1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
#-*- coding:utf-8 -*-
# Pybik -- A 3 dimensional magic cube game.
# Copyright © 2009-2012 B. Clausius <barcc@gmx.de>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Ported from GNUbik
# Original filename: cube.c
# Original copyright and license: 1998, 2003, 2004 Dale Mellor, John Darrington, GPL3+
# This line makes pyrex happy
global __name__, __file__, __package__
import cython
#pxd from gl cimport *
#pxd from math cimport *
#px-2
from OpenGL.GL import glGetFloatv, GL_PROJECTION_MATRIX
from math import atan2, pi as M_PI
from debug import debug
debug('Importing module:', __name__)
debug(' from package:', __package__)
debug(' compiled:', cython.compiled)
#pxd cdef enum:
#pxd MATRIX_DIM = 4
#px-
MATRIX_DIM = 4
# Unique identifiers for the faces, which can be used to populate a
# bit-field.
#pxd cdef enum:
#pxd FACE_0 = (0x01 << 0)
#pxd FACE_1 = (0x01 << 1)
#pxd FACE_2 = (0x01 << 2)
#pxd FACE_3 = (0x01 << 3)
#pxd FACE_4 = (0x01 << 4)
#pxd FACE_5 = (0x01 << 5)
#px-
FACE_0, FACE_1, FACE_2, FACE_3, FACE_4, FACE_5 = [0x01 << __i for __i in range(6)]
# Is the cube solved?
#typedef enum _Cube_Status { NOT_SOLVED=0, SOLVED, HALF_SOLVED } Cube_Status;
NOT_SOLVED = 0
SOLVED = 1
HALF_SOLVED = 2
#pxd ctypedef float Point[4]
#pxd ctypedef float Vector[4]
#pxd ctypedef Vector* p_Vector
#pxd ctypedef Vector Matrix[4]
#px-4
Point = lambda: [0] * MATRIX_DIM
Vector = Point
p_Vector = None
Matrix = lambda: [Vector() for unused_i in range(MATRIX_DIM)]
#pxd cdef struct Face:
#pxd Vector quadrants[4]
#pxd Vector normal
#pxd Point centre
#pxd ctypedef Face *p_Face
#px-2
class Face:
def __init__(self):
# An array of vectors showing the orientation of the blocks. There are four
# vectors per face. These are used to orientate the mouse pointer, to
# detect when the cube has been solved and to provide feedback to clients
# querying the state.
#px-
self.quadrants = [Vector() for __i in xrange(4)]
# The normal vector is orthogonal to the face of the block. When all
# normals are in the same direction, the cube colours are correct, but not
# necessarily their orientations.
#px-
self.normal = Vector()
# The position of the centre of the face, relative to the centre of the
# block.
#px-
self.centre = Point()
#pxd cdef struct Block:
#pxd int visible_faces
#pxd Face face[6]
#pxd Matrix transformation
#pxd int in_motion
#pxd ctypedef Block *p_Block
#px-
p_Block = None
#px-2
class Block:
def __init__(self):
# Bit-field indicating which faces are on the surface of the cube, and
# should therefore be rendered to the framebuffer.
#px-
self.visible_faces = 0 # int
# A set of attributes for each face (including internal ones!)
#px-
self.face = [Face() for __i in xrange(6)]
# The position from the centre of the cube, and the rotation from the
# 'natural' position (note that the location vector is accessed as
# transformation+12).
#px-2
self.transformation = Matrix() # Matrix
self.in_motion = False
#pxd cdef enum:
#pxd MAX_BLOCKS = 1000
#px-
MAX_BLOCKS = 10**3
#pxd cdef struct _Cube:
#pxd unsigned int dimension
#pxd unsigned int dimension2
#pxd unsigned int number_blocks
#pxd Block blocks[MAX_BLOCKS]
#px-3
class _Cube:
dimension = dimension2 = number_blocks = None
blocks = []
_cube = cython.declare(_Cube)
#px-
_cube = _Cube
#TODO: remove
#pxd cdef _Cube* get_cube()
def get_cube():
#px-
return _cube
return cython.address(_cube)
def get_cube_dimension():
return _cube.dimension
def set_cube_dimension(cube_size):
cython.declare(
block = p_Block,
i = cython.int)
if cube_size == 0:
