj=True, bbs_patches_mask=None):
"""Write the Gaussian, source, or shapelet list to a file. Returns True if
successful, False if not.
filename - name of resulting file; if None, file is
named automatically. If 'SAMP', table is sent to a samp hub
(must be running already).
catalog_type - type of catalog
"gaul" - Gaussian list
"srl" - Source list
"shap" - Shapelet list ("fits" format only)
format - format of output list. Supported formats are:
"fits" - FITS binary table
"ascii" - ASCII text file
"bbs" - BBS sky model (Gaussian list only)
"ds9" - ds9 region file
"star" - AIPS STAR file (Gaussian list only)
"kvis" - kvis file (Gaussian list only)
"sagecal" - SAGECAL file (Gaussian list only)
srcroot - root for source and patch names (BBS/ds9 only);
if None, the srcroot is chosen automatically
bbs_patches - type of patches to use:
None - no patches
"gaussian" - each Gaussian gets its own patch
"single" - all Gaussians are put into a single
patch
"source" - sources are grouped by source into patches
"mask" - use a Boolean mask to define the patches
bbs_patches_mask - file name of mask file if bbs_patches="mask"
incl_chan - Include fluxes for each channel?
incl_empty - Include islands without any valid Gaussians (source list only)?
sort_by - Property to sort output list by:
"flux" - sort by total integrated flux, largest first
"indx" - sort by Gaussian and island or source index, smallest first
force_output - Force the creation of a catalog, even if it is empty
correct_proj - Correct source parameters for image projection effects (BBS only)?
clobber - Overwrite existing file?
"""
from . import output
# First some checking:
if not 'gausfit' in img.completed_Ops:
print('\033[91mERROR\033[0m: Image has not been fit. Please run process_image first.')
return False
if catalog_type == 'shap' and not 'shapelets' in img.completed_Ops:
print('\033[91mERROR\033[0m: Image has not been decomposed into shapelets. Please run process_image first.')
return False
if catalog_type == 'srl' and not 'gaul2srl' in img.completed_Ops:
print('\033[91mERROR\033[0m: Gaussians have not been grouped into sources. Please run process_image first.')
return False
format = format.lower()
patch = bbs_patches
filename = outfile
if isinstance(patch, str):
patch = patch.lower()
if format not in ['fits', 'ascii', 'bbs', 'ds9', 'star',
'kvis', 'sagecal', 'csv', 'casabox']:
print('\033[91mERROR\033[0m: format must be "fits", '\
'"ascii", "ds9", "star", "kvis", "csv", "casabox", or "bbs"')
return False
if patch not in [None, 'gaussian', 'single', 'source', 'mask']:
print('\033[91mERROR\033[0m: patch must be None, '\
'"gaussian", "source", "single", or "mask"')
return False
if patch == 'mask':
if bbs_patches_mask is None:
print('\033[91mERROR\033[0m: if patch is "mask", bbs_patches_mask must be set to the file name of the mask file')
return False
if (catalog_type in ['gaul', 'srl', 'shap']) == False:
print('\033[91mERROR\033[0m: catalog_type must be "gaul", '\
'"srl", or "shap"')
return False
if catalog_type == 'shap' and format != 'fits':
print("\033[91mERROR\033[0m: Only format = 'fits' is supported with shapelet output.")
return False
if (len(img.sources) == 0 and not incl_empty) or (len(img.sources) == 0 and len(img.dsources) == 0 and incl_empty):
if not force_output:
print('No sources were found in the image. Output file not written.')
return False
if filename == '':
filename = None
# Now go format by format and call appropriate function
if filename == 'samp' or filename == 'SAMP':
import tempfile
from . import functions as func
import os
if not hasattr(img,'samp_client'):
s, private_key = func.start_samp_proxy()
img.samp_client = s
img.samp_key = private_key
# Broadcast fits table to SAMP Hub
tfile = tempfile.NamedTemporaryFile(delete=False)
filename = output.write_fits_list(img, filename=tfile.name,
incl_chan=incl_chan, incl_empty=incl_empty,
clobber=True, objtype=catalog_type)
table_name = 'PyBDSF '+ catalog_type + ' table'
if catalog_type == 'srl':
img.samp_srl_table_url = 'file://' + os.path.abspath(tfile.name)
if catalog_type == 'gaul':
img.samp_gaul_table_url = 'file://' + os.path.abspath(tfile.name)
func.send_fits_table(img.samp_client, img.samp_key, table_name, tfile.name)
print('--> Table sent to SMAP hub')
return True
if format == 'fits':
filename = output.write_fits_list(img, filename=filename,
incl_chan=incl_chan, incl_empty=incl_empty,
clobber=clobber, objtype=catalog_type)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
else:
print('--> Wrote FITS file ' + repr(filename))
return True
if format == 'ascii' or format == 'csv':
filename = output.write_ascii_list(img, filename=filename,
incl_chan=incl_chan, incl_empty=incl_empty,
sort_by='index', format = format,
clobber=clobber, objtype=catalog_type)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
else:
print('--> Wrote ASCII file ' + repr(filename))
return True
if format == 'bbs':
if catalog_type != 'gaul':
print("\033[91mERROR\033[0m: Only catalog_type = 'gaul' is supported with BBS files.")
return False
filename = output.write_bbs_gaul(img, filename=filename,
srcroot=srcroot, incl_empty=incl_empty,
patch=patch, correct_proj=correct_proj,
sort_by='flux',
clobber=clobber)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
else:
print('--> Wrote BBS sky model ' + repr(filename))
return True
if format == 'sagecal':
if catalog_type != 'gaul':
print("\033[91mERROR\033[0m: Only catalog_type = 'gaul' is supported with Sagecal files.")
return False
filename = output.write_lsm_gaul(img, filename=filename,
srcroot=srcroot, incl_empty=incl_empty,
patch=patch,
sort_by='flux',
clobber=clobber)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
else:
print('--> Wrote Sagecal lsm file ' + repr(filename))
return True
if format == 'ds9':
filename = output.write_ds9_list(img, filename=filename,
srcroot=srcroot, incl_empty=incl_empty,
clobber=clobber, objtype=catalog_type)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
else:
print('--> Wrote ds9 region file ' + repr(filename))
return True
if format == 'star':
if catalog_type != 'gaul':
print("\033[91mERROR\033[0m: Only catalog_type = 'gaul' is supported with star files.")
return False
filename = output.write_star(img, filename=filename,
clobber=clobber)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber = False.')
return False
else:
print('--> Wrote AIPS STAR file ' + repr(filename))
return True
if format == 'kvis':
if catalog_type != 'gaul':
print("\033[91mERROR\033[0m: Only catalog_type = 'gaul' is supported with kvis files.")
return False
filename = output.write_kvis_ann(img, filename=filename,
clobber=clobber)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber=False.')
return False
else:
print('--> Wrote kvis file ' + repr(filename))
return True
if format == 'casabox':
filename = output.write_casa_gaul(img, filename=filename,
incl_empty=incl_empty, clobber=clobber)
if filename is None:
print('\033[91mERROR\033[0m: File exists and clobber=False.')
else:
print('--> Wrote CASA clean box file ' + filename)
def add_break_to_logfile(logfile):
f = open(logfile, 'a')
f.write('\n' + '='*72 + '\n')
f.close()
|