1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
"""Module shapelets.
nmax => J = 0..nmax; hence nmax+1 orders calculated.
ordermax = nmax+1; range(ordermax) has all the values of n
Order n => J=n, where J=0 is the gaussian.
"""
from __future__ import print_function
from __future__ import absolute_import
import numpy as N
try:
from astropy.io import fits as pyfits
except ImportError as err:
import pyfits
from scipy.optimize import leastsq
def decompose_shapelets(image, mask, basis, beta, centre, nmax, mode):
""" Decomposes image (with mask) and beta, centre (2-tuple) , nmax into basis
shapelets and returns the coefficient matrix cf.
Mode is 'fit' or 'integrate' for method finding coeffs. If fit then integrated
values are taken as initial guess.
"""
# bad = False
# if (beta < 0 or beta/max(image.shape) > 5 or \
# (max(N.abs(list(centre)))-max(image.shape)/2) > 10*max(image.shape)): bad = True
hc = shapelet_coeff(nmax, basis)
ordermax=nmax+1
Bset=N.zeros((ordermax, ordermax, image.shape[0], image.shape[1]), dtype=N.float32)
cf = N.zeros((ordermax,ordermax)) # coefficient matrix, will fill up only lower triangular part.
index = [(i,j) for i in range(ordermax) for j in range(ordermax-i)] # i=0->nmax, j=0-nmax-i
for coord in index:
B = shapelet_image(basis, beta, centre, hc, coord[0], coord[1], image.shape)
if mode == 'fit': Bset[coord[0] , coord[1], ::] = B
m = N.copy(mask)
for i, v in N.ndenumerate(mask): m[i] = not v
cf[coord] = N.sum(image*B*m)
if mode == 'fit':
npix = N.prod(image.shape)-N.sum(mask)
npara = (nmax+1)*(nmax+2)*0.5
cfnew = fit_shapeletbasis(image, mask, cf, Bset)
recon1 = reconstruct_shapelets(image.shape, mask, basis, beta, centre, nmax, cf)
recon2 = reconstruct_shapelets(image.shape, mask, basis, beta, centre, nmax, cfnew)
if N.std(recon2) < 1.2*N.std(recon1): cf = cfnew
return cf
def fit_shapeletbasis(image, mask, cf0, Bset):
""" Fits the image to the shapelet basis functions to estimate shapelet coefficients
instead of integrating it out. This should avoid the problems of digitisation and hence
non-orthonormality. """
from . import functions as func
ma = N.where(~mask.flatten())
cfshape = cf0.shape
res=lambda p, image, Bset, cfshape, mask_flat : (image.flatten()-func.shapeletfit(p, Bset, cfshape))[ma]
if len(ma) <= 5:
# Not enough degrees of freedom
cf = cf0
else:
(cf, flag)=leastsq(res, cf0.flatten(), args=(image, Bset, cfshape, ma))
cf = cf.reshape(cfshape)
return cf
def reconstruct_shapelets(size, mask, basis, beta, centre, nmax, cf):
""" Reconstructs a shapelet image of size, for pixels which are unmasked, for a given
beta, centre, nmax, basis and the shapelet coefficient matrix cf. """
rimage = N.zeros(size, dtype=N.float32)
hc = []
hc = shapelet_coeff(nmax, basis)
index = [(i,j) for i in range(nmax) for j in range(nmax-i)]
for coord in index:
B = shapelet_image(basis, beta, centre, hc, coord[0], coord[1], size)
rimage += B*cf[coord]
return rimage
def shapelet_image(basis, beta, centre, hc, nx, ny, size):
""" Takes basis, beta, centre (2-tuple), hc matrix, x, y, size and returns the image of the shapelet of
order nx,ny on an image of size size. Does what getcartim.f does in fBDSM. nx,ny -> 0-nmax
Centre is by Python convention, for retards who count from zero. """
from math import sqrt,pi
try:
from scipy import factorial
except ImportError:
try:
from scipy.misc.common import factorial
except ImportError:
try:
from scipy.misc import factorial
except ImportError:
from scipy.special import factorial
hcx = hc[nx,:]
hcy = hc[ny,:]
ind = N.array([nx,ny])
fact = factorial(ind)
dumr1 = N.sqrt((2.0**(ind))*sqrt(pi)*fact)
x = (N.arange(size[0],dtype=float)-centre[0])/beta
y = (N.arange(size[1],dtype=float)-centre[1])/beta
dumr3 = N.zeros(size[0])
for i in range(size[0]):
for j in range(ind[0]+1):
dumr3[i] += hcx[j]*(x[i]**j)
B_nx = N.exp(-0.50*x*x)*dumr3/dumr1[0]/sqrt(beta)
dumr3 = N.zeros(size[1])
for i in range(size[1]):
for j in range(ind[1]+1):
dumr3[i] += hcy[j]*(y[i]**j)
B_ny = N.exp(-0.50*y*y)*dumr3/dumr1[1]/sqrt(beta)
return N.outer(B_nx,B_ny)
def shape_findcen(image, mask, basis, beta, nmax, beam_pix): # + check_cen_shapelet
""" Finds the optimal centre for shapelet decomposition. Minimising various
combinations of c12 and c21, as in literature doesnt work for all cases.