return
# The number of blocks per side of the cube.
_cube.dimension = cube_size
_cube.dimension2 = _cube.dimension * _cube.dimension
# _cube.dimension ** 3
_cube.number_blocks = _cube.dimension2 * _cube.dimension
assert _cube.number_blocks <= MAX_BLOCKS
# A set of attributes for every block (including internal ones!)
#px-
_cube.blocks = [Block() for i in xrange(_cube.number_blocks)]
# Loop over the array of blocks, and initialize each one.
for i in range(_cube.number_blocks):
# Flagging only certain faces as visible allows us to avoid rendering
# invisible surfaces, thus slowing down animation.
_cube.blocks[i].visible_faces = int(
FACE_0 * int(0 == i / _cube.dimension2)
+ FACE_1 * int(_cube.dimension - 1 == i / _cube.dimension2)
+ FACE_2 * int(0 == i / _cube.dimension % _cube.dimension)
+ FACE_3 * int(_cube.dimension - 1 == i / _cube.dimension % _cube.dimension)
+ FACE_4 * int(0 == i % _cube.dimension)
+ FACE_5 * int(_cube.dimension - 1 == i % _cube.dimension)
)
# Initialize all transformations to the identity matrix, then set the
# translation part to correspond to the initial position of the block.
for ky in range(3):
for kx in range(4):
_cube.blocks[i].transformation[ky][kx] = 0.0
for kx in range(4):
_cube.blocks[i].transformation[kx][kx] = 1.0
_cube.blocks[i].transformation[3][0] = block_index_to_coords (i % _cube.dimension)
_cube.blocks[i].transformation[3][1] = block_index_to_coords ((i / _cube.dimension) %
_cube.dimension)
_cube.blocks[i].transformation[3][2] = block_index_to_coords ((i / _cube.dimension2) %
_cube.dimension)
# Set all the face centres.
#px-2
for j in range(6):
_cube.blocks[i].face[j].centre = [0, 0, 0, 0]
_cube.blocks[i].face[0].centre[0] = 0.0
_cube.blocks[i].face[0].centre[1] = 0.0
_cube.blocks[i].face[0].centre[2] = -1.0
_cube.blocks[i].face[0].centre[3] = 0.0
_cube.blocks[i].face[1].centre[0] = 0.0
_cube.blocks[i].face[1].centre[1] = 0.0
_cube.blocks[i].face[1].centre[2] = 1.0
_cube.blocks[i].face[1].centre[3] = 0.0
_cube.blocks[i].face[2].centre[0] = 0.0
_cube.blocks[i].face[2].centre[1] = -1.0
_cube.blocks[i].face[2].centre[2] = 0.0
_cube.blocks[i].face[2].centre[3] = 0.0
_cube.blocks[i].face[3].centre[0] = 0.0
_cube.blocks[i].face[3].centre[1] = 1.0
_cube.blocks[i].face[3].centre[2] = 0.0
_cube.blocks[i].face[3].centre[3] = 0.0
_cube.blocks[i].face[4].centre[0] = -1.0
_cube.blocks[i].face[4].centre[1] = 0.0
_cube.blocks[i].face[4].centre[2] = 0.0
_cube.blocks[i].face[4].centre[3] = 0.0
_cube.blocks[i].face[5].centre[0] = 1.0
_cube.blocks[i].face[5].centre[1] = 0.0
_cube.blocks[i].face[5].centre[2] = 0.0
_cube.blocks[i].face[5].centre[3] = 0.0
_cube.blocks[i].in_motion = 0
# Cube co-ordinates have their origin at the centre of the cube, and their
# units are equivalent to one half of the length of one edge of a block.
def block_index_to_coords(i):
return float(2 * i - _cube.dimension + 1)
#def block_coords_to_index(i):
# return int((i + _cube.dimension - 1) / 2.0)
# Utility function to fetch a particular face of the cube.
#pxd cdef p_Face get_faces(int block)
def get_faces(block):
