1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
"""Plotting module
This module is used to display fits results.
"""
from __future__ import print_function
from __future__ import absolute_import
from . import has_pl
if has_pl:
import matplotlib.pyplot as pl
import matplotlib.cm as cm
from matplotlib.patches import Ellipse
from matplotlib import collections
from . import functions as func
from .const import fwsig
import warnings
import numpy as N
warnings.simplefilter(action='ignore', category=FutureWarning)
def plotresults(img, ch0_image=True, rms_image=True, mean_image=True,
ch0_islands=True, gresid_image=True, sresid_image=False,
gmodel_image=True, smodel_image=False, pyramid_srcs=False,
source_seds=False, ch0_flagged=False, pi_image=False,
psf_major=False, psf_minor=False, psf_pa=False, broadcast=False):
"""Show the results of a fit."""
global img_ch0, img_rms, img_mean, img_gaus_mod, img_shap_mod
global img_gaus_resid, img_shap_resid, pixels_per_beam, pix2sky
global vmin, vmax, vmin_cur, vmax_cur, ch0min, ch0max, img_pi
global low, fig, images, src_list, srcid_cur, sky2pix, markers
global img_psf_maj, img_psf_min, img_psf_pa, do_broadcast, samp_client
global samp_key, samp_gaul_table_url, samp_srl_table_url
if not has_pl:
print("\033[31;1mWARNING\033[0m: Matplotlib not found. Plotting is disabled.")
return
if hasattr(img, 'samp_client'):
samp_client = img.samp_client
samp_key = img.samp_key
if hasattr(img, 'samp_srl_table_url'):
samp_srl_table_url = img.samp_srl_table_url
else:
samp_srl_table_url = None
if hasattr(img, 'samp_gaul_table_url'):
samp_gaul_table_url = img.samp_gaul_table_url
else:
samp_gaul_table_url = None
else:
samp_client = None
samp_key = None
samp_srl_table_url = None
samp_gaul_table_url = None
do_broadcast = broadcast
# Define the images. The images are used both by imshow and by the
# on_press() and coord_format event handlers
pix2sky = img.pix2sky
sky2pix = img.sky2pix
gfactor = 2.0 * N.sqrt(2.0 * N.log(2.0))
pixels_per_beam = 2.0 * N.pi * (img.beam2pix(img.beam)[0]
* img.beam2pix(img.beam)[1]) / gfactor**2
# Construct lists of images, titles, etc.
images = []
titles = []
names = []
markers = []
img_gaus_mod = None # default needed for key press event
img_shap_mod = None # default needed for key press event
if ch0_image:
img_ch0 = img.ch0_arr
images.append(img_ch0)
titles.append('Original (ch0) Image\n(arbitrary logarithmic scale)')
names.append('ch0')
if ch0_islands:
img_ch0 = img.ch0_arr
images.append(img_ch0)
if hasattr(img, 'ngaus'):
if hasattr(img, 'ch0_pi_arr'):
ch0_str = 'Islands (hatched boundaries; red = PI only) and\nGaussians'
else:
ch0_str = 'Islands (hatched boundaries) and\nGaussians'
if hasattr(img, 'atrous_gaussians'):
ch0_str += ' (red = wavelet)'
titles.append(ch0_str)
else:
titles.append('Islands (hatched boundaries)')
names.append('ch0')
if ch0_flagged:
if not hasattr(img, 'ngaus'):
print('Image was not fit with Gaussians. Skipping display of flagged Gaussians.')
else:
img_ch0 = img.ch0_arr
images.append(img_ch0)
titles.append('Flagged Gaussians')
names.append('ch0')
if pi_image:
if not hasattr(img, 'ch0_pi_arr'):
print('Polarization module not run. Skipping PI image.')
else:
img_pi = img.ch0_pi_arr
images.append(img_pi)
titles.append('Polarized Intensity Image')
names.append('ch0_pi')
if rms_image:
img_rms = img.rms_arr
images.append(img_rms)
titles.append('Background rms Image')
names.append('rms')
if gresid_image:
if not hasattr(img, 'ngaus'):
print('Image was not fit with Gaussians. Skipping residual Gaussian image.')
else:
img_gaus_resid = img.resid_gaus_arr
images.append(img_gaus_resid)
titles.append('Gaussian Residual Image')
names.append('gaus_resid')
if gmodel_image:
if not hasattr(img, 'ngaus'):
print('Image was not fit with Gaussians. Skipping model Gaussian image.')
