1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
# -*- coding: utf-8 -*-
# Copyright © 2013-2017 B. Clausius <barcc@gmx.de>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from collections import deque
from math import atan2, sin, cos, pi, sqrt
import weakref
import itertools
import pybiklib.utils
from pybiklib.utils import epsdigits, epsilon
sid_cache = weakref.WeakKeyDictionary()
def roundeps(val):
return round(val, epsdigits+1)
class Vector (pybiklib.utils.Vector):
def rounded(self):
return self.__class__(roundeps(s) for s in self)
def scaled(self, vector):
return self.__class__(s*v for s,v in zip(self, vector))
def equalfuzzy(self, other):
return all((-epsilon<s<epsilon) for s in self-other)
def inversfuzzy(self, other): return (self+other).length_squared() < epsilon
@classmethod
def polygon(cls, point, n):
x0, y0 = point
yield x0, y0
r = cls(point).length()
angle0 = atan2(y0, x0)
angled = 2 * pi / n
for k in range(1, n):
angle = angle0 + k * angled
yield r * cos(angle), r * sin(angle)
def distance_axis_vert(axis, vert):
''' axis: vector that defines a line through (0,0,0)
return: the shortest distance between axis and vert
'''
axis = Vector(axis)
base_point = axis * vert.point.dot(axis) / axis.dot(axis)
return (vert.point - base_point).length()
def distance_axis_edge(axis, verts):
''' axis: vector that defines a line through (0,0,0)
verts: two points that define a line segment
return: the shortest distance between axis and edge
'''
vec_axis = axis # S1.P1 - S1.P0, S1.P0 == (0,0,0)
vec_edge = verts[1].point - verts[0].point # S2.P1 - S2.P0
vec_vert0 = -verts[0].point # S1.P0 - S2.P0
a = vec_axis.dot(vec_axis) # always >= 0
b = vec_axis.dot(vec_edge)
c = vec_edge.dot(vec_edge) # always >= 0
d = vec_axis.dot(vec_vert0)
e = vec_edge.dot(vec_vert0)
D = a*c - b*b # always >= 0
sD = D # sc = sN / sD, default sD = D >= 0
tD = D # tc = tN / tD, default tD = D >= 0
# compute the line parameters of the two closest points
if D < epsilon: # the lines are almost parallel
sN = 0.0 # force using point P0 on segment S1
sD = 1.0 # to prevent possible division by 0.0 later
tN = e
tD = c
else: # get the closest points on the infinite lines
sN = b*e - c*d
tN = a*e - b*d
if tN < 0.0: # tc < 0 => the t=0 edge is visible
tN = 0.0
# recompute sc for this edge
sN = -d
sD = a
elif tN > tD: # tc > 1 => the t=1 edge is visible
tN = tD
# recompute sc for this edge
sN = (-d + b)
sD = a
# finally do the division to get sc and tc
sc = 0.0 if abs(sN) < epsilon else sN / sD
tc = 0.0 if abs(tN) < epsilon else tN / tD
# get the difference of the two closest points
dP = vec_vert0 + (vec_axis * sc) - (vec_edge * tc) # = S1(sc) - S2(tc)
return dP.length() # return the closest distance
class Plane:
def __init__(self, normal):
self.normal = Vector(normal)
self.distance = 0
def __repr__(self):
return '{0}({1.normal}, {1.distance})'.format(self.__class__.__name__, self)
def signed_distance(self, point):
return self.normal.dot(point) - self.distance
def intersect_segment(self, p, q):
pvalue = self.signed_distance(p.point)
qvalue = self.signed_distance(q.point)
if abs(pvalue - qvalue) < epsilon:
return -1, None
if abs(pvalue) < epsilon:
return 0, p
if abs(qvalue) < epsilon:
return 0, q
if pvalue < 0 < qvalue or qvalue < 0 < pvalue:
d = pvalue / (pvalue - qvalue)
return 1, Vert(p.point + (q.point - p.point) * d)
else:
return -1, None
class GeomBase:
def __euler(self):
chars = 'vefc456'
halfsets, fullsets = self.get_all_ldims()
