File: shapelets.py

package info (click to toggle)
pybdsf 1.13.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 22,188 kB
  • sloc: fortran: 40,850; python: 14,895; ansic: 4,347; cpp: 1,586; makefile: 131; sh: 46
file content (386 lines) | stat: -rw-r--r-- 13,558 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""Module shapelets.

nmax => J = 0..nmax; hence nmax+1 orders calculated.
ordermax = nmax+1; range(ordermax) has all the values of n
Order n => J=n, where J=0 is the gaussian.

"""
from __future__ import print_function
from __future__ import absolute_import

import numpy as N
try:
    from astropy.io import fits as pyfits
except ImportError as err:
    import pyfits
from scipy.optimize import leastsq

def decompose_shapelets(image, mask, basis, beta, centre, nmax, mode):
    """ Decomposes image (with mask) and beta, centre (2-tuple) , nmax into basis
        shapelets and returns the coefficient matrix cf.
    Mode is 'fit' or 'integrate' for method finding coeffs. If fit then integrated
    values are taken as initial guess.
    """
#     bad = False
#     if (beta < 0 or beta/max(image.shape) > 5 or \
#        (max(N.abs(list(centre)))-max(image.shape)/2) > 10*max(image.shape)): bad = True
    hc = shapelet_coeff(nmax, basis)
    ordermax=nmax+1

    Bset=N.zeros((ordermax, ordermax, image.shape[0], image.shape[1]), dtype=N.float32)
    cf = N.zeros((ordermax,ordermax)) # coefficient matrix, will fill up only lower triangular part.
    index = [(i,j) for i in range(ordermax) for j in range(ordermax-i)]  # i=0->nmax, j=0-nmax-i
    for coord in index:
        B = shapelet_image(basis, beta, centre, hc, coord[0], coord[1], image.shape)
        if mode == 'fit': Bset[coord[0] , coord[1], ::] = B
        m = N.copy(mask)
        for i, v in N.ndenumerate(mask): m[i] = not v
        cf[coord] = N.sum(image*B*m)

    if mode == 'fit':
        npix = N.prod(image.shape)-N.sum(mask)
        npara = (nmax+1)*(nmax+2)*0.5
        cfnew = fit_shapeletbasis(image, mask, cf, Bset)
        recon1 = reconstruct_shapelets(image.shape, mask, basis, beta, centre, nmax, cf)
        recon2 = reconstruct_shapelets(image.shape, mask, basis, beta, centre, nmax, cfnew)
        if N.std(recon2) < 1.2*N.std(recon1): cf = cfnew

    return cf

def fit_shapeletbasis(image, mask, cf0, Bset):
    """ Fits the image to the shapelet basis functions to estimate shapelet coefficients
    instead of integrating it out. This should avoid the problems of digitisation and hence
    non-orthonormality. """
    from . import functions as func

    ma = N.where(~mask.flatten())

    cfshape = cf0.shape
    res=lambda p, image, Bset, cfshape, mask_flat : (image.flatten()-func.shapeletfit(p, Bset, cfshape))[ma]

    if len(ma) <= 5:
        # Not enough degrees of freedom
        cf = cf0
    else:
        (cf, flag)=leastsq(res, cf0.flatten(), args=(image, Bset, cfshape, ma))
        cf = cf.reshape(cfshape)

    return cf

def reconstruct_shapelets(size, mask, basis, beta, centre, nmax, cf):
    """ Reconstructs a shapelet image of size, for pixels which are unmasked, for a given
    beta, centre, nmax, basis and the shapelet coefficient matrix cf. """
    rimage = N.zeros(size, dtype=N.float32)
    hc = []
    hc = shapelet_coeff(nmax, basis)

    index = [(i,j) for i in range(nmax) for j in range(nmax-i)]
    for coord in index:
        B = shapelet_image(basis, beta, centre, hc, coord[0], coord[1], size)
        rimage += B*cf[coord]

