File: threshold.py

package info (click to toggle)
pybdsf 1.13.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 22,188 kB
  • sloc: fortran: 40,850; python: 14,895; ansic: 4,347; cpp: 1,586; makefile: 131; sh: 46
file content (115 lines) | stat: -rw-r--r-- 4,588 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""Module threshold.

Defines operation Op_threshold. If the option 'thresh' is defined
as 'fdr' then the value of thresh_pix is estimated using the
False Detection Rate algorithm (using the user defined value
of fdr_alpha). If thresh is None, then the false detection
probability is first calculated, and if the number of false source
pixels is more than fdr_ratio times the estimated number of true source
pixels, then FDR is chosen, else the hard threshold option is chosen.

Masked images aren't handled properly yet.
"""
from __future__ import absolute_import

import numpy as N
from .image import Op, Image, NArray
from math import sqrt,pi,log
from scipy.special import erfc
from . import const
from . import mylogger


class Op_threshold(Op):
    """Calculates FDR threshold if necessary.

    Prerequisites: Module preprocess and rmsimage should be run first.
    """
    def __call__(self, img):
        mylog = mylogger.logging.getLogger("PyBDSF."+img.log+"Threshold ")
        data = img.ch0_arr
        mask = img.mask_arr
        opts = img.opts
        size = N.prod(img.ch0_arr.shape)
        sq2  = sqrt(2)

        if img.opts.thresh is None:
            source_p = self.get_srcp(img)
            cutoff = 5.0
            false_p = 0.5*erfc(cutoff/sq2)*size
            if false_p < opts.fdr_ratio*source_p:
                img.thresh = 'hard'
                mylogger.userinfo(mylog, "Expected 5-sigma-clipped false detection rate < fdr_ratio")
                mylogger.userinfo(mylog, "Using sigma-clipping ('hard') thresholding")
            else:
                img.thresh = 'fdr'
                mylogger.userinfo(mylog, "Expected 5-sigma-clipped false detection rate > fdr_ratio")
                mylogger.userinfo(mylog, "Using FDR (False Detection Rate) thresholding")
                mylog.debug('%s %g' % ("Estimated number of source pixels (using sourcecounts.py) is ",source_p))
                mylog.debug('%s %g' % ("Number of false positive pixels expected for 5-sigma is ",false_p))
                mylog.debug("Threshold for pixels set to : "+str.swapcase(img.thresh))
        else:
            img.thresh = img.opts.thresh

        if img.thresh=='fdr':
            cdelt = img.wcs_obj.acdelt[:2]
            bm = (img.beam[0], img.beam[1])
            area_pix = int(round(N.prod(bm)/(abs(N.prod(cdelt))* \
                                                      pi/(4.0*log(2.0)))))
            s0 = 0
            for i in range(area_pix):
                s0 +=  1.0/(i+1)
            slope = opts.fdr_alpha/s0
            # sort erf of normalised image as vector
            v = N.sort(0.5*erfc(N.ravel((data-img.mean_arr)/img.rms_arr)/sq2))[::-1]
            pcrit = None
            for i,x in enumerate(v):
                if x < slope*i/size:
                    pcrit = x
                    break
            if pcrit is None:
                raise RuntimeError("FDR thresholding failed. Please check the input image for problems.")
            dumr1 = 1.0-2.0*pcrit
            dumr = 8.0/3.0/pi*(pi-3.0)/(4.0-pi)
            # approx for inv(erfc)
            sigcrit = sqrt(-2.0/pi/dumr-log(1.0-dumr1*dumr1)/2.0+  \
                          sqrt((2.0/pi/dumr+log(1.0-dumr1*dumr1)/2.0)* \
                          (2.0/pi/dumr+log(1.0-dumr1*dumr1)/2.0)-      \
                          log(1.0-dumr1*dumr1)/dumr))*sq2
            if pcrit == 0.0:
                img.thresh = 'hard'
            else:
                img.thresh_pix = sigcrit
                mylogger.userinfo(mylog, "FDR threshold (replaces thresh_pix)", str(round(sigcrit, 4)))
        else:
            img.thresh_pix = opts.thresh_pix

        img.completed_Ops.append('threshold')
        return img

    def get_srcp(self, img):
        from . import sourcecounts as sc
        fwsig = const.fwsig
        cutoff = 5.0
        spin = -0.80
        freq = img.frequency
        bm = (img.beam[0], img.beam[1])
        cdelt = img.wcs_obj.acdelt[:2]
        x = 2.0*pi*N.prod(bm)/abs(N.prod(cdelt))/(fwsig*fwsig)*img.omega

        smin_L = img.clipped_rms*cutoff*((1.4e9/freq)**spin)
        scflux = sc.s
        scnum = sc.n
        index = 0
        for i,s in enumerate(scflux):
            if s < smin_L:
                index = i
                break
        n1 = scnum[index]; n2 = scnum[-1]
        s1 = scflux[index]; s2 = scflux[-1]
        alpha = 1.0-log(n1/n2)/log(s1/s2)
        A = (alpha-1.0)*n1/(s1**(1.0-alpha))
        source_p = x*A*((cutoff*img.clipped_rms)**(1.0-alpha)) \
                     /((1.0-alpha)*(1.0-alpha))

        return source_p