1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
PyBEL |zenodo| |build| |coverage| |documentation| |bioregistry| |black|
=======================================================================
`PyBEL <http://pybel.readthedocs.io>`_ is a pure Python package for parsing and handling biological networks encoded in
the `Biological Expression Language <https://biological-expression-language.github.io/>`_
(BEL).
It facilitates data interchange between data formats like `NetworkX <http://networkx.github.io/>`_,
Node-Link JSON, `JGIF <https://github.com/jsongraph/json-graph-specification>`_, CSV, SIF,
`Cytoscape <http://www.cytoscape.org/>`_, `CX <http://www.home.ndexbio.org/data-model/>`_,
`INDRA <https://github.com/sorgerlab/indra>`_, and `GraphDati <https://github.com/graphdati/schemas>`_; database systems
like SQL and `Neo4J <https://neo4j.com>`_; and web services like `NDEx <https://github.com/pybel/pybel2cx>`_,
`BioDati Studio <https://biodati.com/>`_, and `BEL Commons <https://bel-commons-dev.scai.fraunhofer.de>`_. It also
provides exports for analytical tools like `HiPathia <http://hipathia.babelomics.org/>`_,
`Drug2ways <https://github.com/drug2ways/>`_ and `SPIA <https://bioconductor.org/packages/release/bioc/html/SPIA.html>`_;
machine learning tools like `PyKEEN <https://github.com/smartdataanalytics/biokeen>`_ and
`OpenBioLink <https://github.com/OpenBioLink/OpenBioLink#biological-expression-language-bel-writer>`_; and others.
Its companion package, `PyBEL Tools <http://pybel-tools.readthedocs.io/>`_, contains a
suite of functions and pipelines for analyzing the resulting biological networks.
We realize that we have a name conflict with the python wrapper for the cheminformatics package, OpenBabel. If you're
looking for their python wrapper, see `here <https://github.com/openbabel/openbabel/tree/master/scripts/python>`_.
Citation
--------
If you find PyBEL useful for your work, please consider citing:
.. [1] Hoyt, C. T., *et al.* (2017). `PyBEL: a Computational Framework for Biological Expression Language
<https://doi.org/10.1093/bioinformatics/btx660>`_. *Bioinformatics*, 34(December), 1–2.
Installation |pypi_version| |python_versions| |pypi_license|
------------------------------------------------------------
PyBEL can be installed easily from `PyPI <https://pypi.python.org/pypi/pybel>`_ with the following code in
your favorite shell:
.. code-block:: sh
$ pip install pybel
or from the latest code on `GitHub <https://github.com/pybel/pybel>`_ with:
.. code-block:: sh
$ pip install git+https://github.com/pybel/pybel.git
See the `installation documentation <https://pybel.readthedocs.io/en/latest/introduction/installation.html>`_ for more advanced
instructions. Also, check the change log at `CHANGELOG.rst <https://github.com/pybel/pybel/blob/master/CHANGELOG.rst>`_.
Getting Started
---------------
More examples can be found in the `documentation <http://pybel.readthedocs.io>`_ and in the
`PyBEL Notebooks <https://github.com/pybel/pybel-notebooks>`_ repository.
Compiling and Saving a BEL Graph
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This example illustrates how the a BEL document from the `Human Brain Pharmacome
<https://raw.githubusercontent.com/pharmacome/conib>`_ project can be loaded and compiled directly from GitHub.
.. code-block:: python
>>> import pybel
>>> url = 'https://raw.githubusercontent.com/pharmacome/conib/master/hbp_knowledge/proteostasis/kim2013.bel'
>>> graph = pybel.from_bel_script_url(url)
Other functions for loading BEL content from many formats can be found in the
`I/O documentation <https://pybel.readthedocs.io/en/latest/reference/io.html>`_.
Note that PyBEL can handle `BEL 1.0 <https://github.com/OpenBEL/language/raw/master/docs/version_1.0/bel_specification_version_1.0.pdf>`_
and `BEL 2.0+ <https://github.com/OpenBEL/language/raw/master/docs/version_2.0/bel_specification_version_2.0.pdf>`_
simultaneously.
After you have a BEL graph, there are numerous ways to save it. The ``pybel.dump`` function knows
how to output it in many formats based on the file extension you give. For all of the possibilities,
check the `I/O documentation <https://pybel.readthedocs.io/en/latest/reference/io.html>`_.