    return rimage

def shapelet_image(basis, beta, centre, hc, nx, ny, size):
    """ Takes basis, beta, centre (2-tuple), hc matrix, x, y, size and returns the image of the shapelet of
    order nx,ny on an image of size size. Does what getcartim.f does in fBDSM. nx,ny -> 0-nmax
    Centre is by Python convention, for retards who count from zero. """
    from math import sqrt,pi
    try:
        from scipy import factorial
    except ImportError:
        try:
            from scipy.misc.common import factorial
        except ImportError:
            try:
                from scipy.misc import factorial
            except ImportError:
                from scipy.special import factorial

    hcx = hc[nx,:]
    hcy = hc[ny,:]
    ind = N.array([nx,ny])
    fact = factorial(ind)
    dumr1 = N.sqrt((2.0**(ind))*sqrt(pi)*fact)

    x = (N.arange(size[0],dtype=float)-centre[0])/beta
    y = (N.arange(size[1],dtype=float)-centre[1])/beta

    dumr3 = N.zeros(size[0])
    for i in range(size[0]):
        for j in range(ind[0]+1):
            dumr3[i] += hcx[j]*(x[i]**j)
    B_nx = N.exp(-0.50*x*x)*dumr3/dumr1[0]/sqrt(beta)

    dumr3 = N.zeros(size[1])
    for i in range(size[1]):
        for j in range(ind[1]+1):
            dumr3[i] += hcy[j]*(y[i]**j)
    B_ny = N.exp(-0.50*y*y)*dumr3/dumr1[1]/sqrt(beta)

    return N.outer(B_nx,B_ny)


def shape_findcen(image, mask, basis, beta, nmax, beam_pix): # + check_cen_shapelet
    """ Finds the optimal centre for shapelet decomposition. Minimising various
    combinations of c12 and c21, as in literature doesnt work for all cases.
    Hence, for the c1 image, we find the zero crossing for every vertical line
    and for the c2 image, the zero crossing for every horizontal line, and then
    we find intersection point of these two. This seems to work even for highly
    non-gaussian cases. """
    from . import functions as func
    import sys

    hc = []
    hc = shapelet_coeff(nmax, basis)

    msk=N.zeros(mask.shape, dtype=bool)
    for i, v in N.ndenumerate(mask): msk[i] = not v

    n,m = image.shape
    cf12 = N.zeros(image.shape, dtype=N.float32)
    cf21 = N.zeros(image.shape, dtype=N.float32)
    index = [(i,j) for i in range(n) for j in range(m)]
    for coord in index:
        if msk[coord]:
            B12 = shapelet_image(basis, beta, coord, hc, 0, 1, image.shape)
            cf12[coord] = N.sum(image*B12*msk)

            if coord==(27,51): dumpy = B12

            B21 = shapelet_image(basis, beta, coord, hc, 1, 0, image.shape)
            cf21[coord] = N.sum(image*B21*msk)
        else:
            cf12[coord] = None
            cf21[coord] = None

    (xmax,ymax) = N.unravel_index(image.argmax(),image.shape)  #  FIX  with mask
    if xmax in [1,n] or ymax in [1,m]:
        (m1, m2, m3) = func.moment(mask)
        xmax,ymax = N.round(m2)

    # in high snr area, get zero crossings for each horizontal and vertical line for c1, c2 resp
    tr_mask=mask.transpose()
    tr_cf21=cf21.transpose()
    try:
        (x1,y1) = getzeroes_matrix(mask, cf12, ymax, xmax)         # y1 is array of zero crossings
        (y2,x2) = getzeroes_matrix(tr_mask, tr_cf21, xmax, ymax)    # x2 is array of zero crossings

        # find nominal intersection pt as integers
        xind=N.where(x1==xmax)
        yind=N.where(y2==ymax)
        xind=xind[0][0]
        yind=yind[0][0]

