1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
SUBROUTINE G7ITB(B, D, G, IV, LIV, LV, P, PS, V, X, Y)
C
C *** CARRY OUT NL2SOL-LIKE ITERATIONS FOR GENERALIZED LINEAR ***
C *** REGRESSION PROBLEMS (AND OTHERS OF SIMILAR STRUCTURE) ***
C *** HAVING SIMPLE BOUNDS ON THE PARAMETERS BEING ESTIMATED. ***
C
C *** PARAMETER DECLARATIONS ***
C
INTEGER LIV, LV, P, PS
INTEGER IV(LIV)
REAL B(2,P), D(P), G(P), V(LV), X(P), Y(P)
C
C-------------------------- PARAMETER USAGE --------------------------
C
C B.... VECTOR OF LOWER AND UPPER BOUNDS ON X.
C D.... SCALE VECTOR.
C IV... INTEGER VALUE ARRAY.
C LIV.. LENGTH OF IV. MUST BE AT LEAST 80.
C LH... LENGTH OF H = P*(P+1)/2.
C LV... LENGTH OF V. MUST BE AT LEAST P*(3*P + 19)/2 + 7.
C G.... GRADIENT AT X (WHEN IV(1) = 2).
C HC... GAUSS-NEWTON HESSIAN AT X (WHEN IV(1) = 2).
C P.... NUMBER OF PARAMETERS (COMPONENTS IN X).
C PS... NUMBER OF NONZERO ROWS AND COLUMNS IN S.
C V.... FLOATING-POINT VALUE ARRAY.
C X.... PARAMETER VECTOR.
C Y.... PART OF YIELD VECTOR (WHEN IV(1)= 2, SCRATCH OTHERWISE).
C
C *** DISCUSSION ***
C
C G7ITB IS SIMILAR TO G7LIT, EXCEPT FOR THE EXTRA PARAMETER B
C -- G7ITB ENFORCES THE BOUNDS B(1,I) .LE. X(I) .LE. B(2,I),
C I = 1(1)P.
C G7ITB PERFORMS NL2SOL-LIKE ITERATIONS FOR A VARIETY OF
C REGRESSION PROBLEMS THAT ARE SIMILAR TO NONLINEAR LEAST-SQUARES
C IN THAT THE HESSIAN IS THE SUM OF TWO TERMS, A READILY-COMPUTED
C FIRST-ORDER TERM AND A SECOND-ORDER TERM. THE CALLER SUPPLIES
C THE FIRST-ORDER TERM OF THE HESSIAN IN HC (LOWER TRIANGLE, STORED
C COMPACTLY BY ROWS), AND G7ITB BUILDS AN APPROXIMATION, S, TO THE
C SECOND-ORDER TERM. THE CALLER ALSO PROVIDES THE FUNCTION VALUE,
C GRADIENT, AND PART OF THE YIELD VECTOR USED IN UPDATING S.
C G7ITB DECIDES DYNAMICALLY WHETHER OR NOT TO _USE_ S WHEN CHOOSING
C THE NEXT STEP TO TRY... THE HESSIAN APPROXIMATION USED IS EITHER
C HC ALONE (GAUSS-NEWTON MODEL) OR HC + S (AUGMENTED MODEL).
C IF PS .LT. P, THEN ROWS AND COLUMNS PS+1...P OF S ARE KEPT
C CONSTANT. THEY WILL BE ZERO UNLESS THE CALLER SETS IV(INITS) TO
C 1 OR 2 AND SUPPLIES NONZERO VALUES FOR THEM, OR THE CALLER SETS
C IV(INITS) TO 3 OR 4 AND THE FINITE-DIFFERENCE INITIAL S THEN
C COMPUTED HAS NONZERO VALUES IN THESE ROWS.
C
C IF IV(INITS) IS 3 OR 4, THEN THE INITIAL S IS COMPUTED BY
C FINITE DIFFERENCES. 3 MEANS _USE_ FUNCTION DIFFERENCES, 4 MEANS
C _USE_ GRADIENT DIFFERENCES. FINITE DIFFERENCING IS DONE THE SAME
C WAY AS IN COMPUTING A COVARIANCE MATRIX (WITH IV(COVREQ) = -1, -2,
C 1, OR 2).
C
C FOR UPDATING S, G7ITB ASSUMES THAT THE GRADIENT HAS THE FORM
C OF A SUM OVER I OF RHO(I,X)*GRAD(R(I,X)), WHERE GRAD DENOTES THE
C GRADIENT WITH RESPECT TO X. THE TRUE SECOND-ORDER TERM THEN IS
C THE SUM OVER I OF RHO(I,X)*HESSIAN(R(I,X)). IF X = X0 + STEP,
C THEN WE WISH TO UPDATE S SO THAT S*STEP IS THE SUM OVER I OF
C RHO(I,X)*(GRAD(R(I,X)) - GRAD(R(I,X0))). THE CALLER MUST SUPPLY
C PART OF THIS IN Y, NAMELY THE SUM OVER I OF
C RHO(I,X)*GRAD(R(I,X0)), WHEN CALLING G7ITB WITH IV(1) = 2 AND
C IV(MODE) = 0 (WHERE MODE = 38). G THEN CONTANS THE OTHER PART,
C SO THAT THE DESIRED YIELD VECTOR IS G - Y. IF PS .LT. P, THEN
C THE ABOVE DISCUSSION APPLIES ONLY TO THE FIRST PS COMPONENTS OF
C GRAD(R(I,X)), STEP, AND Y.