part = lambda c,h,f: ('{}={}'.format(c,f) if h==f else '{}={}/{}'.format(c,f,h))
return ' '.join(part(c,len(hs),len(fs)) for c,hs,fs in zip(chars,halfsets,fullsets))
def __str__(self):
return '{}({})'.format(self.__class__.__name__, self.__euler())
def __repr__(self):
sid = sid_cache.setdefault(self, len(sid_cache))
return '{}({}, {})'.format(self.__class__.__name__, sid, self.__euler())
def clone(self, clone_data):
if id(self) in clone_data:
return
obj = clone_data[id(self)] = self.__class__()
vals = [(attr, getattr(self, attr)) for attr in reversed(self.fields_geom)]
def func(clone_data):
for attr in self.fields_kwarg:
if attr not in self.fields_geom:
setattr(obj, attr, getattr(self, attr))
for attr, val in vals:
if isinstance(val, list):
newval = [clone_data[id(o)] for o in val]
elif val is not None:
newval = clone_data[id(val)]
else:
newval = None
setattr(obj, attr, newval)
for attr, val in vals:
if isinstance(val, list):
for o in val:
yield o.clone
elif val is not None:
yield val.clone
yield func
def center(self):
c = Vector()
for i, v in enumerate(self.verts):
c += v.point
return c / (i+1)
class HalfGeom (GeomBase):
fields_geom = '_ldims', '_hdim', '_fullgeom'
def __init__(self, ldims, fullgeom):
self._ldims = []
for l in ldims:
l.hdim = self
#assert all(l.dim+1==self.dim for l in self._ldims)
self._hdim = None
self._fullgeom = None
self.fullgeom = fullgeom
def assert_valid(self):
assert all(l.dim+1==self.dim for l in self._ldims)
assert all(l._hdim is self for l in self._ldims)
assert self._hdim is None or self in self._hdim._ldims
if self.fullgeom is not None:
assert self.fullgeom.assert_valid()
return True
@property
def fullgeom(self):
return self._fullgeom
@fullgeom.setter
def fullgeom(self, fg):
if self._fullgeom is not None:
self._fullgeom._halfgeoms.remove(self)
self._fullgeom = fg
if fg is not None:
assert self not in fg._halfgeoms
fg._halfgeoms.append(self)
@property
def ldims(self):
return self._ldims
@property
def hdim(self):
return self._hdim
@hdim.setter
def hdim(self, hf):
if self._hdim is not None:
self._hdim._ldims.remove(self)
self._hdim = hf
if hf is not None:
assert self not in hf._ldims
hf._ldims.append(self)
def insert_before(self, hg):
#TODO: try to remove this function, the order shouldnt matter,
# but currently needed to preserve content of model data files
if self._hdim is not None:
self._hdim._ldims.remove(self)
self._hdim = hg._hdim
assert self not in hg._hdim._ldims
i = hg._hdim._ldims.index(hg) or len(hg._hdim._ldims)
hg._hdim._ldims.insert(i, self)
def insert_after(self, hg):
#TODO: try to remove this function, the order shouldnt matter,
# but currently needed to preserve content of model data files
if self._hdim is not None:
self._hdim._ldims.remove(self)
self._hdim = hg._hdim
assert self not in hg._hdim._ldims
i = hg._hdim._ldims.index(hg)
hg._hdim._ldims.insert(i+1, self)
def insert_after_first(self, hg):
#TODO: try to remove this function, the order shouldnt matter,
# but currently needed to preserve content of model data files
if hg._ldims:
self.insert_after(hg._ldims[0])
else:
self._hdim = hg
def get_all_ldims(self, halfsets=None, fullsets=None):
if halfsets is None:
halfsets = [set() for i in range(self.dim+1)]
if fullsets is None:
fullsets = [set() for i in range(self.dim+1)]
for ldim in self._ldims:
ldim.get_all_ldims(halfsets, fullsets)
halfsets[self.dim].add(self)
fullsets[self.dim].add(self._fullgeom)
return halfsets, fullsets
