1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
Data Model
==========
.. automodule:: pybel.struct
Constants
---------
These documents refer to many aspects of the data model using constants, which can be found in the top-level module
:mod:`pybel.constants`.
Terms describing abundances, annotations, and other internal data are designated in :mod:`pybel.constants`
with full-caps, such as :data:`pybel.constants.FUNCTION` and :data:`pybel.constants.PROTEIN`.
For normal usage, we suggest referring to values in dictionaries by these constants, in case the hard-coded
strings behind these constants change.
Function Nomenclature
~~~~~~~~~~~~~~~~~~~~~
The following table shows PyBEL's internal mapping from BEL functions to its own constants. This can be accessed
programatically via :data:`pybel.parser.language.abundance_labels`.
+-------------------------------------------+-----------------------------------+--------------------------------------+
| BEL Function | PyBEL Constant | PyBEL DSL |
+===========================================+===================================+======================================+
| ``a()``, ``abundance()`` |:data:`pybel.constants.ABUNDANCE` |:class:`pybel.dsl.Abundance` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``g()``, ``geneAbundance()`` |:data:`pybel.constants.GENE` |:class:`pybel.dsl.Gene` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``r()``, ``rnaAbunance()`` |:data:`pybel.constants.RNA` |:class:`pybel.dsl.Rna` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``m()``, ``microRNAAbundance()`` |:data:`pybel.constants.MIRNA` |:class:`pybel.dsl.MicroRna` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``p()``, ``proteinAbundance()`` |:data:`pybel.constants.PROTEIN` |:class:`pybel.dsl.Protein` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``bp()``, ``biologicalProcess()`` |:data:`pybel.constants.BIOPROCESS` |:class:`pybel.dsl.BiologicalProcess` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``path()``, ``pathology()`` |:data:`pybel.constants.PATHOLOGY` |:class:`pybel.dsl.Pathology` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``complex()``, ``complexAbundance()`` |:data:`pybel.constants.COMPLEX` |:class:`pybel.dsl.ComplexAbundance` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``composite()``, ``compositeAbundance()`` |:data:`pybel.constants.COMPOSITE` |:class:`pybel.dsl.CompositeAbundance` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
| ``rxn()``, ``reaction()`` |:data:`pybel.constants.REACTION` |:class:`pybel.dsl.Reaction` |
+-------------------------------------------+-----------------------------------+--------------------------------------+
Graph
-----
.. autoclass:: pybel.BELGraph
:exclude-members: nodes_iter, edges_iter, add_warning, fresh_copy, document
:members:
.. automethod:: __add__
.. automethod:: __iadd__
.. automethod:: __and__
.. automethod:: __iand__
Dispatches
~~~~~~~~~~
Dispatches are classes that enable easy access to summary, mutation, and other functions
that consume graphs directly through the :class:`pybel.BELGraph` interface.
.. autoclass:: pybel.struct.graph.CountDispatch
:members:
.. autoclass:: pybel.struct.graph.InduceDispatch
:members:
.. autoclass:: pybel.struct.graph.SummarizeDispatch
:members:
.. autoclass:: pybel.struct.graph.ExpandDispatch
:members:
.. autoclass:: pybel.struct.graph.PlotDispatch
:members:
Nodes
-----
Nodes (or *entities*) in a :class:`pybel.BELGraph` represent physical entities' abundances. Most contain information
about the identifier for the entity using a namespace/name pair. The PyBEL parser converts BEL terms to an internal
representation using an internal domain specific language (DSL) that allows for writing BEL directly in Python.
For example, after the BEL term :code:`p(hgnc:GSK3B)` is parsed, it is instantiated as a Python object using the
DSL function corresponding to the ``p()`` function in BEL, :class:`pybel.dsl.Protein`, like:
.. code:: python
from pybel.dsl import Protein
gsk3b_protein = Protein(namespace='hgnc', name='GSK3B')
:class:`pybel.dsl.Protein`, like the others mentioned before, inherit from :class:`pybel.dsl.BaseEntity`, which itself
inherits from :class:`dict`. Therefore, the resulting object can be used like a dict that looks like:
.. code-block:: python
from pybel.constants import *
{
FUNCTION: PROTEIN,
NAMESPACE: 'hgnc',
NAME: 'GSK3B',
}
Alternatively, it can be used in more exciting ways, outlined later in the documentation for :mod:`pybel.dsl`.