C
C PARAMETERS IV, P, V, AND X ARE THE SAME AS THE CORRESPONDING
C ONES TO N2GB (AND NL2SOL), EXCEPT THAT V CAN BE SHORTER
C (SINCE THE PART OF V THAT N2GB USES FOR STORING D, J, AND R IS
C NOT NEEDED). MOREOVER, COMPARED WITH N2GB (AND NL2SOL), IV(1)
C MAY HAVE THE TWO ADDITIONAL OUTPUT VALUES 1 AND 2, WHICH ARE
C EXPLAINED BELOW, AS IS THE _USE_ OF IV(TOOBIG) AND IV(NFGCAL).
C THE VALUES IV(D), IV(J), AND IV(R), WHICH ARE OUTPUT VALUES FROM
C N2GB (AND N2FB), ARE NOT REFERENCED BY G7ITB OR THE
C SUBROUTINES IT CALLS.
C
C WHEN G7ITB IS FIRST CALLED, I.E., WHEN G7ITB IS CALLED WITH
C IV(1) = 0 OR 12, V(F), G, AND HC NEED NOT BE INITIALIZED. TO
C OBTAIN THESE STARTING VALUES, G7ITB RETURNS FIRST WITH IV(1) = 1,
C THEN WITH IV(1) = 2, WITH IV(MODE) = -1 IN BOTH CASES. ON
C SUBSEQUENT RETURNS WITH IV(1) = 2, IV(MODE) = 0 IMPLIES THAT
C Y MUST ALSO BE SUPPLIED. (NOTE THAT Y IS USED FOR SCRATCH -- ITS
C INPUT CONTENTS ARE LOST. BY CONTRAST, HC IS NEVER CHANGED.)
C ONCE CONVERGENCE HAS BEEN OBTAINED, IV(RDREQ) AND IV(COVREQ) MAY
C IMPLY THAT A FINITE-DIFFERENCE HESSIAN SHOULD BE COMPUTED FOR USE
C IN COMPUTING A COVARIANCE MATRIX. IN THIS CASE G7ITB WILL MAKE
C A NUMBER OF RETURNS WITH IV(1) = 1 OR 2 AND IV(MODE) POSITIVE.
C WHEN IV(MODE) IS POSITIVE, Y SHOULD NOT BE CHANGED.
C
C IV(1) = 1 MEANS THE CALLER SHOULD SET V(F) (I.E., V(10)) TO F(X), THE
C FUNCTION VALUE AT X, AND CALL G7ITB AGAIN, HAVING CHANGED
C NONE OF THE OTHER PARAMETERS. AN EXCEPTION OCCURS IF F(X)
C CANNOT BE EVALUATED (E.G. IF OVERFLOW WOULD OCCUR), WHICH
C MAY HAPPEN BECAUSE OF AN OVERSIZED STEP. IN THIS CASE
C THE CALLER SHOULD SET IV(TOOBIG) = IV(2) TO 1, WHICH WILL
C CAUSE G7ITB TO IGNORE V(F) AND TRY A SMALLER STEP. NOTE
C THAT THE CURRENT FUNCTION EVALUATION COUNT IS AVAILABLE
C IN IV(NFCALL) = IV(6). THIS MAY BE USED TO IDENTIFY
C WHICH COPY OF SAVED INFORMATION SHOULD BE USED IN COM-
C PUTING G, HC, AND Y THE NEXT TIME G7ITB RETURNS WITH
C IV(1) = 2. SEE MLPIT FOR AN EXAMPLE OF THIS.
C IV(1) = 2 MEANS THE CALLER SHOULD SET G TO G(X), THE GRADIENT OF F AT
C X. THE CALLER SHOULD ALSO SET HC TO THE GAUSS-NEWTON
C HESSIAN AT X. IF IV(MODE) = 0, THEN THE CALLER SHOULD
C ALSO COMPUTE THE PART OF THE YIELD VECTOR DESCRIBED ABOVE.
C THE CALLER SHOULD THEN CALL G7ITB AGAIN (WITH IV(1) = 2).
C THE CALLER MAY ALSO CHANGE D AT THIS TIME, BUT SHOULD NOT
C CHANGE X. NOTE THAT IV(NFGCAL) = IV(7) CONTAINS THE
C VALUE THAT IV(NFCALL) HAD DURING THE RETURN WITH
C IV(1) = 1 IN WHICH X HAD THE SAME VALUE AS IT NOW HAS.
C IV(NFGCAL) IS EITHER IV(NFCALL) OR IV(NFCALL) - 1. MLPIT
C IS AN EXAMPLE WHERE THIS INFORMATION IS USED. IF G OR HC
C CANNOT BE EVALUATED AT X, THEN THE CALLER MAY SET
C IV(NFGCAL) TO 0, IN WHICH CASE G7ITB WILL RETURN WITH
C IV(1) = 15.
C
C *** GENERAL ***
C
C CODED BY DAVID M. GAY.
C
C (SEE NL2SOL FOR REFERENCES.)
C
C+++++++++++++++++++++++++++ DECLARATIONS ++++++++++++++++++++++++++++
C
C *** LOCAL VARIABLES ***
C
LOGICAL HAVQTR, HAVRM
INTEGER DUMMY, DIG1, G01, H1, HC1, I, I1, IPI, IPIV0, IPIV1,
1 IPIV2, IPN, J, K, L, LMAT1, LSTGST, P1, P1LEN, PP1, PP1O2,
2 QTR1, RMAT1, RSTRST, STEP1, STPMOD, S1, TD1, TEMP1, TEMP2,
3 TG1, W1, WLM1, X01
REAL E, GI, STTSST, T, T1, XI
C
C *** CONSTANTS ***
C
REAL HALF, NEGONE, ONE, ONEP2, ZERO
C
C *** EXTERNAL FUNCTIONS AND SUBROUTINES ***
C
LOGICAL STOPX
REAL D7TPR, RLDST, V2NRM
EXTERNAL A7SST, D7TPR, F7DHB, G7QSB,I7COPY, I7PNVR, I7SHFT,
1 ITSUM, L7MSB, L7SQR, L7TVM, L7VML, PARCK, Q7RSH,
2 RLDST, S7DMP, S7IPR, S7LUP, S7LVM, STOPX, V2NRM,
3 V2AXY, V7CPY, V7IPR, V7SCP, V7VMP
C
C A7SST.... ASSESSES CANDIDATE STEP.