        # now take 2 before and 2 after, fit straight lines, get proper intersection
        ninter=5
        if xind<3 or yind<3 or xind>n-2 or yind>m-2:
            ninter = 3
        xft1 = x1[xind-(ninter-1)/2:xind+(ninter-1)/2+1]
        yft1 = y1[xind-(ninter-1)/2:xind+(ninter-1)/2+1]
        xft2 = x2[yind-(ninter-1)/2:yind+(ninter-1)/2+1]
        yft2 = y2[yind-(ninter-1)/2:yind+(ninter-1)/2+1]
        sig  = N.ones(ninter, dtype=float)
        smask1=N.array([r == 0 for r in yft1])
        smask2=N.array([r == 0 for r in xft2])
        cen=[0.]*2
        if sum(smask1)<len(yft1) and sum(smask2)<len(xft2):
            [c1, m1], errors = func.fit_mask_1d(xft1, yft1, sig, smask1, func.poly, do_err=False, order=1)
            [c2, m2], errors = func.fit_mask_1d(xft2, yft2, sig, smask2, func.poly, do_err=False, order=1)
            if m2-m1 == 0:
                cen[0] = cen[1] = 0.0
            else:
                cen[0]=(c1-c2)/(m2-m1)
                cen[1]=c1+m1*cen[0]
        else:
            cen[0] = cen[1] = 0.0

        # check if estimated centre makes sense
        error=shapelet_check_centre(image, mask, cen, beam_pix)
    except:
        error = 1
    if error > 0:
        #print 'Error '+str(error)+' in finding centre, will take 1st moment instead.'
        (m1, m2, m3) = func.moment(image, mask)
        cen = m2

    return cen

def getzeroes_matrix(mask, cf, cen, cenx):
    """ For a matrix cf, and a mask, this returns two vectors; x is the x-coordinate
    and y is the interpolated y-coordinate where the matrix cf croses zero. If there
    is no zero-crossing, y is zero for that column x.  """

    x = N.arange(cf.shape[0], dtype=N.float32)
    y = N.zeros(cf.shape[0], dtype=N.float32)

    # import pylab as pl
    # pl.clf()
    # pl.imshow(cf, interpolation='nearest')
    # ii = N.random.randint(100); pl.title(' zeroes' + str(ii))
    # print 'ZZ ',cen, cenx, ii

    for i in range(cf.shape[0]):
        l = [mask[i,j] for j in range(cf.shape[1])]
        npts = len(l)-sum(l)

        #print 'npts = ',npts
    if npts > 3 and not N.isnan(cf[i,cen]):
        mrow=mask[i,:]
        if sum(l) == 0:
            low=0
            up=cf.shape[1]-1
        else:
            low = mrow.nonzero()[0][mrow.nonzero()[0].searchsorted(cen)-1]
            #print 'mrow = ',i, mrow, low,
            try:
                up = mrow.nonzero()[0][mrow.nonzero()[0].searchsorted(cen)]
                #print 'up1= ', up
            except IndexError:
                if [mrow.nonzero()[0].searchsorted(cen)][0]==len(mrow.nonzero()):
                    up = len(mrow)
                    #print 'up2= ', up,
                else:
                    raise
                #print
        low += 1; up -= 1
        npoint = up-low+1
        xfn = N.arange(npoint)+low
        yfn = cf[i,xfn]
        root, error = shapelet_getroot(xfn, yfn, x[i], cenx, cen)
        if error != 1:
            y[i] = root
        else:
            y[i] = 0.0
    else:
        y[i] = 0.0

    return x,y

def shapelet_getroot(xfn, yfn, xco, xcen, ycen):
    """ This finds the root for finding the shapelet centre. If there are multiple roots, takes
    that which closest to the 'centre', taken as the intensity barycentre. This is the python
    version of getroot.f of anaamika."""
    from . import functions as func

    root=None
    npoint=len(xfn)
    error=0
    if npoint == 0:
        error = 1
    elif yfn.max()*yfn.min() >= 0.:
        error=1