else:
img_gaus_mod = img.model_gaus_arr
images.append(img_gaus_mod)
titles.append('Gaussian Model Image')
names.append('gaus_mod')
if mean_image:
img_mean = img.mean_arr
images.append(img_mean)
titles.append('Background mean Image')
names.append('mean')
if sresid_image:
if not img.opts.shapelet_do:
print('Image was not decomposed into shapelets. Skipping residual shapelet image.')
else:
img_shap_resid = img.resid_shap_arr
images.append(img_shap_resid)
titles.append('Shapelet Residual Image')
names.append('shap_resid')
if smodel_image:
if not img.opts.shapelet_do:
print('Image was not decomposed into shapelets. Skipping model shapelet image.')
else:
img_shap_mod = img.model_shap_arr
images.append(img_shap_mod)
titles.append('Shapelet Model Image')
names.append('shap_mod')
if source_seds:
if not img.opts.spectralindex_do:
print('Source SEDs were not fit. Skipping source SED plots.')
else:
src_list = img.sources
sed_src = get_src(src_list, 0)
if sed_src is None:
print('No sources found. Skipping source SED plots.')
else:
images.append('seds')
titles.append('')
names.append('seds')
srcid_cur = 0
if pyramid_srcs:
if not img.opts.atrous_do:
print('Image was not decomposed into wavelets. Skipping wavelet images.')
else:
# Get the unique j levels and store them. Only make subplots for
# occupied j levels
print('Pyramidal source plots not yet supported.')
# j_list = []
# for p in img.pyrsrcs:
# for l in p.jlevels:
# j_list.append(l)
# j_set = set(j_list)
# j_with_gaus = list(j_set)
# index_first_waveplot = len(images)
# for i in range(len(j_with_gaus)):
# images.append('wavelets')
# names.append('pyrsrc'+str(i))
if psf_major or psf_minor or psf_pa:
if not img.opts.psf_vary_do:
print('PSF variation not calculated. Skipping PSF variation images.')
else:
if psf_major:
img_psf_maj = img.psf_vary_maj_arr*fwsig
images.append(img_psf_maj)
titles.append('PSF Major Axis FWHM (pixels)')
names.append('psf_maj')
if psf_minor:
img_psf_min = img.psf_vary_min_arr*fwsig
images.append(img_psf_min)
titles.append('PSF Minor Axis FWHM (pixels)')
names.append('psf_min')
if psf_pa:
img_psf_pa = img.psf_vary_pa_arr
images.append(img_psf_pa)
titles.append('PSF Pos. Angle FWhM (degrees)')
names.append('psf_pa')
if images == []:
print('No images to display.')
return
im_mean = img.clipped_mean
im_rms = img.clipped_rms
if img.resid_gaus_arr is None:
low = 1.1*abs(img.min_value)
else:
low = N.max([1.1*abs(img.min_value), 1.1*abs(N.nanmin(img.resid_gaus_arr))])
if low <= 0.0:
low = 1E-6
vmin_est = im_mean - im_rms*5.0 + low
if vmin_est <= 0.0:
vmin = N.log10(low)
else:
vmin = N.log10(vmin_est)
vmax = N.log10(im_mean + im_rms*30.0 + low)
ch0min = vmin
ch0max = N.log10(img.max_value + low)
vmin_cur = vmin
vmax_cur = vmax
origin = 'lower' # note: origin is used in cmd string below
colours = ['m', 'b', 'c', 'g', 'y', 'k'] # reserve red ('r') for wavelets
styles = ['-', '-.', '--']
print('=' * 72)
print('NOTE -- With the mouse pointer in plot window:')
print(' Press "i" ........ : Get integrated flux densities and mean rms')
print(' values for the visible portion of the image')
print(' Press "m" ........ : Change min and max scaling values')
print(' Press "n" ........ : Show / hide island IDs')
print(' Press "0" ........ : Reset scaling to default')
if 'seds' in names:
print(' Press "c" ........ : Change source for SED plot')
if ch0_islands and hasattr(img, 'ngaus'):
print(' Click Gaussian ... : Print Gaussian and source IDs (zoom_rect mode, ')
print(' toggled with the "zoom" button and indicated in ')
print(' the lower right corner, must be off)')
if 'seds' in names:
print(' The SED plot will also show the chosen source.')