C D7TPR... RETURNS INNER PRODUCT OF TWO VECTORS.
C F7DHB... COMPUTE FINITE-DIFFERENCE HESSIAN (FOR INIT. S MATRIX).
C G7QSB... COMPUTES GOLDFELD-QUANDT-TROTTER STEP (AUGMENTED MODEL).
C I7COPY.... COPIES ONE INTEGER VECTOR TO ANOTHER.
C I7PNVR... INVERTS PERMUTATION ARRAY.
C I7SHFT... SHIFTS AN INTEGER VECTOR.
C ITSUM.... PRINTS ITERATION SUMMARY AND INFO ON INITIAL AND FINAL X.
C L7MSB... COMPUTES LEVENBERG-MARQUARDT STEP (GAUSS-NEWTON MODEL).
C L7SQR... COMPUTES L * L**T FROM LOWER TRIANGULAR MATRIX L.
C L7TVM... COMPUTES L**T * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C L7VML.... COMPUTES L * V, V = VECTOR, L = LOWER TRIANGULAR MATRIX.
C PARCK.... CHECK VALIDITY OF IV AND V INPUT COMPONENTS.
C Q7RSH... SHIFTS A QR FACTORIZATION.
C RLDST... COMPUTES V(RELDX) = RELATIVE STEP SIZE.
C S7DMP... MULTIPLIES A SYM. MATRIX FORE AND AFT BY A DIAG. MATRIX.
C S7IPR... APPLIES PERMUTATION TO (LOWER TRIANG. OF) SYM. MATRIX.
C S7LUP... PERFORMS QUASI-NEWTON UPDATE ON COMPACTLY STORED LOWER TRI-
C ANGLE OF A SYMMETRIC MATRIX.
C S7LVM... MULTIPLIES COMPACTLY STORED SYM. MATRIX TIMES VECTOR.
C STOPX.... RETURNS .TRUE. IF THE BREAK KEY HAS BEEN PRESSED.
C V2NRM... RETURNS THE 2-NORM OF A VECTOR.
C V2AXY.... COMPUTES SCALAR TIMES ONE VECTOR PLUS ANOTHER.
C V7CPY.... COPIES ONE VECTOR TO ANOTHER.
C V7IPR... APPLIES A PERMUTATION TO A VECTOR.
C V7SCP... SETS ALL ELEMENTS OF A VECTOR TO A SCALAR.
C V7VMP... MULTIPLIES (DIVIDES) VECTORS COMPONENTWISE.
C
C *** SUBSCRIPTS FOR IV AND V ***
C
INTEGER CNVCOD, COSMIN, COVMAT, COVREQ, DGNORM, DIG,
1 DSTNRM, F, FDH, FDIF, FUZZ, F0, GTSTEP, H, HC, IERR,
2 INCFAC, INITS, IPIVOT, IRC, IVNEED, KAGQT, KALM, LMAT,
3 LMAX0, LMAXS, MODE, MODEL, MXFCAL, MXITER, NEXTIV, NEXTV,
4 NFCALL, NFGCAL, NFCOV, NGCOV, NGCALL, NITER, NVSAVE, P0,
5 PC, PERM, PHMXFC, PREDUC, QTR, RADFAC, RADINC, RADIUS,
6 RAD0, RDREQ, REGD, RELDX, RESTOR, RMAT, S, SIZE, STEP,
7 STGLIM, STPPAR, SUSED, SWITCH, TOOBIG, TUNER4, TUNER5,
8 VNEED, VSAVE, W, WSCALE, XIRC, X0
C
C *** IV SUBSCRIPT VALUES ***
C
C *** (NOTE THAT P0 AND PC ARE STORED IN IV(G0) AND IV(STLSTG) RESP.)
