1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
# -*- coding: utf-8 -*-
"""Tests for graph operations."""
import unittest
from pybel import BELGraph
from pybel.dsl import protein
from pybel.struct.operations import (
left_full_join,
left_node_intersection_join,
left_outer_join,
node_intersection,
union,
)
from pybel.testing.utils import n
p1, p2, p3, p4, p5, p6, p7, p8 = (protein(namespace="HGNC", name=n()) for _ in range(8))
class TestLeftFullJoin(unittest.TestCase):
"""Tests the variants of the left full join, including the exhaustive vs. hash algorithms and calling by function
or magic functions"""
def setUp(self):
"""Set up tests for the left full join with two example graphs."""
g = BELGraph()
g.add_increases(p1, p2, citation="PMID1", evidence="Evidence 1")
h = BELGraph()
h.add_increases(p1, p2, citation="PMID1", evidence="Evidence 1")
h.add_increases(p1, p2, citation="PMID2", evidence="Evidence 2")
h.add_increases(p1, p3, citation="PMID1", evidence="Evidence 3")
self.g = g
self.h = h
self._help_check_initial_g(self.g)
self._help_check_initial_h(self.h)
def _help_check_initial_g(self, graph: BELGraph):
"""Test the initial G graph."""
self.assertEqual(2, graph.number_of_nodes(), msg="initial graph G had wrong number of nodes")
self.assertEqual(1, graph.number_of_edges(), msg="initial graph G had wrong number of edges")
def _help_check_initial_h(self, graph: BELGraph):
"""Test the initial H graph."""
self.assertEqual(3, graph.number_of_nodes(), msg="initial graph H had wrong number of nodes")
self.assertEqual(3, graph.number_of_edges(), msg="initial graph H had wrong number of edges")
def _help_check_result(self, j: BELGraph):
"""Help check the result of left joining H into G.
:param j: The resulting graph from G += H
"""
self.assertEqual(3, j.number_of_nodes())
self.assertEqual(
3,
j.number_of_edges(),
msg="G edges:\n{}".format("\n".join(map(str, j.edges(data=True)))),
)
def test_function(self):
"""Test full joining two networks using the function."""
left_full_join(self.g, self.h)
self._help_check_result(self.g)
self._help_check_initial_h(self.h)
def test_full_join_with_isolated_nodes(self):
"""Test what happens when there are isolated nodes."""
a = BELGraph()
a.add_increases(p1, p2, citation=n(), evidence=n())
a.add_node_from_data(p4)
b = BELGraph()
b.add_increases(p2, p3, citation=n(), evidence=n())
b.add_node_from_data(p5)
left_full_join(a, b)
for node in p1, p2, p3, p4, p5:
self.assertIn(node, a)
def test_in_place_operator_failure(self):
"""Test that using the wrong type with the in-place addition operator raises an error."""
with self.assertRaises(TypeError):
self.g += None
def test_in_place_operator(self):
"""Test full joining two networks using the BELGraph in-place addition operator."""
self.g += self.h
self._help_check_result(self.g)
self._help_check_initial_h(self.h)
def test_operator_failure(self):
"""Test that using the wrong type with the addition operator raises an error."""
with self.assertRaises(TypeError):
self.g + None
def test_operator(self):
"""Test full joining two networks using the BELGraph addition operator."""
j = self.g + self.h
self._help_check_result(j)
self._help_check_initial_g(self.g)
self._help_check_initial_h(self.h)
def test_union_failure(self):
"""Test that the union of no graphs raises a value error."""
with self.assertRaises(ValueError):
union([])
def test_union_trivial(self):
"""Test that the union of a single graph returns that graph."""
res = union([self.g])
self.assertEqual(self.g, res)
def test_union(self):
"""Test that the union of a pair of graphs is the same as the full join."""