Variants
~~~~~~~~
The addition of a variant tag results in an entry called 'variants' in the data dictionary associated with a given
node. This entry is a list with dictionaries describing each of the variants. All variants have the entry 'kind' to
identify whether it is a post-translational modification (PTM), gene modification, fragment, or HGVS variant.
.. warning::
The canonical ordering for the elements of the ``VARIANTS`` list correspond to the sorted
order of their corresponding node tuples using :func:`pybel.parser.canonicalize.sort_dict_list`. Rather than
directly modifying the BELGraph's structure, use :meth:`pybel.BELGraph.add_node_from_data`, which takes care of
automatically canonicalizing this dictionary.
.. automodule:: pybel.parser.modifiers.variant
Gene Substitutions
~~~~~~~~~~~~~~~~~~
.. automodule:: pybel.parser.modifiers.gene_substitution
Gene Modifications
~~~~~~~~~~~~~~~~~~
.. automodule:: pybel.parser.modifiers.gene_modification
Protein Substitutions
~~~~~~~~~~~~~~~~~~~~~
.. automodule:: pybel.parser.modifiers.protein_substitution
Protein Modifications
~~~~~~~~~~~~~~~~~~~~~
.. automodule:: pybel.parser.modifiers.protein_modification
Protein Truncations
~~~~~~~~~~~~~~~~~~~
.. automodule:: pybel.parser.modifiers.truncation
Protein Fragments
~~~~~~~~~~~~~~~~~
.. automodule:: pybel.parser.modifiers.fragment
Fusions
~~~~~~~
.. automodule:: pybel.parser.modifiers.fusion
Unqualified Edges
-----------------
Unqualified edges are automatically inferred by PyBEL and do not contain citations or supporting evidence.
Variant and Modifications' Parent Relations
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All variants, modifications, fragments, and truncations are connected to their parent entity with an edge having
the relationship :code:`hasParent`.
For :code:`p(hgnc:GSK3B, var(p.Gly123Arg))`, the following edge is inferred:
.. code::
p(hgnc:GSK3B, var(p.Gly123Arg)) hasParent p(hgnc:GSK3B)
All variants have this relationship to their reference node. BEL does not specify relationships between variants,
such as the case when a given phosphorylation is necessary to make another one. This knowledge could be encoded
directly like BEL, since PyBEL does not restrict users from manually asserting unqualified edges.
List Abundances
~~~~~~~~~~~~~~~
Complexes and composites that are defined by lists. As of version 0.9.0, they contain a list of the data dictionaries
that describe their members. For example :code:`complex(p(hgnc:FOS), p(hgnc:JUN))` becomes:
.. code-block:: python
from pybel.constants import *
{
FUNCTION: COMPLEX,
MEMBERS: [
{
FUNCTION: PROTEIN,
NAMESPACE: 'hgnc',
NAME: 'FOS',
}, {
FUNCTION: PROTEIN,
NAMESPACE: 'hgnc',
NAME: 'JUN',
}
]
}
The following edges are also inferred:
.. code::
complex(p(hgnc:FOS), p(hgnc:JUN)) hasMember p(hgnc:FOS)
complex(p(hgnc:FOS), p(hgnc:JUN)) hasMember p(hgnc:JUN)
.. seealso::
BEL 2.0+ Tutorial on `complex abundances <https://biological-expression-language.github.io/entities/physical/#complexes-of-physical-entities>`_
Similarly, :code:`composite(a(CHEBI:malonate), p(hgnc:JUN))` becomes:
.. code-block:: python
from pybel.constants import *
{
FUNCTION: COMPOSITE,
MEMBERS: [
{
FUNCTION: ABUNDANCE,
NAMESPACE: 'CHEBI',
NAME: 'malonate',
}, {
FUNCTION: PROTEIN,
NAMESPACE: 'hgnc',
NAME: 'JUN',
}
]
}
The following edges are inferred:
.. code::
composite(a(CHEBI:malonate), p(hgnc:JUN)) hasComponent a(CHEBI:malonate)
composite(a(CHEBI:malonate), p(hgnc:JUN)) hasComponent p(hgnc:JUN)
.. warning::
The canonical ordering for the elements of the :data:`pybel.constantsMEMBERS` list correspond to the sorted
order of their corresponding node tuples using :func:`pybel.parser.canonicalize.sort_dict_list`. Rather than
directly modifying the BELGraph's structure, use :meth:`BELGraph.add_node_from_data`, which takes care of
automatically canonicalizing this dictionary.