C
C/6
C DATA CNVCOD/55/, COVMAT/26/, COVREQ/15/, DIG/37/, FDH/74/, H/56/,
C 1 HC/71/, IERR/75/, INITS/25/, IPIVOT/76/, IRC/29/, IVNEED/3/,
C 2 KAGQT/33/, KALM/34/, LMAT/42/, MODE/35/, MODEL/5/,
C 3 MXFCAL/17/, MXITER/18/, NEXTIV/46/, NEXTV/47/, NFCALL/6/,
C 4 NFGCAL/7/, NFCOV/52/, NGCOV/53/, NGCALL/30/, NITER/31/,
C 5 P0/48/, PC/41/, PERM/58/, QTR/77/, RADINC/8/, RDREQ/57/,
C 6 REGD/67/, RESTOR/9/, RMAT/78/, S/62/, STEP/40/, STGLIM/11/,
C 7 SUSED/64/, SWITCH/12/, TOOBIG/2/, VNEED/4/, VSAVE/60/, W/65/,
C 8 XIRC/13/, X0/43/
C/7
PARAMETER (CNVCOD=55, COVMAT=26, COVREQ=15, DIG=37, FDH=74, H=56,
1 HC=71, IERR=75, INITS=25, IPIVOT=76, IRC=29, IVNEED=3,
2 KAGQT=33, KALM=34, LMAT=42, MODE=35, MODEL=5,
3 MXFCAL=17, MXITER=18, NEXTIV=46, NEXTV=47, NFCALL=6,
4 NFGCAL=7, NFCOV=52, NGCOV=53, NGCALL=30, NITER=31,
5 P0=48, PC=41, PERM=58, QTR=77, RADINC=8, RDREQ=57,
6 REGD=67, RESTOR=9, RMAT=78, S=62, STEP=40, STGLIM=11,
7 SUSED=64, SWITCH=12, TOOBIG=2, VNEED=4, VSAVE=60, W=65,
8 XIRC=13, X0=43)
C/
C
C *** V SUBSCRIPT VALUES ***
C
C/6
C DATA COSMIN/47/, DGNORM/1/, DSTNRM/2/, F/10/, FDIF/11/, FUZZ/45/,
C 1 F0/13/, GTSTEP/4/, INCFAC/23/, LMAX0/35/, LMAXS/36/,
C 2 NVSAVE/9/, PHMXFC/21/, PREDUC/7/, RADFAC/16/, RADIUS/8/,
C 3 RAD0/9/, RELDX/17/, SIZE/55/, STPPAR/5/, TUNER4/29/,
C 4 TUNER5/30/, WSCALE/56/
C/7
PARAMETER (COSMIN=47, DGNORM=1, DSTNRM=2, F=10, FDIF=11, FUZZ=45,
1 F0=13, GTSTEP=4, INCFAC=23, LMAX0=35, LMAXS=36,
2 NVSAVE=9, PHMXFC=21, PREDUC=7, RADFAC=16, RADIUS=8,
3 RAD0=9, RELDX=17, SIZE=55, STPPAR=5, TUNER4=29,
4 TUNER5=30, WSCALE=56)
C/
C
C
C/6
C DATA HALF/0.5E+0/, NEGONE/-1.E+0/, ONE/1.E+0/, ONEP2/1.2E+0/,
C 1 ZERO/0.E+0/
C/7
PARAMETER (HALF=0.5E+0, NEGONE=-1.E+0, ONE=1.E+0, ONEP2=1.2E+0,
1 ZERO=0.E+0)
C/
C
C+++++++++++++++++++++++++++++++ BODY ++++++++++++++++++++++++++++++++
C
I = IV(1)
IF (I .EQ. 1) GO TO 50
IF (I .EQ. 2) GO TO 60
C
IF (I .LT. 12) GO TO 10
IF (I .GT. 13) GO TO 10
IV(VNEED) = IV(VNEED) + P*(3*P + 25)/2 + 7
IV(IVNEED) = IV(IVNEED) + 4*P
10 CALL PARCK(1, D, IV, LIV, LV, P, V)
I = IV(1) - 2
IF (I .GT. 12) GO TO 999
GO TO (360, 360, 360, 360, 360, 360, 240, 190, 240, 20, 20, 30), I
C
C *** STORAGE ALLOCATION ***
C
20 PP1O2 = P * (P + 1) / 2
IV(S) = IV(LMAT) + PP1O2
IV(X0) = IV(S) + PP1O2
IV(STEP) = IV(X0) + 2*P
IV(DIG) = IV(STEP) + 3*P
IV(W) = IV(DIG) + 2*P
IV(H) = IV(W) + 4*P + 7
IV(NEXTV) = IV(H) + PP1O2
IV(IPIVOT) = IV(PERM) + 3*P
IV(NEXTIV) = IV(IPIVOT) + P
IF (IV(1) .NE. 13) GO TO 30
IV(1) = 14
GO TO 999
C
C *** INITIALIZATION ***
C
30 IV(NITER) = 0
IV(NFCALL) = 1
IV(NGCALL) = 1
IV(NFGCAL) = 1
IV(MODE) = -1
IV(STGLIM) = 2
IV(TOOBIG) = 0
IV(CNVCOD) = 0
IV(COVMAT) = 0
IV(NFCOV) = 0
IV(NGCOV) = 0
IV(RADINC) = 0
IV(PC) = P
V(RAD0) = ZERO
V(STPPAR) = ZERO
V(RADIUS) = V(LMAX0) / (ONE + V(PHMXFC))
C
C *** CHECK CONSISTENCY OF B AND INITIALIZE IP ARRAY ***
C
IPI = IV(IPIVOT)
DO 40 I = 1, P
IV(IPI) = I
IPI = IPI + 1
IF (B(1,I) .GT. B(2,I)) GO TO 680
40 CONTINUE
C
C *** SET INITIAL MODEL AND S MATRIX ***
C
IV(MODEL) = 1
IV(1) = 1
IF (IV(S) .LT. 0) GO TO 710
IF (IV(INITS) .GT. 1) IV(MODEL) = 2
S1 = IV(S)
IF (IV(INITS) .EQ. 0 .OR. IV(INITS) .GT. 2)
1 CALL V7SCP(P*(P+1)/2, V(S1), ZERO)
GO TO 710
C
C *** NEW FUNCTION VALUE ***
C
50 IF (IV(MODE) .EQ. 0) GO TO 360
IF (IV(MODE) .GT. 0) GO TO 590
C
IF (IV(TOOBIG) .EQ. 0) GO TO 690
IV(1) = 63
GO TO 999
C