def rotate_ldims_to(self, hg):
i = self._ldims.index(hg)
if i:
self._ldims = self._ldims[i:] + self._ldims[:i]
return self
@property
def other(self):
'''other halfgeom of fullgeom in the same hdim'''
for hg in self.fullgeom.halfgeoms:
if hg is not self and hg.hdim.hdim is self.hdim.hdim:
return hg
return None # hole in surface of self.hdim.hdim
class FullGeom (GeomBase):
fields_geom = '_halfgeoms',
def __init__(self):
self._halfgeoms = []
def assert_valid(self):
assert all(hg.fullgeom is self for hg in self.halfgeoms)
return True
@property
def halfgeoms(self):
return self._halfgeoms
def get_all_ldims(self):
halfsets = fullsets = None
for hg in self._halfgeoms:
halfsets, fullsets = hg.get_all_ldims(halfsets, fullsets)
return halfsets, fullsets
class HalfVert (HalfGeom):
dim = 0
fields_arg = ()
fields_kwarg = ()
def __init__(self, *, vert=None):
super().__init__([], vert)
vert = HalfGeom.fullgeom
halfedge = HalfGeom.hdim
def assert_valid(self):
super().assert_valid()
return True
class Vert (FullGeom):
fields_arg = ()
fields_kwarg = 'point', 'id',
def __init__(self, point=None, *, id=None):
super().__init__()
self.point = None if point is None else Vector(point)
self.id = id
def assert_valid(self):
super().assert_valid()
import numbers
assert all(isinstance(i, numbers.Number) for i in self.point)
return True
halfverts = FullGeom.halfgeoms
class HalfEdge (HalfGeom):
dim = 1
fields_arg = ()
fields_kwarg = ()
def __init__(self, verts=None, edge=None):
#XXX: different from other Half* classes where Half*-objects are used for initialisation
verts = list(verts or [])
assert all(isinstance(v, FullGeom) for v in verts)
halfverts = [HalfVert(vert=v) for v in verts]
super().__init__(halfverts, edge)
halfverts = HalfGeom.ldims
edge = HalfGeom.fullgeom
halfface = HalfGeom.hdim
@property
def verts(self):
return tuple(hv.vert for hv in self.halfverts)
def create_other(self):
return self.__class__(reversed(self.verts), self.edge)
def assert_valid(self):
assert super().assert_valid()
assert all(isinstance(hv, HalfVert) for hv in self.halfverts)
assert isinstance(self.edge, Edge)
assert isinstance(self.halfface, HalfFace)
assert all(hv.assert_valid() for hv in self.halfverts)
assert len(self.halfverts) == 2
assert self.edge.assert_valid()
assert self.halfverts[1].vert is self.nextatface.halfverts[0].vert
assert self.other is None or isinstance(self.other, self.__class__), self.other.__class__
assert self.other is None or self.other.other is self
return True
@property
def nextatface(self):
ldims = self.hdim.ldims
return ldims[(ldims.index(self)+1) % len(ldims)]
@classmethod
def polygon(cls, points, ids=None):
vert0 = Vert(next(points))
vertp = vert0
ids = itertools.repeat(None) if ids is None else iter(ids)
for point, eid in zip(points, ids):
vertc = Vert(point)
yield cls((vertp, vertc), Edge(id=eid))
vertp = vertc
yield cls((vertp, vert0), Edge(id=next(ids)))
def close_hole(self, nedges, id=None):
def next_at_hole(v):
for hv in v.halfverts:
he = hv.halfedge
if he.halfface is not hf and he.other is None:
# only works if at the vert is only one hole
return he
return None
assert self.other is None
hf = HalfFace(face=Face(type='face', id=id))
hf.halfcell = self.halfface.halfcell
he = self
v0 = he.halfverts[1].vert
v = he.halfverts[0].vert
is_attach_prev = len(v0.halfverts) > 2
is_attach_next = len(v.halfverts) > 2
he.create_other().halfface = hf
# attach hf to existing edges
while v is not v0 and is_attach_next:
he = next_at_hole(v)