.. code-block:: python
>>> import pybel
>>> graph = ...
>>> # write as BEL
>>> pybel.dump(graph, 'my_graph.bel')
>>> # write as Node-Link JSON for network viewers like D3
>>> pybel.dump(graph, 'my_graph.bel.nodelink.json')
>>> # write as GraphDati JSON for BioDati
>>> pybel.dump(graph, 'my_graph.bel.graphdati.json')
>>> # write as CX JSON for NDEx
>>> pybel.dump(graph, 'my_graph.bel.cx.json')
>>> # write as INDRA JSON for INDRA
>>> pybel.dump(graph, 'my_graph.indra.json')
Summarizing the Contents of the Graph
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``BELGraph`` object has several "dispatches" which are properties that organize its various functionalities.
One is the ``BELGraph.summarize`` dispatch, which allows for printing summaries to the console.
These examples will use the `RAS Model <https://emmaa.indra.bio/dashboard/rasmodel?tab=model>`_ from EMMAA,
so you'll have to be sure to ``pip install indra`` first. The graph can be acquired and summarized with
``BELGraph.summarize.statistics()`` as in:
.. code-block:: python
>>> import pybel
>>> graph = pybel.from_emmaa('rasmodel', date='2020-05-29-17-31-58') # Needs
>>> graph.summarize.statistics()
--------------------- -------------------
Name rasmodel
Version 2020-05-29-17-31-58
Number of Nodes 126
Number of Namespaces 5
Number of Edges 206
Number of Annotations 4
Number of Citations 1
Number of Authors 0
Network Density 1.31E-02
Number of Components 1
Number of Warnings 0
--------------------- -------------------
The number of nodes of each type can be summarized with ``BELGraph.summarize.nodes()`` as in:
.. code-block:: python
>>> graph.summarize.nodes(examples=False)
Type (3) Count
------------ -------
Protein 97
Complex 27
Abundance 2
The number of nodes with each namespace can be summarized with ``BELGraph.summarize.namespaces()`` as in:
.. code-block:: python
>>> graph.summarize.namespaces(examples=False)
Namespace (4) Count
--------------- -------
HGNC 94
FPLX 3
CHEBI 1
TEXT 1
The edges can be summarized with ``BELGraph.summarize.edges()`` as in:
.. code-block:: python
>>> graph.summarize.edges(examples=False)
Edge Type (12) Count
--------------------------------- -------
Protein increases Protein 64
Protein hasVariant Protein 48
Protein partOf Complex 47
Complex increases Protein 20
Protein decreases Protein 9
Complex directlyIncreases Protein 8
Protein increases Complex 3
Abundance partOf Complex 3
Protein increases Abundance 1
Complex partOf Complex 1
Protein decreases Abundance 1
Abundance decreases Protein 1
Grounding the Graph
~~~~~~~~~~~~~~~~~~~
Not all BEL graphs contain both the name and identifier for each entity. Some even use non-standard prefixes
(also called **namespaces** in BEL). Usually, BEL graphs are validated against controlled vocabularies,
so the following demo shows how to add the corresponding identifiers to all nodes.
.. code-block:: python
from urllib.request import urlretrieve
url = 'https://github.com/cthoyt/selventa-knowledge/blob/master/selventa_knowledge/large_corpus.bel.nodelink.json.gz'
urlretrieve(url, 'large_corpus.bel.nodelink.json.gz')
import pybel
graph = pybel.load('large_corpus.bel.nodelink.json.gz')
import pybel.grounding
grounded_graph = pybel.grounding.ground(graph)
Note: you have to install ``pyobo`` for this to work and be running Python 3.7+.
Displaying a BEL Graph in Jupyter
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After installing ``jinja2`` and ``ipython``, BEL graphs can be displayed in Jupyter notebooks.
.. code-block:: python
>>> from pybel.examples import sialic_acid_graph
>>> from pybel.io.jupyter import to_jupyter
>>> to_jupyter(sialic_acid_graph)
Using the Parser
~~~~~~~~~~~~~~~~
If you don't want to use the ``pybel.BELGraph`` data structure and just want to turn BEL statements into JSON
for your own purposes, you can directly use the ``pybel.parse()`` function.