C *** MAKE SURE GRADIENT COULD BE COMPUTED ***
C
60 IF (IV(TOOBIG) .EQ. 0) GO TO 70
IV(1) = 65
GO TO 999
C
C *** NEW GRADIENT ***
C
70 IV(KALM) = -1
IV(KAGQT) = -1
IV(FDH) = 0
IF (IV(MODE) .GT. 0) GO TO 590
IF (IV(HC) .LE. 0 .AND. IV(RMAT) .LE. 0) GO TO 670
C
C *** CHOOSE INITIAL PERMUTATION ***
C
IPI = IV(IPIVOT)
IPN = IPI + P - 1
IPIV2 = IV(PERM) - 1
K = IV(PC)
P1 = P
PP1 = P + 1
RMAT1 = IV(RMAT)
HAVRM = RMAT1 .GT. 0
QTR1 = IV(QTR)
HAVQTR = QTR1 .GT. 0
C *** MAKE SURE V(QTR1) IS LEGAL (EVEN WHEN NOT REFERENCED) ***
W1 = IV(W)
IF (.NOT. HAVQTR) QTR1 = W1 + P
C
DO 100 I = 1, P
I1 = IV(IPN)
IPN = IPN - 1
IF (B(1,I1) .GE. B(2,I1)) GO TO 80
XI = X(I1)
GI = G(I1)
IF (XI .LE. B(1,I1) .AND. GI .GT. ZERO) GO TO 80
IF (XI .GE. B(2,I1) .AND. GI .LT. ZERO) GO TO 80
C *** DISALLOW CONVERGENCE IF X(I1) HAS JUST BEEN FREED ***
J = IPIV2 + I1
IF (IV(J) .GT. K) IV(CNVCOD) = 0
GO TO 100
80 IF (I1 .GE. P1) GO TO 90
I1 = PP1 - I
CALL I7SHFT(P1, I1, IV(IPI))
IF (HAVRM)
1 CALL Q7RSH(I1, P1, HAVQTR, V(QTR1), V(RMAT1), V(W1))
90 P1 = P1 - 1
100 CONTINUE
IV(PC) = P1
C
C *** COMPUTE V(DGNORM) (AN OUTPUT VALUE IF WE STOP NOW) ***
C
V(DGNORM) = ZERO
IF (P1 .LE. 0) GO TO 110
DIG1 = IV(DIG)
CALL V7VMP(P, V(DIG1), G, D, -1)
CALL V7IPR(P, IV(IPI), V(DIG1))
V(DGNORM) = V2NRM(P1, V(DIG1))
110 IF (IV(CNVCOD) .NE. 0) GO TO 580
IF (IV(MODE) .EQ. 0) GO TO 510
IV(MODE) = 0
V(F0) = V(F)
IF (IV(INITS) .LE. 2) GO TO 170
C
C *** ARRANGE FOR FINITE-DIFFERENCE INITIAL S ***
C
IV(XIRC) = IV(COVREQ)
IV(COVREQ) = -1
IF (IV(INITS) .GT. 3) IV(COVREQ) = 1
IV(CNVCOD) = 70
GO TO 600
C
C *** COME TO NEXT STMT AFTER COMPUTING F.D. HESSIAN FOR INIT. S ***
C
120 H1 = IV(FDH)
IF (H1 .LE. 0) GO TO 660
IV(CNVCOD) = 0
IV(MODE) = 0
IV(NFCOV) = 0
IV(NGCOV) = 0
IV(COVREQ) = IV(XIRC)
S1 = IV(S)
PP1O2 = PS * (PS + 1) / 2
HC1 = IV(HC)
IF (HC1 .LE. 0) GO TO 130
CALL V2AXY(PP1O2, V(S1), NEGONE, V(HC1), V(H1))
GO TO 140
130 RMAT1 = IV(RMAT)
LMAT1 = IV(LMAT)
CALL L7SQR(P, V(LMAT1), V(RMAT1))
IPI = IV(IPIVOT)
IPIV1 = IV(PERM) + P
CALL I7PNVR(P, IV(IPIV1), IV(IPI))
CALL S7IPR(P, IV(IPIV1), V(LMAT1))
CALL V2AXY(PP1O2, V(S1), NEGONE, V(LMAT1), V(H1))
C
C *** ZERO PORTION OF S CORRESPONDING TO FIXED X COMPONENTS ***
C
140 DO 160 I = 1, P
IF (B(1,I) .LT. B(2,I)) GO TO 160
K = S1 + I*(I-1)/2
CALL V7SCP(I, V(K), ZERO)
IF (I .GE. P) GO TO 170
K = K + 2*I - 1
I1 = I + 1
DO 150 J = I1, P
V(K) = ZERO
K = K + J
150 CONTINUE
160 CONTINUE
C
170 IV(1) = 2
C
C
C----------------------------- MAIN LOOP -----------------------------
C
C
C *** PRINT ITERATION SUMMARY, CHECK ITERATION LIMIT ***
C
180 CALL ITSUM(D, G, IV, LIV, LV, P, V, X)
190 K = IV(NITER)
IF (K .LT. IV(MXITER)) GO TO 200
IV(1) = 10
GO TO 999
200 IV(NITER) = K + 1
C
C *** UPDATE RADIUS ***
C
IF (K .EQ. 0) GO TO 220
STEP1 = IV(STEP)
DO 210 I = 1, P
V(STEP1) = D(I) * V(STEP1)
STEP1 = STEP1 + 1
210 CONTINUE
STEP1 = IV(STEP)
T = V(RADFAC) * V2NRM(P, V(STEP1))
IF (V(RADFAC) .LT. ONE .OR. T .GT. V(RADIUS)) V(RADIUS) = T
C
C *** INITIALIZE FOR START OF NEXT ITERATION ***
C
220 X01 = IV(X0)
V(F0) = V(F)
IV(IRC) = 4
IV(H) = -IABS(IV(H))
IV(SUSED) = IV(MODEL)
C
C *** COPY X TO X0 ***
C
CALL V7CPY(P, V(X01), X)
C
C *** CHECK STOPX AND FUNCTION EVALUATION LIMIT ***
C
230 IF (.NOT. STOPX(DUMMY)) GO TO 250
IV(1) = 11
GO TO 260
C
C *** COME HERE WHEN RESTARTING AFTER FUNC. EVAL. LIMIT OR STOPX.