j = union([self.g, self.h])
self._help_check_result(j)
self._help_check_initial_g(self.g)
self._help_check_initial_h(self.h)
class TestLeftFullOuterJoin(unittest.TestCase):
def setUp(self):
g = BELGraph()
g.add_edge(p1, p2)
h = BELGraph()
h.add_edge(p1, p3)
h.add_edge(p1, p4)
h.add_edge(p5, p6)
h.add_node(p7)
self.g = g
self.h = h
def _help_check_initial_g(self, g):
self.assertEqual(2, g.number_of_nodes())
self.assertEqual({p1, p2}, set(g))
self.assertEqual(1, g.number_of_edges())
self.assertEqual({(p1, p2)}, set(g.edges()))
def _help_check_initial_h(self, h):
self.assertEqual(6, h.number_of_nodes())
self.assertEqual({p1, p3, p4, p5, p6, p7}, set(h))
self.assertEqual(3, h.number_of_edges())
self.assertEqual({(p1, p3), (p1, p4), (p5, p6)}, set(h.edges()))
def _help_check_result(self, j):
"""After H has been full outer joined into G, this is what it should be"""
self.assertEqual(4, j.number_of_nodes())
self.assertEqual({p1, p2, p3, p4}, set(j))
self.assertEqual(3, j.number_of_edges())
self.assertEqual({(p1, p2), (p1, p3), (p1, p4)}, set(j.edges()))
def test_in_place_type_failure(self):
with self.assertRaises(TypeError):
self.g &= None
def test_type_failure(self):
with self.assertRaises(TypeError):
self.g & None
def test_magic(self):
# left_outer_join(g, h)
self.g &= self.h
self._help_check_initial_h(self.h)
self._help_check_result(self.g)
def test_operator(self):
# left_outer_join(g, h)
j = self.g & self.h
self._help_check_initial_h(self.h)
self._help_check_initial_g(self.g)
self._help_check_result(j)
def test_left_outer_join(self):
left_outer_join(self.g, self.h)
self._help_check_initial_h(self.h)
self._help_check_result(self.g)
def test_left_outer_exhaustive_join(self):
self.g &= self.h
left_outer_join(self.g, self.h)
self._help_check_initial_h(self.h)
self._help_check_result(self.g)
class TestInnerJoin(unittest.TestCase):
"""Tests various graph merging procedures"""
def setUp(self):
g = BELGraph()
g.add_edge(p1, p2)
g.add_edge(p1, p3)
g.add_edge(p8, p3)
h = BELGraph()
h.add_edge(p1, p3)
h.add_edge(p1, p4)
h.add_edge(p5, p6)
h.add_node(p7)
self.g = g
self.h = h
def _help_check_initialize_g(self, graph):
self.assertEqual(4, graph.number_of_nodes())
self.assertEqual(3, graph.number_of_edges())
def _help_check_initialize_h(self, graph):
self.assertEqual(6, graph.number_of_nodes())
self.assertEqual({p1, p3, p4, p5, p6, p7}, set(graph))
self.assertEqual(3, graph.number_of_edges())
self.assertEqual({(p1, p3), (p1, p4), (p5, p6)}, set(graph.edges()))
def test_initialize(self):
self._help_check_initialize_g(self.g)
self._help_check_initialize_h(self.h)
def _help_check_join(self, j):
self.assertEqual(2, j.number_of_nodes())
self.assertEqual({p1, p3}, set(j))
self.assertEqual(1, j.number_of_edges())
self.assertEqual(
{
(p1, p3),
},
set(j.edges()),
)
def test_in_place_type_failure(self):
with self.assertRaises(TypeError):
self.g ^ None
def test_type_failure(self):
with self.assertRaises(TypeError):
self.g ^= None
def test_magic(self):
j = self.g ^ self.h
self._help_check_join(j)
self._help_check_initialize_h(self.h)
self._help_check_initialize_g(self.g)
def test_left_node_intersection_join(self):
j = left_node_intersection_join(self.g, self.h)
self._help_check_join(j)
self._help_check_initialize_h(self.h)
self._help_check_initialize_g(self.g)
def test_node_intersection(self):
j = node_intersection([self.h, self.g])
self._help_check_join(j)
self._help_check_initialize_h(self.h)
self._help_check_initialize_g(self.g)
def test_intersection_failure(self):
with self.assertRaises(ValueError):
node_intersection([])
def test_intersection_trivial(self):
res = node_intersection([self.g])
self.assertEqual(self.g, res)
|