Hence, for the c1 image, we find the zero crossing for every vertical line
and for the c2 image, the zero crossing for every horizontal line, and then
we find intersection point of these two. This seems to work even for highly
non-gaussian cases. """
from . import functions as func
import sys
hc = []
hc = shapelet_coeff(nmax, basis)
msk=N.zeros(mask.shape, dtype=bool)
for i, v in N.ndenumerate(mask): msk[i] = not v
n,m = image.shape
cf12 = N.zeros(image.shape, dtype=N.float32)
cf21 = N.zeros(image.shape, dtype=N.float32)
index = [(i,j) for i in range(n) for j in range(m)]
for coord in index:
if msk[coord]:
B12 = shapelet_image(basis, beta, coord, hc, 0, 1, image.shape)
cf12[coord] = N.sum(image*B12*msk)
if coord==(27,51): dumpy = B12
B21 = shapelet_image(basis, beta, coord, hc, 1, 0, image.shape)
cf21[coord] = N.sum(image*B21*msk)
else:
cf12[coord] = None
cf21[coord] = None
(xmax,ymax) = N.unravel_index(image.argmax(),image.shape) # FIX with mask
if xmax in [1,n] or ymax in [1,m]:
(m1, m2, m3) = func.moment(mask)
xmax,ymax = N.round(m2)
# in high snr area, get zero crossings for each horizontal and vertical line for c1, c2 resp
tr_mask=mask.transpose()
tr_cf21=cf21.transpose()
try:
(x1,y1) = getzeroes_matrix(mask, cf12, ymax, xmax) # y1 is array of zero crossings
(y2,x2) = getzeroes_matrix(tr_mask, tr_cf21, xmax, ymax) # x2 is array of zero crossings
# find nominal intersection pt as integers
xind=N.where(x1==xmax)
yind=N.where(y2==ymax)
xind=xind[0][0]
yind=yind[0][0]
# now take 2 before and 2 after, fit straight lines, get proper intersection
ninter=5
if xind<3 or yind<3 or xind>n-2 or yind>m-2:
ninter = 3
xft1 = x1[xind-(ninter-1)/2:xind+(ninter-1)/2+1]
yft1 = y1[xind-(ninter-1)/2:xind+(ninter-1)/2+1]
xft2 = x2[yind-(ninter-1)/2:yind+(ninter-1)/2+1]
yft2 = y2[yind-(ninter-1)/2:yind+(ninter-1)/2+1]
sig = N.ones(ninter, dtype=float)
smask1=N.array([r == 0 for r in yft1])
smask2=N.array([r == 0 for r in xft2])
cen=[0.]*2
if sum(smask1)<len(yft1) and sum(smask2)<len(xft2):
[c1, m1], errors = func.fit_mask_1d(xft1, yft1, sig, smask1, func.poly, do_err=False, order=1)
[c2, m2], errors = func.fit_mask_1d(xft2, yft2, sig, smask2, func.poly, do_err=False, order=1)
if m2-m1 == 0:
cen[0] = cen[1] = 0.0
else:
cen[0]=(c1-c2)/(m2-m1)
cen[1]=c1+m1*cen[0]
else:
cen[0] = cen[1] = 0.0
# check if estimated centre makes sense
error=shapelet_check_centre(image, mask, cen, beam_pix)
except:
error = 1
if error > 0:
#print 'Error '+str(error)+' in finding centre, will take 1st moment instead.'
(m1, m2, m3) = func.moment(image, mask)
cen = m2
return cen
def getzeroes_matrix(mask, cf, cen, cenx):
""" For a matrix cf, and a mask, this returns two vectors; x is the x-coordinate
and y is the interpolated y-coordinate where the matrix cf croses zero. If there
is no zero-crossing, y is zero for that column x. """
x = N.arange(cf.shape[0], dtype=N.float32)
y = N.zeros(cf.shape[0], dtype=N.float32)
# import pylab as pl
# pl.clf()
# pl.imshow(cf, interpolation='nearest')
# ii = N.random.randint(100); pl.title(' zeroes' + str(ii))
# print 'ZZ ',cen, cenx, ii
for i in range(cf.shape[0]):
l = [mask[i,j] for j in range(cf.shape[1])]
npts = len(l)-sum(l)
#print 'npts = ',npts
if npts > 3 and not N.isnan(cf[i,cen]):
mrow=mask[i,:]
if sum(l) == 0:
low=0
up=cf.shape[1]-1
else:
low = mrow.nonzero()[0][mrow.nonzero()[0].searchsorted(cen)-1]
#print 'mrow = ',i, mrow, low,
try:
up = mrow.nonzero()[0][mrow.nonzero()[0].searchsorted(cen)]
#print 'up1= ', up
except IndexError:
if [mrow.nonzero()[0].searchsorted(cen)][0]==len(mrow.nonzero()):
up = len(mrow)
#print 'up2= ', up,
else:
raise
#print
low += 1; up -= 1
npoint = up-low+1
xfn = N.arange(npoint)+low
yfn = cf[i,xfn]
root, error = shapelet_getroot(xfn, yfn, x[i], cenx, cen)
if error != 1:
y[i] = root
else:
y[i] = 0.0
else:
y[i] = 0.0
return x,y
def shapelet_getroot(xfn, yfn, xco, xcen, ycen):
""" This finds the root for finding the shapelet centre. If there are multiple roots, takes
that which closest to the 'centre', taken as the intensity barycentre. This is the python
version of getroot.f of anaamika."""