    minint=0; minintold=0
    for i in range(1,npoint):
        if yfn[i-1]*yfn[i] < 0.:
            if minintold == 0:  # so take nearest to centre
                if abs(yfn[i-1]) < abs(yfn[i]):
                    minint=i-1
                else:
                    minint=i
            else:
                dnew=func.dist_2pt([xco,xfn[i]], [xcen,ycen])
                dold=func.dist_2pt([xco,xfn[minintold]], [xcen,ycen])
        if dnew <= dold:
            minint=i
        else:
            minint=minintold
            minintold=minint

    if minint < 1 or minint > npoint: error=1
    if error != 1:
        low=minint-min(2,minint)#-1)
        up=minint+min(2,npoint-1-minint)   # python array indexing rubbish
        nfit=up-low+1
        xfit=xfn[low:low+nfit]
        yfit=yfn[low:low+nfit]
        sig=N.ones(nfit)
        smask=N.zeros(nfit, dtype=bool)
        xx=[i for i in range(low,low+nfit)]

        [c, m], errors = func.fit_mask_1d(xfit, yfit, sig, smask, func.poly, do_err=False, order=1)
        root=-c/m
        if root < xfn[low] or root > xfn[up]: error=1

    return root, error

def shapelet_check_centre(image, mask, cen, beam_pix):
    "Checks if the calculated centre for shapelet decomposition is sensible. """
    from math import pi

    error = 0
    n, m = image.shape
    x, y = round(cen[0]), round(cen[1])
    if x <= 0 or x >= n or y <= 0 or y >= m: error = 1
    if error == 0:
        if not mask[int(round(x)),int(round(y))]: error == 2

    if error > 0:
        if (N.prod(mask.shape)-sum(sum(mask)))/(pi*0.25*beam_pix[0]*beam_pix[1]) < 2.5:
            error = error*10   # expected to fail since source is too small

    return error

def shape_varybeta(image, mask, basis, betainit, cen, nmax, betarange, plot):
    """ Shapelet decomposes and then reconstructs an image with various values of beta
    and looks at the residual rms vs beta to estimate the optimal value of beta. """
    from . import _cbdsm

    nbin = 30
    delta = (2.0*betainit-betainit/2.0)/nbin
    beta_arr = betainit/4.0+N.arange(nbin)*delta

    beta_arr = N.arange(0.5, 6.05, 0.05)
    nbin = len(beta_arr)

    res_rms=N.zeros(nbin)
    for i in range(len(beta_arr)):
        cf = decompose_shapelets(image, mask, basis, beta_arr[i], cen, nmax, mode='')
        im_r = reconstruct_shapelets(image.shape, mask, basis, beta_arr[i], cen, nmax, cf)
        im_res = image - im_r
        ind = N.where(~mask)
        res_rms[i] = N.std(im_res[ind])

    minind = N.argmin(res_rms)
    if minind > 1 and minind < nbin:
        beta = beta_arr[minind]
        error = 0
    else:
        beta = betainit
        error = 1

#     if plot:
#       pl.figure()
#       pl.plot(beta_arr,res_rms,'*-')
#       pl.xlabel('Beta')
#       pl.ylabel('Residual rms')

    return beta, error

def shapelet_coeff(nmax=20,basis='cartesian'):
    """ Computes shapelet coefficient matrix for cartesian and polar
      hc=shapelet_coeff(nmax=10, basis='cartesian') or
      hc=shapelet_coeff(10) or hc=shapelet_coeff().
      hc(nmax) will be a nmax+1 X nmax+1 matrix."""
    import numpy as N

    order=nmax+1
    if basis == 'polar':
        raise NotImplementedError("Polar shapelets not yet implemented.")

    hc=N.zeros([order,order])
    hnm1=N.zeros(order); hn=N.zeros(order)

    hnm1[0]=1.0; hn[0]=0.0; hn[1]=2.0
    hc[0]=hnm1
    hc[1]=hn
    for ind in range(3,order+1):
        n=ind-2
        hnp1=-2.0*n*hnm1
        hnp1[1:] += 2.0*hn[:order-1]
        hc[ind-1]=hnp1
        hnm1=hn
        hn=hnp1

    return hc