.. code-block:: python
>>> import pybel
>>> pybel.parse('p(hgnc:4617 ! GSK3B) regulates p(hgnc:6893 ! MAPT)')
{'source': {'function': 'Protein', 'concept': {'namespace': 'hgnc', 'identifier': '4617', 'name': 'GSK3B'}}, 'relation': 'regulates', 'target': {'function': 'Protein', 'concept': {'namespace': 'hgnc', 'identifier': '6893', 'name': 'MAPT'}}}
This functionality can also be exposed through a Flask-based web application with ``python -m pybel.apps.parser`` after
installing ``flask`` with ``pip install flask``. Note that the first run requires about a ~2 second delay to generate
the parser, after which each parse is very fast.
Using the CLI
~~~~~~~~~~~~~
PyBEL also installs a command line interface with the command :code:`pybel` for simple utilities such as data
conversion. In this example, a BEL document is compiled then exported to `GraphML <http://graphml.graphdrawing.org/>`_
for viewing in Cytoscape.
.. code-block:: sh
$ pybel compile ~/Desktop/example.bel
$ pybel serialize ~/Desktop/example.bel --graphml ~/Desktop/example.graphml
In Cytoscape, open with :code:`Import > Network > From File`.
Contributing
------------
Contributions, whether filing an issue, making a pull request, or forking, are appreciated. See
`CONTRIBUTING.rst <https://github.com/pybel/pybel/blob/master/CONTRIBUTING.rst>`_ for more information on getting
involved.
Acknowledgements
----------------
Support
~~~~~~~
The development of PyBEL has been supported by several projects/organizations (in alphabetical order):
- `The Cytoscape Consortium <https://cytoscape.org/>`_
- `Enveda Biosciences <https://envedabio.com/>`_
- `Fraunhofer Center for Machine Learning <https://www.cit.fraunhofer.de/de/zentren/maschinelles-lernen.html>`_
- `Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) <https://www.scai.fraunhofer.de>`_
- `Harvard Program in Therapeutic Science - Laboratory of Systems Pharmacology <https://hits.harvard.edu/the-program/laboratory-of-systems-pharmacology>`_
- `University of Bonn <https://www.uni-bonn.de>`_
Funding
~~~~~~~
- DARPA Young Faculty Award W911NF2010255 (PI: Benjamin M. Gyori).
- The `European Union <https://europa.eu>`_, `European Federation of Pharmaceutical Industries and Associations
(EFPIA) <https://www.efpia.eu/>`_, and `Innovative Medicines Initiative <https://www.imi.europa.eu>`_ Joint
Undertaking under `AETIONOMY <https://www.aetionomy.eu/>`_ [grant number 115568], resources of which
are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and
EFPIA companies in kind contribution.
Logo
~~~~