print('_' * 72)
if len(images) > 1:
numx = 2
else:
numx = 1
numy = int(N.ceil(float(len(images))/float(numx)))
fig = pl.figure(figsize=(max(15, 10.0*float(numy)/float(numx)), 10.0))
fig.canvas.manager.set_window_title('PyBDSF Fit Results for '+ img.filename)
gray_palette = cm.gray
gray_palette.set_bad('k')
for i, image in enumerate(images):
if isinstance(image, N.ndarray):
if i == 0:
cmd = 'ax' + str(i+1) + ' = pl.subplot(' + str(numx) + \
', ' + str(numy) + ', ' + str(i+1) + ')'
else:
cmd = 'ax' + str(i+1) + ' = pl.subplot(' + str(numx) + \
', ' + str(numy) + ', ' + str(i+1) + ', sharex=ax1' + \
', sharey=ax1)'
exec(cmd, globals())
if 'PSF' in titles[i]:
im = image # note: im is used in cmd string below
else:
im = N.log10(image + low) # note: im is used in cmd string below
if 'Islands' in titles[i]:
island_offsets_x = []
island_offsets_y = []
border_color = []
ax = pl.gca()
for iisl, isl in enumerate(img.islands):
xb, yb = isl.border
if hasattr(isl, '_pi'):
for c in range(len(xb)):
border_color.append('r')
else:
for c in range(len(xb)):
border_color.append('#afeeee')
island_offsets_x += xb.tolist()
island_offsets_y += yb.tolist()
marker = ax.text(N.max(xb)+2, N.max(yb), str(isl.island_id),
color='#afeeee', clip_on=True)
marker.set_visible(not marker.get_visible())
markers.append(marker)
# draw the gaussians with one colour per source or island
# (if gaul2srl was not run)
if hasattr(img, 'nsrc'):
nsrc = len(isl.sources)
for isrc in range(nsrc):
col = colours[int(isrc % 6)]
style = styles[int(isrc/6 % 3)]
src = isl.sources[isrc]
for g in src.gaussians:
if hasattr(g, 'valid'):
valid = g.valid
else:
valid = True
if g.jlevel == 0 and valid and g.gaus_num >= 0:
gidx = g.gaus_num
e = Ellipse(xy=g.centre_pix, width=g.size_pix[0],
height=g.size_pix[1], angle=g.size_pix[2]+90.0)
ax.add_artist(e)
e.set_picker(3)
e.set_clip_box(ax.bbox)
e.set_facecolor(col)
e.set_alpha(0.5)
e.gaus_id = gidx
e.src_id = src.source_id
e.jlevel = g.jlevel
e.isl_id = g.island_id
e.tflux = g.total_flux
e.pflux = g.peak_flux
e.centre_sky = g.centre_sky
if len(img.islands) > 0:
island_offsets = list(zip(N.array(island_offsets_x), N.array(island_offsets_y)))
isl_borders = collections.AsteriskPolygonCollection(4, offsets=island_offsets, color=border_color,
transOffset=ax.transData, sizes=(10.0,))
ax.add_collection(isl_borders)
if hasattr(img, 'gaussians'):
for atrg in img.gaussians:
if atrg.jlevel > 0 and atrg.gaus_num >= 0:
col = 'r'
style = '-'
gidx = atrg.gaus_num
e = Ellipse(xy=atrg.centre_pix, width=atrg.size_pix[0], height=atrg.size_pix[1], angle=atrg.size_pix[2]+90.0)
ax.add_artist(e)
e.set_picker(3)
e.set_clip_box(ax.bbox)
e.set_edgecolor(col)
e.set_facecolor('none')
e.set_alpha(0.8)
e.gaus_id = gidx
e.src_id = atrg.source_id
e.jlevel = atrg.jlevel
e.isl_id = atrg.island_id
e.tflux = atrg.total_flux
e.pflux = atrg.peak_flux
e.centre_sky = atrg.centre_sky
if 'Flagged' in titles[i]:
for iisl, isl in enumerate(img.islands):
ax = pl.gca()
style = '-'
for ig, g in enumerate(isl.fgaul):
col = colours[ig % 6]
ellx, elly = func.drawellipse(g)
gline, = ax.plot(ellx, elly, color=col,
linestyle=style, picker=3)
gline.flag = g.flag
if 'PSF' in titles[i]:
cmd = 'ax' + str(i+1) + ".imshow(N.transpose(im), origin=origin, "\
"interpolation='nearest', cmap=gray_palette)"
else:
cmd = 'ax' + str(i+1) + ".imshow(N.transpose(im), origin=origin, "\
"interpolation='nearest', vmin=vmin, vmax=vmax, cmap=gray_palette)"
exec(cmd)
cmd = 'ax' + str(i+1) + '.format_coord = format_coord_'+names[i]
exec(cmd)
pl.title(titles[i])
elif image == 'seds':
cmd = 'ax' + str(i+1) + ' = pl.subplot(' + str(numx) + \
', ' + str(numy) + ', ' + str(i+1) + ')'
exec(cmd, globals())
ax = pl.gca()
plot_sed(sed_src, ax)
elif image == 'wavelets':
print('Pyramidal source plots not yet supported.')