C
240 IF (V(F) .GE. V(F0)) GO TO 250
V(RADFAC) = ONE
K = IV(NITER)
GO TO 200
C
250 IF (IV(NFCALL) .LT. IV(MXFCAL) + IV(NFCOV)) GO TO 270
IV(1) = 9
260 IF (V(F) .GE. V(F0)) GO TO 999
C
C *** IN CASE OF STOPX OR FUNCTION EVALUATION LIMIT WITH
C *** IMPROVED V(F), EVALUATE THE GRADIENT AT X.
C
IV(CNVCOD) = IV(1)
GO TO 500
C
C. . . . . . . . . . . . . COMPUTE CANDIDATE STEP . . . . . . . . . .
C
270 STEP1 = IV(STEP)
TG1 = IV(DIG)
TD1 = TG1 + P
X01 = IV(X0)
W1 = IV(W)
H1 = IV(H)
P1 = IV(PC)
IPI = IV(PERM)
IPIV1 = IPI + P
IPIV2 = IPIV1 + P
IPIV0 = IV(IPIVOT)
IF (IV(MODEL) .EQ. 2) GO TO 280
C
C *** COMPUTE LEVENBERG-MARQUARDT STEP IF POSSIBLE...
C
RMAT1 = IV(RMAT)
IF (RMAT1 .LE. 0) GO TO 280
QTR1 = IV(QTR)
IF (QTR1 .LE. 0) GO TO 280
LMAT1 = IV(LMAT)
WLM1 = W1 + P
CALL L7MSB(B, D, G, IV(IERR), IV(IPIV0), IV(IPIV1),
1 IV(IPIV2), IV(KALM), V(LMAT1), LV, P, IV(P0),
2 IV(PC), V(QTR1), V(RMAT1), V(STEP1), V(TD1),
3 V(TG1), V, V(W1), V(WLM1), X, V(X01))
C *** H IS STORED IN THE END OF W AND HAS JUST BEEN OVERWRITTEN,
C *** SO WE MARK IT INVALID...
IV(H) = -IABS(H1)
C *** EVEN IF H WERE STORED ELSEWHERE, IT WOULD BE NECESSARY TO
C *** MARK INVALID THE INFORMATION G7QTS MAY HAVE STORED IN V...
IV(KAGQT) = -1
GO TO 330
C
280 IF (H1 .GT. 0) GO TO 320
C
C *** SET H TO D**-1 * (HC + T1*S) * D**-1. ***
C
P1LEN = P1*(P1+1)/2
H1 = -H1
IV(H) = H1
IV(FDH) = 0
IF (P1 .LE. 0) GO TO 320
C *** MAKE TEMPORARY PERMUTATION ARRAY ***
CALL I7COPY(P, IV(IPI), IV(IPIV0))
J = IV(HC)
IF (J .GT. 0) GO TO 290
J = H1
RMAT1 = IV(RMAT)
CALL L7SQR(P1, V(H1), V(RMAT1))
GO TO 300
290 CALL V7CPY(P*(P+1)/2, V(H1), V(J))
CALL S7IPR(P, IV(IPI), V(H1))
300 IF (IV(MODEL) .EQ. 1) GO TO 310
LMAT1 = IV(LMAT)
S1 = IV(S)
CALL V7CPY(P*(P+1)/2, V(LMAT1), V(S1))
CALL S7IPR(P, IV(IPI), V(LMAT1))
CALL V2AXY(P1LEN, V(H1), ONE, V(LMAT1), V(H1))
310 CALL V7CPY(P, V(TD1), D)
CALL V7IPR(P, IV(IPI), V(TD1))
CALL S7DMP(P1, V(H1), V(H1), V(TD1), -1)
IV(KAGQT) = -1
C
C *** COMPUTE ACTUAL GOLDFELD-QUANDT-TROTTER STEP ***
C
320 LMAT1 = IV(LMAT)
CALL G7QSB(B, D, V(H1), G, IV(IPI), IV(IPIV1), IV(IPIV2),
1 IV(KAGQT), V(LMAT1), LV, P, IV(P0), P1, V(STEP1),
2 V(TD1), V(TG1), V, V(W1), X, V(X01))
IF (IV(KALM) .GT. 0) IV(KALM) = 0
C
330 IF (IV(IRC) .NE. 6) GO TO 340
IF (IV(RESTOR) .NE. 2) GO TO 360
RSTRST = 2
GO TO 370
C
C *** CHECK WHETHER EVALUATING F(X0 + STEP) LOOKS WORTHWHILE ***
C
340 IV(TOOBIG) = 0
IF (V(DSTNRM) .LE. ZERO) GO TO 360
IF (IV(IRC) .NE. 5) GO TO 350
IF (V(RADFAC) .LE. ONE) GO TO 350
IF (V(PREDUC) .GT. ONEP2 * V(FDIF)) GO TO 350
STEP1 = IV(STEP)
X01 = IV(X0)
CALL V2AXY(P, V(STEP1), NEGONE, V(X01), X)
IF (IV(RESTOR) .NE. 2) GO TO 360
RSTRST = 0
GO TO 370
C
C *** COMPUTE F(X0 + STEP) ***
C
350 X01 = IV(X0)
STEP1 = IV(STEP)
CALL V2AXY(P, X, ONE, V(STEP1), V(X01))