return _cube.blocks[block].face
# Cube co-ordinates have their origin at the centre of the cube, and their
# units are equivalent to one half of the length of one edge of a block.
# This func initialises the positions of the blocks which comprise the cube.
# The enumeration scheme I have chosen goes around four surfaces of the cube,
# then fills in the ends. Thus, for a 4x4x4 cube it looks like:
#
# ----------------------------------------------------------------------------
# View this diagram with 132 coloumns!
#
# | 60 | 61 | 62 | 63 |
# | 44 | 45 | 46 | 47 | | 56 | 57 | 58 | 59 |
# | 28 | 29 | 30 | 31 | | 40 | 41 | 42 | 43 | | 52 | 53 | 54 | 55 |
# | 12 | 13 | 14 | 15 | | 24 | 25 | 26 | 27 | | 36 | 37 | 38 | 39 | | 48 | 49 | 50 | 51 |
# | 8 | 9 | 10 | 11 | | 20 | 21 | 22 | 23 | | 32 | 33 | 34 | 35 |
# | 4 | 5 | 6 | 7 | | 16 | 17 | 18 | 19 |
# | 0 | 1 | 2 | 3 |
def set_animation_blocks(blocks):
cython.declare(
i = cython.int)
for i in blocks:
_cube.blocks[i].in_motion = 1
#pxd cdef bint vectors_equal(float *v1, float *v2)
def vectors_equal(v1, v2):
i = cython.declare(cython.int)
for i in range(MATRIX_DIM):
if v1[i] != v2[i]:
return False
return True
#********************
#* The cube is solved iff for all faces the quadrant vectors point in the same
#* direction. If however all the normals point in the same direction, but the
#* quadrants do not, then the colours are all on the right faces, but not
#* correctly orientated.
#******
def cube_status_check():
cython.declare(
face = cython.int,
v0 = cython.p_float,
v1 = cython.p_float,
q0 = cython.p_float,
q1 = cython.p_float,
i = cython.int)
q0 = cython.NULL
q1 = cython.NULL
# Find out if the cube is at least half solved (the colours are right, but
# some orientations are wrong (this can be seen on a face away from an edge
# of the cube with a pixmap on it). If the cube is not at least
# half-solved, then it is definitely unsolved and this value is
# returned.
for face in range(6):
mask = 0x01 << face
x = 0
for i in range(_cube.number_blocks-1, -1, -1):
if _cube.blocks[i].visible_faces & mask:
v0 = get_faces(i)[face].normal
if x == 0:
q0 = v0
x = x+1
else:
if not vectors_equal(q0, v0):
return NOT_SOLVED
# The cube is at least half-solved. Check if it is fully solved by checking
# the alignments of all the quadrant vectors. If any are out, then return
# the half-solved status to the caller. Note that it is only necessary to
# check two perpendicular quadrant vectors.
for face in range(6):
mask = 0x01 << face
x = 0
for i in range(_cube.number_blocks-1, -1, -1):
# Ignore faces which are inside the cube.
if _cube.blocks[i].visible_faces & mask:
v0 = get_faces(i)[face].quadrants[0]
v1 = get_faces(i)[face].quadrants[1]
if x == 0:
q0 = v0
q1 = v1
x = x+1
elif not vectors_equal(q0, v0) or not vectors_equal(q1, v1):
return HALF_SOLVED
# Cube is fully solved.
return SOLVED
#********************
#* Cube accessor method.
#******
#pxd cdef bint is_face_visible(int block, int face)
def is_face_visible(block, face):
return _cube.blocks[block].visible_faces & (0x01 << face)
#********************
#* Get the transformation of block number `block_id' from the origin, and store
#* it in transform.
#******
#pxd cdef Vector* _get_block_transform(int block_id)
def _get_block_transform(block_id):
return _cube.blocks[block_id].transformation
#********************
#pxd cdef void init_vector(float *v, w)
def init_vector(v, w):
cython.declare(k = cython.int)
for k in range(len(w)):
v[k] = w[k]
#pxd cdef void init_listuc_range(int i, int j, unsigned char *v, w)
def init_listuc_range(i, j, v, w):
cython.declare(k = cython.int)
for k in range(i, j):
v[k] = w[k-i]
#pxd cdef void init_listf_range(int i, int j, float *v, w)
def init_listf_range(i, j, v, w):
cython.declare(k = cython.int)
for k in range(i, j):
v[k] = w[k-i]
#pxd cdef void init_turn_axes_4(Vector *v, w1, w2, w3, w4)
def init_turn_axes_4(v, w1, w2, w3, w4):
init_vector(v[0], w1)
init_vector(v[1], w2)
init_vector(v[2], w3)
init_vector(v[3], w4)
#pxd ctypedef Vector turn_axes_t[6][4]
#pxd ctypedef Vector turn_axes_center_t[6]
#px-
turn_axes_t = turn_axes_center_t = None
cython.declare(turn_axes = turn_axes_t, turn_axes_center = turn_axes_center_t)
#px-2
turn_axes = [Matrix() for __i in range(6)]
turn_axes_center = [Vector() for __i in range(6)]
turn_axesX = [ 1, 0, 0, 0]
turn_axes_X = [-1, 0, 0, 0]
turn_axesY = [ 0, 1, 0, 0]
turn_axes_Y = [ 0,-1, 0, 0]
turn_axesZ = [ 0, 0, 1, 0]
turn_axes_Z = [ 0, 0,-1, 0]
init_turn_axes_4(turn_axes[0], turn_axes_Y, turn_axesX, turn_axesY, turn_axes_X)
init_turn_axes_4(turn_axes[1], turn_axesY, turn_axesX, turn_axes_Y, turn_axes_X)
init_turn_axes_4(turn_axes[2], turn_axesZ, turn_axesX, turn_axes_Z, turn_axes_X)
init_turn_axes_4(turn_axes[3], turn_axes_Z, turn_axesX, turn_axesZ, turn_axes_X)
init_turn_axes_4(turn_axes[4], turn_axes_Y, turn_axes_Z, turn_axesY, turn_axesZ)
init_turn_axes_4(turn_axes[5], turn_axesY, turn_axes_Z, turn_axes_Y, turn_axesZ)
init_vector(turn_axes_center[0], turn_axesZ)
init_vector(turn_axes_center[1], turn_axes_Z)
init_vector(turn_axes_center[2], turn_axesY)
init_vector(turn_axes_center[3], turn_axes_Y)
init_vector(turn_axes_center[4], turn_axesX)
init_vector(turn_axes_center[5], turn_axes_X)
# Convert a vector to a axis number. Obviously this assumes the vector
#is orthogonal to the frame of reference ( another nasty kludge ).