.. seealso::
BEL 2.0+ Tutorial on `composite abundances <https://biological-expression-language.github.io/entities/reified/#composites>`_
Reactions
~~~~~~~~~
The usage of a reaction causes many nodes and edges to be created. The following example will illustrate what is
added to the network for
.. code::
rxn(reactants(a(CHEBI:"(3S)-3-hydroxy-3-methylglutaryl-CoA"), a(CHEBI:"NADPH"), \
a(CHEBI:"hydron")), products(a(CHEBI:"mevalonate"), a(CHEBI:"NADP(+)")))
As of version 0.9.0, the reactants' and products' data dictionaries are included as sub-lists keyed ``REACTANTS`` and
``PRODUCTS``. It becomes:
.. code-block:: python
from pybel.constants import *
{
FUNCTION: REACTION
REACTANTS: [
{
FUNCTION: ABUNDANCE,
NAMESPACE: 'CHEBI',
NAME: '(3S)-3-hydroxy-3-methylglutaryl-CoA'
}, {
FUNCTION: ABUNDANCE,
NAMESPACE: 'CHEBI',
NAME: 'NADPH',
}, {
FUNCTION: ABUNDANCE,
NAMESPACE: 'CHEBI',
NAME: 'hydron',
}
],
PRODUCTS: [
{
FUNCTION: ABUNDANCE,
NAMESPACE: 'CHEBI',
NAME: 'mevalonate',
}, {
FUNCTION: ABUNDANCE,
NAMESPACE: 'CHEBI',
NAME: 'NADP(+)',
}
]
}
.. warning::
The canonical ordering for the elements of the ``REACTANTS`` and ``PRODUCTS`` lists correspond to the sorted
order of their corresponding node tuples using :func:`pybel.parser.canonicalize.sort_dict_list`. Rather than
directly modifying the BELGraph's structure, use :meth:`BELGraph.add_node_from_data`, which takes care of
automatically canonicalizing this dictionary.
The following edges are inferred, where :code:`X` represents the previous reaction, for brevity:
.. code::
X hasReactant a(CHEBI:"(3S)-3-hydroxy-3-methylglutaryl-CoA")
X hasReactant a(CHEBI:"NADPH")
X hasReactant a(CHEBI:"hydron")
X hasProduct a(CHEBI:"mevalonate")
X hasProduct a(CHEBI:"NADP(+)"))
.. seealso::
BEL 2.0+ tutorial on `reactions <https://biological-expression-language.github.io/entities/reified/#reactions>`_
Edges
-----
Design Choices
~~~~~~~~~~~~~~
In the OpenBEL Framework, modifiers such as activities (kinaseActivity, etc.) and transformations (translocations,
degradations, etc.) were represented as their own nodes. In PyBEL, these modifiers are represented as a property
of the edge. In reality, an edge like :code:`sec(p(hgnc:A)) -> activity(p(hgnc:B), ma(kinaseActivity))` represents
a connection between :code:`hgnc:A` and :code:`hgnc:B`. Each of these modifiers explains the context of the relationship
between these physical entities. Further, querying a network where these modifiers are part of a relationship
is much more straightforward. For example, finding all proteins that are upregulated by the kinase activity of another
protein now can be directly queried by filtering all edges for those with a subject modifier whose modification is
molecular activity, and whose effect is kinase activity. Having fewer nodes also allows for a much easier display
and visual interpretation of a network. The information about the modifier on the subject and activity can be displayed
as a color coded source and terminus of the connecting edge.
The compiler in OpenBEL framework created nodes for molecular activities like :code:`kin(p(hgnc:YFG))` and induced an
edge like :code:`p(hgnc:YFG) actsIn kin(p(hgnc:YFG))`. For transformations, a statement like
:code:`tloc(p(hgnc:YFG), GO:intracellular, GO:"cell membrane")` also induced
:code:`tloc(p(hgnc:YFG), GO:intracellular, GO:"cell membrane") translocates p(hgnc:YFG)`.
In PyBEL, we recognize that these modifications are actually annotations to the type of relationship between the
subject's entity and the object's entity. ``p(hgnc:ABC) -> tloc(p(hgnc:YFG), GO:intracellular, GO:"cell membrane")``
is about the relationship between :code:`p(hgnc:ABC)` and :code:`p(hgnc:YFG)`, while
the information about the translocation qualifies that the object is undergoing an event, and not just the abundance.
This is a confusion with the use of :code:`proteinAbundance` as a keyword, and perhaps is why many people prefer to use
just the keyword :code:`p`
Example Edge Data Structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because this data is associated with an edge, the node data for the subject and object are not included explicitly.