# if i == index_first_waveplot:
# for j in range(len(j_with_gaus)):
# cmd = 'ax' + str(j+i+1) + ' = pl.subplot(' + str(numx) + \
# ', ' + str(numy) + ', ' + str(j+i+1) + ', sharex=ax1, '+\
# 'sharey=ax1)'
# exec(cmd)
# pl.title('Pyramidal Sources for\nWavelet Scale J = ' +
# str(j_with_gaus[j]))
# for pyr in img.pyrsrcs:
# for iisl, isl in enumerate(pyr.islands):
# jj = pyr.jlevels[iisl]
# jindx = j_with_gaus.index(jj)
# col = colours[pyr.pyr_id % 6]
# ind = N.where(~isl.mask_active)
# cmd = "ax" + str(jindx + index_first_waveplot + 1) + \
# ".plot(ind[0]+isl.origin[0], "\
# "ind[1]+isl.origin[1], '.', color=col)"
# exec(cmd)
fig.canvas.mpl_connect('key_press_event', on_press)
fig.canvas.mpl_connect('pick_event', on_pick)
pl.show()
pl.close('all')
def on_pick(event):
global images, srcid_cur, samp_client, samp_key, do_broadcast, samp_gaul_table_url, samp_srl_table_url
g = event.artist
if hasattr(g, 'gaus_id'):
gaus_id = g.gaus_id
src_id = g.src_id
isl_id = g.isl_id
tflux = g.tflux
pflux = g.pflux
wav_j = g.jlevel
if wav_j == 0:
print('Gaussian #' + str(gaus_id) + ' (in src #' + str(src_id) +
', isl #' + str(isl_id) + '): F_tot = ' + str(round(tflux, 4)) +
' Jy, F_peak = ' + str(round(pflux, 4)) + ' Jy/beam')
else:
print('Gaussian #' + str(gaus_id) + ' (in src #' + str(src_id) +
', isl #' + str(isl_id) + ', wav #' + str(wav_j) +
'): F_tot = ' + str(round(tflux, 3)) + ' Jy, F_peak = ' +
str(round(pflux, 4)) + ' Jy/beam')
# Transmit src_id, gaus_id, and coordinates to SAMP Hub (if we are connected)
if do_broadcast and samp_key is not None:
if samp_gaul_table_url is not None:
func.send_highlight_row(samp_client, samp_key, samp_gaul_table_url, gaus_id)
if samp_srl_table_url is not None:
func.send_highlight_row(samp_client, samp_key, samp_srl_table_url, src_id)
func.send_coords(samp_client, samp_key, g.centre_sky)
# Change source SED
# First check that SEDs are being plotted and that the selected Gaussian
# is from the zeroth wavelet image
has_sed = False
for image in images:
if isinstance(image, str) and image == 'seds' and wav_j == 0:
has_sed = True
if not has_sed:
return
sed_src = get_src(src_list, src_id)
if srcid_cur == src_id:
return
srcid_cur = src_id
axes_list = fig.get_axes()
for axindx, ax in enumerate(axes_list):
if isinstance(images[axindx], str) and images[axindx] == 'seds':
plot_sed(sed_src, ax)
else:
print('Flagged Gaussian (flag = ' + str(g.flag) + '; use "' +
"help 'flagging_opts'" + '" for flag meanings)')
pl.draw()
def on_press(event):
"""Handle keypresses"""
from .interface import raw_input_no_history
global img_ch0, img_rms, img_mean, img_gaus_mod, img_shap_mod
global pixels_per_beam, vmin, vmax, vmin_cur, vmax_cur, img_pi
global ch0min, ch0max, low, fig, images, src_list, srcid_cur
global markers
if event.key == '0':
print('Resetting limits to defaults (%.4f -- %.4f Jy/beam)'
% (pow(10, vmin)-low, pow(10, vmax)-low))
axes_list = fig.get_axes()
for axindx, ax in enumerate(axes_list):
if isinstance(images[axindx], N.ndarray):
im = ax.get_images()[0]
im.set_clim(vmin, vmax)
vmin_cur = vmin
vmax_cur = vmax
pl.draw()
if event.key == 'm':
# Modify scaling
# First check that there are images to modify
has_image = False
for im in images:
if isinstance(im, N.ndarray):
has_image = True
if not has_image:
return
minscl = 'a'
while isinstance(minscl, str):
try:
if minscl == '':
minscl = pow(10, vmin_cur) - low
break
minscl = float(minscl)
except ValueError:
prompt = "Enter min value (current = %.4f Jy/beam) : " % (pow(10, vmin_cur)-low,)
try:
minscl = raw_input_no_history(prompt)
except RuntimeError:
print('Sorry, unable to change scaling.')