IV(NFCALL) = IV(NFCALL) + 1
IV(1) = 1
GO TO 710
C
C. . . . . . . . . . . . . ASSESS CANDIDATE STEP . . . . . . . . . . .
C
360 RSTRST = 3
370 X01 = IV(X0)
V(RELDX) = RLDST(P, D, X, V(X01))
CALL A7SST(IV, LIV, LV, V)
STEP1 = IV(STEP)
LSTGST = X01 + P
I = IV(RESTOR) + 1
GO TO (410, 380, 390, 400), I
380 CALL V7CPY(P, X, V(X01))
GO TO 410
390 CALL V7CPY(P, V(LSTGST), V(STEP1))
GO TO 410
400 CALL V7CPY(P, V(STEP1), V(LSTGST))
CALL V2AXY(P, X, ONE, V(STEP1), V(X01))
V(RELDX) = RLDST(P, D, X, V(X01))
IV(RESTOR) = RSTRST
C
C *** IF NECESSARY, SWITCH MODELS ***
C
410 IF (IV(SWITCH) .EQ. 0) GO TO 420
IV(H) = -IABS(IV(H))
IV(SUSED) = IV(SUSED) + 2
L = IV(VSAVE)
CALL V7CPY(NVSAVE, V, V(L))
420 L = IV(IRC) - 4
STPMOD = IV(MODEL)
IF (L .GT. 0) GO TO (440,450,460,460,460,460,460,460,570,510), L
C
C *** DECIDE WHETHER TO CHANGE MODELS ***
C
E = V(PREDUC) - V(FDIF)
S1 = IV(S)
CALL S7LVM(PS, Y, V(S1), V(STEP1))
STTSST = HALF * D7TPR(PS, V(STEP1), Y)
IF (IV(MODEL) .EQ. 1) STTSST = -STTSST
IF ( ABS(E + STTSST) * V(FUZZ) .GE. ABS(E)) GO TO 430
C
C *** SWITCH MODELS ***
C
IV(MODEL) = 3 - IV(MODEL)
IF (-2 .LT. L) GO TO 470
IV(H) = -IABS(IV(H))
IV(SUSED) = IV(SUSED) + 2
L = IV(VSAVE)
CALL V7CPY(NVSAVE, V(L), V)
GO TO 230
C
430 IF (-3 .LT. L) GO TO 470
C
C *** RECOMPUTE STEP WITH DIFFERENT RADIUS ***
C
440 V(RADIUS) = V(RADFAC) * V(DSTNRM)
GO TO 230
C
C *** COMPUTE STEP OF LENGTH V(LMAXS) FOR SINGULAR CONVERGENCE TEST
C
450 V(RADIUS) = V(LMAXS)
GO TO 270
C
C *** CONVERGENCE OR FALSE CONVERGENCE ***
C
460 IV(CNVCOD) = L
IF (V(F) .GE. V(F0)) GO TO 580
IF (IV(XIRC) .EQ. 14) GO TO 580
IV(XIRC) = 14
C
C. . . . . . . . . . . . PROCESS ACCEPTABLE STEP . . . . . . . . . . .
C
470 IV(COVMAT) = 0
IV(REGD) = 0
C
C *** SEE WHETHER TO SET V(RADFAC) BY GRADIENT TESTS ***
C
IF (IV(IRC) .NE. 3) GO TO 500
STEP1 = IV(STEP)
TEMP1 = STEP1 + P
TEMP2 = IV(X0)
C
C *** SET TEMP1 = HESSIAN * STEP FOR _USE_ IN GRADIENT TESTS ***
C
HC1 = IV(HC)
IF (HC1 .LE. 0) GO TO 480
CALL S7LVM(P, V(TEMP1), V(HC1), V(STEP1))
GO TO 490
480 RMAT1 = IV(RMAT)
IPIV0 = IV(IPIVOT)
CALL V7CPY(P, V(TEMP1), V(STEP1))
CALL V7IPR(P, IV(IPIV0), V(TEMP1))
CALL L7TVM(P, V(TEMP1), V(RMAT1), V(TEMP1))
CALL L7VML(P, V(TEMP1), V(RMAT1), V(TEMP1))
IPIV1 = IV(PERM) + P
CALL I7PNVR(P, IV(IPIV1), IV(IPIV0))
CALL V7IPR(P, IV(IPIV1), V(TEMP1))
C
490 IF (STPMOD .EQ. 1) GO TO 500
S1 = IV(S)
CALL S7LVM(PS, V(TEMP2), V(S1), V(STEP1))
CALL V2AXY(PS, V(TEMP1), ONE, V(TEMP2), V(TEMP1))
C
C *** SAVE OLD GRADIENT AND COMPUTE NEW ONE ***
C
500 IV(NGCALL) = IV(NGCALL) + 1
G01 = IV(W)
CALL V7CPY(P, V(G01), G)
GO TO 690
C
C *** INITIALIZATIONS -- G0 = G - G0, ETC. ***
C
510 G01 = IV(W)
CALL V2AXY(P, V(G01), NEGONE, V(G01), G)
STEP1 = IV(STEP)
TEMP1 = STEP1 + P
TEMP2 = IV(X0)
IF (IV(IRC) .NE. 3) GO TO 540
C
C *** SET V(RADFAC) BY GRADIENT TESTS ***
C
C *** SET TEMP1 = D**-1 * (HESSIAN * STEP + (G(X0) - G(X))) ***
C
K = TEMP1
L = G01
DO 520 I = 1, P
V(K) = (V(K) - V(L)) / D(I)
K = K + 1
L = L + 1