However, information about the activities, modifiers, and transformations on the subject and object are included.
Below is the "skeleton" for the edge data model in PyBEL:
.. code-block:: python
from pybel.constants import *
{
SUBJECT: {
# ... modifications to the subject node. Only present if non-empty.
},
RELATION: POSITIVE_CORRELATION,
OBJECT: {
# ... modifications to the object node. Only present if non-empty.
},
EVIDENCE: ...,
CITATION : {
CITATION_TYPE: CITATION_TYPE_PUBMED,
CITATION_REFERENCE: ...,
CITATION_DATE: 'YYYY-MM-DD',
CITATION_AUTHORS: 'Jon Snow|John Doe',
},
ANNOTATIONS: {
'Disease': {
'Colorectal Cancer': True,
},
# ... additional annotations as tuple[str,dict[str,bool]] pairs
},
}
Each edge must contain the ``RELATION``, ``EVIDENCE``, and ``CITATION`` entries. The ``CITATION``
must minimally contain ``CITATION_TYPE`` and ``CITATION_REFERENCE`` since these can be used to look up additional
metadata.
.. note:: Since version 0.10.2, annotations now always appear as dictionaries, even if only one value is present.
Activities
~~~~~~~~~~
Modifiers are added to this structure as well. Under this schema,
:code:`p(hgnc:GSK3B, pmod(P, S, 9)) pos act(p(hgnc:GSK3B), ma(kin))` becomes:
.. code-block:: python
from pybel.constants import *
{
RELATION: POSITIVE_CORRELATION,
OBJECT: {
MODIFIER: ACTIVITY,
EFFECT: {
NAME: 'kin',
NAMESPACE: BEL_DEFAULT_NAMESPACE,
}
},
CITATION: { ... },
EVIDENCE: ...,
ANNOTATIONS: { ... },
}
Activities without molecular activity annotations do not contain an :data:`pybel.constants.EFFECT` entry: Under this
schema, :code:`p(hgnc:GSK3B, pmod(P, S, 9)) pos act(p(hgnc:GSK3B))` becomes:
.. code-block:: python
from pybel.constants import *
{
RELATION: POSITIVE_CORRELATION,
OBJECT: {
MODIFIER: ACTIVITY
},
CITATION: { ... },
EVIDENCE: ...,
ANNOTATIONS: { ... },
}
Locations
~~~~~~~~~
.. automodule:: pybel.parser.modifiers.location
Translocations
~~~~~~~~~~~~~~
Translocations have their own unique syntax. :code:`p(hgnc:YFG1) -> sec(p(hgnc:YFG2))` becomes:
.. code-block:: python
from pybel.constants import *
{
RELATION: INCREASES,
OBJECT: {
MODIFIER: TRANSLOCATION,
EFFECT: {
FROM_LOC: {
NAMESPACE: 'GO',
NAME: 'intracellular',
},
TO_LOC: {
NAMESPACE: 'GO',
NAME: 'extracellular space',
}
}
},
CITATION: { ... },
EVIDENCE: ...,
ANNOTATIONS: { ... },
}
.. seealso::
BEL 2.0+ tutorial on `translocations <https://biological-expression-language.github.io/statements/#translocations>`_
Degradations
~~~~~~~~~~~~
Degradations are more simple, because there's no ::data:`pybel.constants.EFFECT` entry.
:code:`p(hgnc:YFG1) -> deg(p(hgnc:YFG2))` becomes:
.. code-block:: python
from pybel.constants import *
{
RELATION: INCREASES,
OBJECT: {
MODIFIER: DEGRADATION,
},
CITATION: { ... },
EVIDENCE: ...,
ANNOTATIONS: { ... },
}
.. warning::
Degradations only provide syntax sugar and will be automatically upgraded in a future version of PyBEL such that:
- ``deg(X) -> Y`` is upgraded to ``X -| Y``
- ``deg(X) -| Y`` is upgraded to ``X -> Y``
- ``deg(X) => Y`` is upgraded to ``X =| Y``
- ``deg(X) cnc Y`` is upgraded to ``X cnc Y``
- ``X -> deg(Y)`` is upgraded to ``X -| Y``
- ``X => deg(Y)`` is upgraded to ``X =| Y``
- ``X cnc deg(Y)`` is upgraded to ``X cnc Y``
- ``X -| deg(Y)`` is undefined
|