#pxd cdef int get_turn_axis(float* vector)
def get_turn_axis(vector):
if vector[0] != 0: return 0
elif vector[1] != 0: return 1
else: return 2
#pxd cdef int get_turn_slice(int block, int axis)
def get_turn_slice(block, axis):
slice_ = int(_cube.blocks[block].transformation[3][axis])
slice_ = (slice_ + _cube.dimension - 1) // 2
return slice_
# return the turn direction, based upon the turn axis vector
#pxd cdef int get_turn_dir(float* vector)
def get_turn_dir(vector):
# This is a horrendous kludge. It works only because we know that
# vector is arithemtically very simple
return vector[0] + vector[1] + vector[2] > 0
def get_selected_move(block, face, quadrant):
cython.declare(
vector = Vector,
pv = cython.p_float,
t = p_Vector)
#px-
vector = Vector()
# Determine the axis about which to rotate the slice, from the objects
# selected by the cursor position
# Each edge (quadrant) on a block represents a different axis
# Select the untransformed vector for the selected edge
pv = turn_axes[face][quadrant]
# Fetch the selected block's transformation from its original orientation
t = _get_block_transform(block)
# transform it, so that we go the right way
transform(vector, t, pv)
axis = get_turn_axis(vector)
slice_ = get_turn_slice(block, axis)
dir_ = get_turn_dir(vector)
return axis, slice_, dir_
def get_selected_move_center(block, face):
cython.declare(
vector = Vector,
pv = cython.p_float,
t = p_Vector)
#px-
vector = Vector()
pv = turn_axes_center[face]
# Fetch the selected block's transformation from its original orientation
t = _get_block_transform(block)
# transform it, so that we go the right way
transform(vector, t, pv)
axis = get_turn_axis(vector)
slice_ = get_turn_slice(block, axis)
dir_ = get_turn_dir(vector)
return axis, slice_, dir_
#pxd cdef inline p_Vector glGetProjectionMatrix(p_Vector m):
#pxd glGetFloatv(GL_PROJECTION_MATRIX, <float*>m)
#pxd return m
#px-
def glGetProjectionMatrix(unused_m): return glGetFloatv(GL_PROJECTION_MATRIX)
def get_cursor_angle(block, face, quadrant):
# Here we take the orientation of the selected quadrant and multiply it
# by the projection matrix. The result gives us the angle (on the screen)
# at which the mouse cursor needs to be drawn.
cython.declare(
proj = Matrix,
proj_ = p_Vector,
v1 = cython.p_float,
v2 = Vector)
#px-2
proj = None
v2 = Vector()
proj_ = glGetProjectionMatrix(proj)
v1 = get_faces(block)[face].quadrants[quadrant]
transform(v2, proj_, v1)
return atan2(v2[0], v2[1]) * 180.0 / M_PI
# Pre-multiply a point or vector x, by matrix M
#pxd cdef void transform(Vector q, Matrix M, Vector x)
def transform(q, M, x):
cython.declare(
i = cython.int,
j = cython.int,
f = cython.float)
#px-
q[:] = [0] * MATRIX_DIM
for i in range(MATRIX_DIM):
q[i] = 0
for j in range(MATRIX_DIM):
q[i] += M[j][i] * x[j]
def cube_set_blocks(blocks):
cython.declare(
b = cython.int,
i = cython.int,
j = cython.int)
for b in range(_cube.number_blocks):
for i in range(4):
for j in range(4):
_cube.blocks[b].transformation[i][j] = float(blocks[b][i][j])
|