520 CONTINUE
C
C *** DO GRADIENT TESTS ***
C
IF ( V2NRM(P, V(TEMP1)) .LE. V(DGNORM) * V(TUNER4)) GO TO 530
IF ( D7TPR(P, G, V(STEP1))
1 .GE. V(GTSTEP) * V(TUNER5)) GO TO 540
530 V(RADFAC) = V(INCFAC)
C
C *** COMPUTE Y VECTOR NEEDED FOR UPDATING S ***
C
540 CALL V2AXY(PS, Y, NEGONE, Y, G)
C
C *** DETERMINE SIZING FACTOR V(SIZE) ***
C
C *** SET TEMP1 = S * STEP ***
S1 = IV(S)
CALL S7LVM(PS, V(TEMP1), V(S1), V(STEP1))
C
T1 = ABS( D7TPR(PS, V(STEP1), V(TEMP1)))
T = ABS( D7TPR(PS, V(STEP1), Y))
V(SIZE) = ONE
IF (T .LT. T1) V(SIZE) = T / T1
C
C *** SET G0 TO WCHMTD CHOICE OF FLETCHER AND AL-BAALI ***
C
HC1 = IV(HC)
IF (HC1 .LE. 0) GO TO 550
CALL S7LVM(PS, V(G01), V(HC1), V(STEP1))
GO TO 560
C
550 RMAT1 = IV(RMAT)
IPIV0 = IV(IPIVOT)
CALL V7CPY(P, V(G01), V(STEP1))
I = G01 + PS
IF (PS .LT. P) CALL V7SCP(P-PS, V(I), ZERO)
CALL V7IPR(P, IV(IPIV0), V(G01))
CALL L7TVM(P, V(G01), V(RMAT1), V(G01))
CALL L7VML(P, V(G01), V(RMAT1), V(G01))
IPIV1 = IV(PERM) + P
CALL I7PNVR(P, IV(IPIV1), IV(IPIV0))
CALL V7IPR(P, IV(IPIV1), V(G01))
C
560 CALL V2AXY(PS, V(G01), ONE, Y, V(G01))
C
C *** UPDATE S ***
C
CALL S7LUP(V(S1), V(COSMIN), PS, V(SIZE), V(STEP1), V(TEMP1),
1 V(TEMP2), V(G01), V(WSCALE), Y)
IV(1) = 2
GO TO 180
C
C. . . . . . . . . . . . . . MISC. DETAILS . . . . . . . . . . . . . .
C
C *** BAD PARAMETERS TO ASSESS ***
C
570 IV(1) = 64
GO TO 999
C
C
C *** CONVERGENCE OBTAINED -- SEE WHETHER TO COMPUTE COVARIANCE ***
C
580 IF (IV(RDREQ) .EQ. 0) GO TO 660
IF (IV(FDH) .NE. 0) GO TO 660
IF (IV(CNVCOD) .GE. 7) GO TO 660
IF (IV(REGD) .GT. 0) GO TO 660
IF (IV(COVMAT) .GT. 0) GO TO 660
IF (IABS(IV(COVREQ)) .GE. 3) GO TO 640
IF (IV(RESTOR) .EQ. 0) IV(RESTOR) = 2
GO TO 600
C
C *** COMPUTE FINITE-DIFFERENCE HESSIAN FOR COMPUTING COVARIANCE ***
C
590 IV(RESTOR) = 0
600 CALL F7DHB(B, D, G, I, IV, LIV, LV, P, V, X)
GO TO (610, 620, 630), I
610 IV(NFCOV) = IV(NFCOV) + 1
IV(NFCALL) = IV(NFCALL) + 1
IV(1) = 1
GO TO 710
C
620 IV(NGCOV) = IV(NGCOV) + 1
IV(NGCALL) = IV(NGCALL) + 1
IV(NFGCAL) = IV(NFCALL) + IV(NGCOV)
GO TO 690
C
630 IF (IV(CNVCOD) .EQ. 70) GO TO 120
GO TO 660
C
640 H1 = IABS(IV(H))
IV(FDH) = H1
IV(H) = -H1
HC1 = IV(HC)
IF (HC1 .LE. 0) GO TO 650
CALL V7CPY(P*(P+1)/2, V(H1), V(HC1))
GO TO 660
650 RMAT1 = IV(RMAT)
CALL L7SQR(P, V(H1), V(RMAT1))
C
660 IV(MODE) = 0
IV(1) = IV(CNVCOD)
IV(CNVCOD) = 0
GO TO 999
C
C *** SPECIAL RETURN FOR MISSING HESSIAN INFORMATION -- BOTH
C *** IV(HC) .LE. 0 AND IV(RMAT) .LE. 0
C
670 IV(1) = 1400
GO TO 999
C
C *** INCONSISTENT B ***
C
680 IV(1) = 82
GO TO 999
C
C *** SAVE, THEN INITIALIZE IPIVOT ARRAY BEFORE COMPUTING G ***
C
690 IV(1) = 2
J = IV(IPIVOT)
IPI = IV(PERM)
CALL I7PNVR(P, IV(IPI), IV(J))
DO 700 I = 1, P
IV(J) = I
J = J + 1
700 CONTINUE
C
C *** PROJECT X INTO FEASIBLE REGION (PRIOR TO COMPUTING F OR G) ***
C
710 DO 720 I = 1, P
IF (X(I) .LT. B(1,I)) X(I) = B(1,I)
IF (X(I) .GT. B(2,I)) X(I) = B(2,I)
720 CONTINUE
IV(TOOBIG) = 0
C
999 RETURN
C
C *** LAST LINE OF G7ITB FOLLOWS ***
END
|