return
minscl = N.log10(minscl + low)
maxscl = 'a'
while isinstance(maxscl, str):
try:
if maxscl == '':
maxscl = pow(10, vmax_cur) - low
break
maxscl = float(maxscl)
except ValueError:
prompt = "Enter max value (current = %.4f Jy/beam) : " % (pow(10, vmax_cur)-low,)
try:
maxscl = raw_input_no_history(prompt)
except RuntimeError:
print('Sorry, unable to change scaling.')
return
maxscl = N.log10(maxscl + low)
if maxscl <= minscl:
print('Max value must be greater than min value!')
return
axes_list = fig.get_axes()
for axindx, ax in enumerate(axes_list):
if isinstance(images[axindx], N.ndarray):
im = ax.get_images()[0]
im.set_clim(minscl, maxscl)
vmin_cur = minscl
vmax_cur = maxscl
pl.draw()
if event.key == 'c':
# Change source SED
# First check that SEDs are being plotted
has_sed = False
for image in images:
if isinstance(image, str) and image == 'seds':
has_sed = True
if not has_sed:
return
srcid = 'a'
while isinstance(srcid, str):
try:
if srcid == '':
srcid = srcid_cur
break
srcid = int(srcid)
except ValueError:
prompt = "Enter source ID (current = %i) : " % (srcid_cur,)
try:
srcid = raw_input_no_history(prompt)
except RuntimeError:
print('Sorry, unable to change source.')
return
sed_src = get_src(src_list, srcid)
if sed_src is None:
print('Source not found!')
return
srcid_cur = srcid
axes_list = fig.get_axes()
for axindx, ax in enumerate(axes_list):
if isinstance(images[axindx], str) and images[axindx] == 'seds':
plot_sed(sed_src, ax)
pl.draw()
if event.key == 'i':
# Print info about visible region
has_image = False
axes_list = fig.get_axes()
# Get limits of visible region
for axindx, ax in enumerate(axes_list):
if isinstance(images[axindx], N.ndarray):
xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_ylim()
has_image = True
break
if not has_image:
return
if xmin < 0:
xmin = 0
if xmax > img_ch0.shape[0]:
xmax = img_ch0.shape[0]
if ymin < 0:
ymin = 0
if ymax > img_ch0.shape[1]:
ymax = img_ch0.shape[1]
# Ensure slice indices are int, then get various values for the
# visible region
xmin = int(xmin)
xmax = int(xmax)
ymin = int(ymin)
ymax = int(ymax)
flux = N.nansum(img_ch0[xmin:xmax, ymin:ymax])/pixels_per_beam
mask = N.isnan(img_ch0[xmin:xmax, ymin:ymax])
num_pix_unmasked = float(N.size(N.where(mask == False), 1))
mean_rms = N.nansum(img_rms[xmin:xmax, ymin:ymax])/num_pix_unmasked
mean_map_flux = N.nansum(img_mean[xmin:xmax, ymin:ymax])/pixels_per_beam
if img_gaus_mod is None:
gaus_mod_flux = 0.0
else:
gaus_mod_flux = N.nansum(img_gaus_mod[xmin:xmax, ymin:ymax])/pixels_per_beam
print('Visible region (%i:%i, %i:%i) :' % (xmin, xmax, ymin, ymax))
print(' ch0 flux density from sum of pixels ... : %f Jy'
% (flux,))
print(' Background mean map flux density ...... : %f Jy'
% (mean_map_flux,))
print(' Gaussian model flux density ........... : %f Jy'
% (gaus_mod_flux,))
if img_shap_mod is not None:
shap_mod_flux = N.nansum(img_shap_mod[xmin:xmax, ymin:ymax])/pixels_per_beam
print(' Shapelet model flux density ........... : %f Jy'
% (shap_mod_flux,))
print(' Mean rms (from rms map) ............... : %f Jy/beam'
% (mean_rms,))
if event.key == 'n':
# Show/Hide island numbers
if markers:
for marker in markers:
marker.set_visible(not marker.get_visible())
pl.draw()