The PyBEL `logo <https://github.com/pybel/pybel-art>`_ was designed by `Scott Colby <https://github.com/scolby33>`_.
.. |build| image:: https://github.com/pybel/pybel/workflows/Tests/badge.svg
:target: https://github.com/pybel/pybel/actions
:alt: Build Status
.. |coverage| image:: https://codecov.io/gh/pybel/pybel/coverage.svg?branch=develop
:target: https://codecov.io/gh/pybel/pybel/branch/develop
:alt: Development Coverage Status
.. |documentation| image:: https://readthedocs.org/projects/pybel/badge/?version=latest
:target: http://pybel.readthedocs.io/en/latest/
:alt: Development Documentation Status
.. |climate| image:: https://codeclimate.com/github/pybel/pybel/badges/gpa.svg
:target: https://codeclimate.com/github/pybel/pybel
:alt: Code Climate
.. |python_versions| image:: https://img.shields.io/pypi/pyversions/PyBEL.svg
:target: https://pypi.python.org/pypi/pybel
:alt: Stable Supported Python Versions
.. |pypi_version| image:: https://img.shields.io/pypi/v/PyBEL.svg
:target: https://pypi.python.org/pypi/pybel
:alt: Current version on PyPI
.. |pypi_license| image:: https://img.shields.io/pypi/l/PyBEL.svg
:target: https://github.com/pybel/pybel/blob/master/LICENSE
:alt: MIT License
.. |zenodo| image:: https://zenodo.org/badge/68376693.svg
:target: https://zenodo.org/badge/latestdoi/68376693
.. |bioregistry| image:: https://img.shields.io/static/v1?label=Powered%20by&message=Bioregistry&color=BA274A&style=flat&logo=image/png;base64,iVBORw0KGgoAAAANSUhEUgAAACgAAAAoCAYAAACM/rhtAAAACXBIWXMAAAEnAAABJwGNvPDMAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAACi9JREFUWIWtmXl41MUZxz/z291sstmQO9mQG0ISwHBtOOSwgpUQhApWgUfEowKigKI81actypaqFbWPVkGFFKU0Vgs+YgvhEAoqEUESrnDlEEhCbkLYJtlkk9399Y/N/rKbzQXt96+Zed+Z9/t7Z+adeecnuA1s5yFVSGrLOAf2qTiEEYlUZKIAfYdKE7KoBLkQSc4XgkPfXxz/owmT41ZtiVtR3j94eqxQq5aDeASIvkVb12RBtt0mb5xZsvfa/5XgnqTMcI3Eq7IQjwM+7jJJo8YvNhK/qDBUOl8A7JZWWqqu01Jeg6Pd1nW4NuBjjax6eWrRruv/M8EDqTMflmXeB0Jcbb6RIRhmTCJ0ymgC0wYjadTd9nW0tWMu+In63NNU7c3FWtvgJpXrZVlakVGU8/ltEcwzGjU3miI/ABa72vwTB5K45AEi7x2PUEl9fZsHZLuDmgPHuLJpJ82lle6iTSH6mpXp+fnt/Sa4yzhbp22yfwFkgnMaBy17kPhFmQh1997qLxztNkq35XB505fINtf0iz1WvfTQ7Pxdlj4Jdnjuny5yvpEhjHh7FQOGD/YyZi4owS86HJ+QQMDpJaBf3jUXlHD21+8q0y4LDppV/vfNO7+jzV3Pa6SOac0E8I8fSPonpm7JAVR+eRhzwU/Ofj+e49tpT/HdtGXcyLvQJ8HAtCTGfmJCF2dwfpTMz4NszX/uqqdyr+xPyVwoEK+C03PGrDX4GkJ7NBJ+txH/hCgAit7cRlNxOY62dmzmZgwzJvZJUh2gI/xnRmoOHsfe3AqQ/kho0qXs+pLzLh3FgwdT54YKxLsAQq0mbf1zHuTsltZejemHJSrlgGGDPGTXc09zdM5qTi59jZbKOg+Zb1QYI95+XokEQogPDifPDnPJFQ8uCkl8FyGmACQtn4dhxp3KINX7jnHi0ZeJnT8dla8Plbu+48zzfyJ08kh8ggIACB4zlIAhsURm3EnML6eB6Fzep1a+SUt5DS2VddTs+4GQccPRhgV1kowIQRaChhMXAPxkIev/Vl+8R/HgnqTMmI4gjH/iQOIXZSqdzQUlXDB9RPyi+1DrdVx67WMursvCkDERXYxB0ROSIOKecURMG+tBzkXAhbYbZk6teNPLkwmPzUIX71wuMiw+MHx2nEJQrWIFHSdE4pIHlFDisLZxYe1HhIwfTtLK+RSu30rVnlxGvrOapOcW9DsW3vH6CgKS4zxIXlz3Fw8dSaMmcfEcV9XHYbc/DSCZMEkgFoJzY0TeO17pVL7jANbaBoauWUJlTi4VOw+T9sazBKYl0ZB/qV/kALThQRi3vOJB0lpzw0vPMONOtOHOqRcyi7bzkEqanJo3HogBMGROUrziaGundGsOsQsyUPn6UPx2NvELZxIybhinn3uLyx9uVwaW7XbqjxdQmr2X0uy93Dh+Dtlu9zCu9vdj1PsvEWwcii7OwJAXFnoRFCoVhoxJrmr0gOQWo9qBfaorXodOHq0o1x8roN3cSMyC6ZT942uQBIlL53Jl804sV6oY9/fXAGg4WcjFdZuxlFV7GNPFRzFs7VKCRiV7ejJrTa/eDr1rFKXZOQCocEyTgHQAyUdD4B2d4cF8pohg4zC0YUFU7z5C9Jy7sVvbKPtsH6GT0tCGBtFwspBTz/zRixyApbSKk8te5+aZ4l4JdUVQWpIScmQhjGocUjJCRhcTieSjURQTF89FtttpuVaLpaya8Knp1B3OQ5Zlag/nU//9cmScS6EnONrauWjazIQv3kCoVD3quUPS+uAXHU7z1SpATpEQchSA78AwD0WVnxa1XkdjURlCJRGQHMfN/EuEjk9jyr4NRN47Hltjc58Gm0sraTjZ/w3l5BLuKkZJdFzT1f5+3Sq3NZjRDNAjaX1orb2BX2wEmkA9fvGGbvW7Q+OlUu+2wlIqdx+h3dzkJVPrda5iQJ93p+DRqcQ/PhsAw8xJ6AfHdkhuIVvoEribLl/jxKOv4Gi34T8omgnb1yOk7sdTA01AiK3J6yoGgP+gaPwHOdOP6LlTlXb3mNYXAlI8da9/e0pJBZovV2BrakYzQK/I3bg0SsiiCqClqs/0wAPB6UOVo6k3+CdEETwm1aPtP+dLlLJPSKAHOYDWCoVLlYTkKAKcCU4vO7IrhErFsLVLPXZ+V0haDcN+v8xjB9strdQfPavUA0ckefRxWNuwVNS6rBRKQB44r+Lmc5f7TRAgaFQyYzb9Dv/4gd18ASQ8/gsC0zwJNJVcw97aeWmOcDtaAW6eLXZLBchTC8EhWXbW6o+cInhMipetuu9OUvTWNnwNodzx+krlvAQIGjmECV+spyH/Ak3F5QDok+OoPXicip2HiJiWTuH6rQx6eh7BxlT0STH4xUbSUl6Df/xAIqaO9bBVn3taKUuy/ZAwYZImpvx4FYjVRgQzOec9r1vK0TmrldMiIDkO45ZXegxLLrRW13P0/heQHQ4CUhIYvfElNIHOtWaztNJ4qZQBqfFKLg3OMz135rNY624ClB0tHJcomTA5ZMGnANbaBmoOHPMy5hvZebNuLCoj71frXIN0i9pDJzj24IsIlUTCo7NI3/KyQg5ArfMleEyKBzmA6r1HO8eV+dSEySEB2G3yRpwZP1c2f+n1GjB07RIlcwNoKi7j3G839EhQF2cg6fmHmbznPRKevJ/GorIedV1wtLVzJesrV9WqQtoIHRfWjreSjwGar1ZRui3Ho7PfwHBGb3jRg6S1roGeoIuNJGBIPKV/zSF31irOrn4HXAu9B1zduhtLecelQxZZ9xTtrgC342Df8IwQyaYqBMKEWo0xaw1BI4d4DNJSWcfF32fRWnuD5NWPEDZ5lIe8NDuHq1v+ha2xGdkho4szYJg1hbj501EH6OgJ5oIS8hf/oWPm5HqNrE51vdt4nC/7k+9bIIT8GYA2Ipixn5jwjQrrZsju0XT5GubTRfiEBqFPisUvOrzPPi0VdeQ9YcJ63bWmxbzphTk7XHKvA/DrlJkfAU+Bcy2N+fA3vZK0WVoxny4idOKIfn+IO7lTz7zRObWCjdMv7VnhruOV9dws9F8u4CsAS1k1J54wYS4o6arWaaS8hvLP998yuZtnisl7wuROLkdjsKzqqtfL45FjB8gzwZnIJy6dS8Jjs3p8ausvHG3tXN26mytZO5W8Rcjsbg1Qze/X45ELHY9I7wHLXG26+CgSl8zFkDGh3zdkF2S7nep9PzhzmnK3FEGwUWOwrJr6zTdeL529EnRhf3LmfCHEBkBZiNrwIAwZkwi9a5Qzh9D6dNvXYW3jZkEJ9UdOOYPwdY/gXgdiufuGuC2C4Hy3kWXrOhmeBLQeA6jV6GLC8Y0KR613Hn+2phZaK69jqah1P/hdsCKLLIfGtnbG+f3eyfHtEHTh38mzom2SY4WQWQjE9tnBE+XIZKuQNrqCcH9wSwRdMGGSJiTnpatwTJOFMIKcgvPVX/kNIcM1gSgC8iTZfii3aEL+7fyG+C+6O8izl1GE5gAAAABJRU5ErkJggg==
:target: https://github.com/biopragmatics/bioregistry
:alt: Powered by the Bioregistry
.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Code style: black
|