from . import functions as func
root=None
npoint=len(xfn)
error=0
if npoint == 0:
error = 1
elif yfn.max()*yfn.min() >= 0.:
error=1
minint=0; minintold=0
for i in range(1,npoint):
if yfn[i-1]*yfn[i] < 0.:
if minintold == 0: # so take nearest to centre
if abs(yfn[i-1]) < abs(yfn[i]):
minint=i-1
else:
minint=i
else:
dnew=func.dist_2pt([xco,xfn[i]], [xcen,ycen])
dold=func.dist_2pt([xco,xfn[minintold]], [xcen,ycen])
if dnew <= dold:
minint=i
else:
minint=minintold
minintold=minint
if minint < 1 or minint > npoint: error=1
if error != 1:
low=minint-min(2,minint)#-1)
up=minint+min(2,npoint-1-minint) # python array indexing rubbish
nfit=up-low+1
xfit=xfn[low:low+nfit]
yfit=yfn[low:low+nfit]
sig=N.ones(nfit)
smask=N.zeros(nfit, dtype=bool)
xx=[i for i in range(low,low+nfit)]
[c, m], errors = func.fit_mask_1d(xfit, yfit, sig, smask, func.poly, do_err=False, order=1)
root=-c/m
if root < xfn[low] or root > xfn[up]: error=1
return root, error
def shapelet_check_centre(image, mask, cen, beam_pix):
"Checks if the calculated centre for shapelet decomposition is sensible. """
from math import pi
error = 0
n, m = image.shape
x, y = round(cen[0]), round(cen[1])
if x <= 0 or x >= n or y <= 0 or y >= m: error = 1
if error == 0:
if not mask[int(round(x)),int(round(y))]: error == 2
if error > 0:
if (N.prod(mask.shape)-sum(sum(mask)))/(pi*0.25*beam_pix[0]*beam_pix[1]) < 2.5:
error = error*10 # expected to fail since source is too small
return error
def shape_varybeta(image, mask, basis, betainit, cen, nmax, betarange, plot):
""" Shapelet decomposes and then reconstructs an image with various values of beta
and looks at the residual rms vs beta to estimate the optimal value of beta. """
from . import _cbdsm
nbin = 30
delta = (2.0*betainit-betainit/2.0)/nbin
beta_arr = betainit/4.0+N.arange(nbin)*delta
beta_arr = N.arange(0.5, 6.05, 0.05)
nbin = len(beta_arr)
res_rms=N.zeros(nbin)
for i in range(len(beta_arr)):
cf = decompose_shapelets(image, mask, basis, beta_arr[i], cen, nmax, mode='')
im_r = reconstruct_shapelets(image.shape, mask, basis, beta_arr[i], cen, nmax, cf)
im_res = image - im_r
ind = N.where(~mask)
res_rms[i] = N.std(im_res[ind])
minind = N.argmin(res_rms)
if minind > 1 and minind < nbin:
beta = beta_arr[minind]
error = 0
else:
beta = betainit
error = 1
# if plot:
# pl.figure()
# pl.plot(beta_arr,res_rms,'*-')
# pl.xlabel('Beta')
# pl.ylabel('Residual rms')
return beta, error
def shapelet_coeff(nmax=20,basis='cartesian'):
""" Computes shapelet coefficient matrix for cartesian and polar
hc=shapelet_coeff(nmax=10, basis='cartesian') or
hc=shapelet_coeff(10) or hc=shapelet_coeff().
hc(nmax) will be a nmax+1 X nmax+1 matrix."""
import numpy as N
order=nmax+1
if basis == 'polar':
raise NotImplementedError("Polar shapelets not yet implemented.")
hc=N.zeros([order,order])
hnm1=N.zeros(order); hn=N.zeros(order)
hnm1[0]=1.0; hn[0]=0.0; hn[1]=2.0
hc[0]=hnm1
hc[1]=hn
for ind in range(3,order+1):
n=ind-2
hnp1=-2.0*n*hnm1
hnp1[1:] += 2.0*hn[:order-1]
hc[ind-1]=hnp1
hnm1=hn
hn=hnp1
return hc
|