# The following functions add ra, dec and flux density to the
# coordinates in the lower-right-hand corner of the figure window.
# Since each axis needs its own function (to return its particular
# flux), we need a separate function for each subplot.
def format_coord_ch0(x, y):
"""Custom coordinate format for ch0 image"""
global img_ch0
im = img_ch0
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_ch0_pi(x, y):
"""Custom coordinate format for ch0 image"""
global img_pi
im = img_pi
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_rms(x, y):
"""Custom coordinate format for rms image"""
global img_rms
im = img_rms
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_mean(x, y):
"""Custom coordinate format for mean image"""
global img_mean
im = img_mean
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_gaus_mod(x, y):
"""Custom coordinate format for Gaussian model image"""
global img_gaus_mod
im = img_gaus_mod
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_shap_mod(x, y):
"""Custom coordinate format for shapelet model image"""
global img_shap_mod
im = img_shap_mod
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_gaus_resid(x, y):
"""Custom coordinate format for Gaussian residual image"""
global img_gaus_resid
im = img_gaus_resid
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_shap_resid(x, y):
"""Custom coordinate format for shapelet residual image"""
global img_shap_resid
im = img_shap_resid
coord_str = make_coord_str(x, y, im)
return coord_str
def format_coord_psf_maj(x, y):
"""Custom coordinate format for PSF major image"""
global img_psf_maj
im = img_psf_maj
coord_str = make_coord_str(x, y, im, unit='arcsec')
return coord_str
def format_coord_psf_min(x, y):
"""Custom coordinate format for PSF minor image"""
global img_psf_min
im = img_psf_min
coord_str = make_coord_str(x, y, im, unit='arcsec')
return coord_str
def format_coord_psf_pa(x, y):
"""Custom coordinate format for PSF pos. ang. image"""
global img_psf_pa
im = img_psf_pa
coord_str = make_coord_str(x, y, im, unit='degrees')
return coord_str
def xy_to_radec_str(x, y):
"""Converts x, y in image coords to a sexigesimal string"""
from .output import ra2hhmmss, dec2ddmmss
global pix2sky
ra, dec = pix2sky([x, y])
ra = ra2hhmmss(ra)
sra = str(ra[0]).zfill(2)+':'+str(ra[1]).zfill(2)+':'+str("%.1f" % (ra[2])).zfill(3)
dec = dec2ddmmss(dec)
decsign = ('-' if dec[3] < 0 else '+')
sdec = decsign+str(dec[0]).zfill(2)+':'+str(dec[1]).zfill(2)+':'+str("%.1f" % (dec[2])).zfill(3)
return sra, sdec
def make_coord_str(x, y, im, unit='Jy/beam'):
"""Makes the x, y, ra, dec, flux string"""
rastr, decstr = xy_to_radec_str(x, y)
col = int(x + 0.5)
row = int(y + 0.5)
numcols, numrows = im.shape
if col >= 0 and col < numcols\
and row >= 0 and row < numrows:
z = im[col, row]
return 'x=%1.1f, y=%1.1f, RA=%s, Dec=%s, F=%+1.4f %s' % (x, y, rastr, decstr, z, unit)
else:
return 'x=%1.1f, y=%1.1f' % (x, y)
def plot_sed(src, ax):
"""Plots the SED for source 'src' to axis 'ax'"""
global sky2pix
global fig
ax.cla()
norm = src.spec_norm
spin = src.spec_indx
y = N.array(src.specin_flux)
ey = N.array(src.specin_fluxE)
x = N.array(src.specin_freq)
ax.errorbar(N.log10(x/1e6), N.log10(y), yerr=ey/y, fmt='bo')
ax.plot(N.log10(x/1e6), N.log10(norm)+N.log10(x/src.specin_freq0)*spin,
'-g', label="alpha = %.2f" % (spin,))
pos = sky2pix(src.posn_sky_centroid)
xpos = int(pos[0])
ypos = int(pos[1])
pl.title('SED of source #' + str(src.source_id) + '\n'
+ '(x = ' + str(xpos) + ', y = ' + str(ypos) + ')')
pl.xlabel('log Frequency (MHz)')
pl.ylabel('log Flux Density (Jy)')
pl.legend()
def get_src(src_list, srcid):
"""Returns the source for srcid or None if not found"""
for src in src_list:
if src.source_id == srcid:
return src
return None
|