v = he.halfverts[0].vert
is_attach_next = len(v.halfverts) > 2
he.create_other().halfface = hf
# attach hf to existing edges in the other direction
halfedges = []
while v is not v0 and is_attach_prev:
he = next_at_hole(v0)
halfedges.append(he)
v0 = he.halfverts[1].vert
is_attach_prev = len(v0.halfverts) > 2
# if the hole needs more faces, create some edges
for i in range(len(hf.halfedges)+len(halfedges), nedges):
vn = Vert() if i < nedges-1 else v0
HalfEdge([v, vn], edge=Edge()).halfface = hf
v = vn
for he in halfedges:
he.create_other().halfface = hf
return hf
class Edge (FullGeom):
fields_arg = ()
fields_kwarg = 'id',
def __init__(self, *, id=None):
super().__init__()
self.id = id
def assert_valid(self):
super().assert_valid()
assert all(isinstance(he, HalfEdge) for he in self.halfedges)
assert len(self.halfedges) > 0
assert all(isinstance(he, HalfEdge) for he in self.halfedges)
assert all(he.edge is self for he in self.halfedges)
return True
halfedges = FullGeom.halfgeoms
def split(self, vert):
verts = self.halfedges[0].verts
edge2 = self.__class__()
for he1 in self.halfedges:
if he1.verts[0] == verts[0]:
he2 = HalfEdge([vert, he1.verts[1]], edge2)
he1.halfverts[1].vert = vert
he2.insert_after(he1)
else:
assert he1.verts[1] == verts[0], (he1.verts, verts)
he2 = HalfEdge([he1.verts[0], vert], edge2)
he1.halfverts[0].vert = vert
he2.insert_before(he1)
class HalfFace (HalfGeom):
dim = 2
fields_arg = 'halfedges',
fields_kwarg = ()
def __init__(self, *, halfedges=None, face=None):
super().__init__(halfedges or [], face)
def assert_valid(self):
assert super().assert_valid()
assert set(self.halfedges) == set(self.ldims), (set(self.halfedges), self.ldims)
assert isinstance(self.face, Face)
assert self.face.assert_valid()
assert all(he.halfface is self for he in self.ldims)
assert all(isinstance(he, HalfEdge) for he in self.halfedges)
assert all(he.assert_valid() for he in self.halfedges)
return True
halfedges = HalfGeom.ldims
face = HalfGeom.fullgeom
halfcell = HalfGeom.hdim
@property
def edges(self):
for he in self.halfedges:
yield he.edge
@property
def verts(self):
for he in self.halfedges:
yield he.verts[0]
def normal(self):
verts = self.verts
try:
v1 = next(verts).point
v2 = next(verts).point
v3 = next(verts).point
except StopIteration:
raise ValueError('Too few vertices')
return (v2-v1).cross(v3-v1).normalised()
def sort(self):
try:
he = self.halfedges[0]
except IndexError:
pass
else:
hv_last = he.halfverts[0].other
while he.halfverts[1] is not hv_last:
he = he.halfverts[1].other.halfedge
he.hdim = self
return self
@classmethod
def polygon(cls, point, n, ids=None):
points = Vector.polygon(point, n)
halfedges = HalfEdge.polygon(points, ids)
halfface = cls(face=Face())
for he in halfedges:
he.halfface = halfface
return halfface
def extrude_y(self, upy, downy, ids=None):
cell = Cell()
self.halfcell = cell
# down face
face_down = Face()
if ids is not None:
self.face.type = face_down.type = 'face'
self.face.id, face_down.id = ids
halfface_down = HalfFace(face=face_down)
def extrude_vert(vert_up, upy, downy):
x1, y1 = vert_up.point
vert_up.point = Vector((x1, upy, -y1))
vert_down = Vert((x1, downy, -y1))
return vert_up, vert_down
vp_down = None
for he_up in self.halfedges:
# vertices
vc_up, vc_down = extrude_vert(he_up.verts[1], upy, downy)
# edges
e_down = Edge()
ec_side = Edge()
if vp_down is None:
v1_up, v1_down = vc_up, vc_down
e0_down = e_down
e1_side = ec_side
else:
# down halfedge
HalfEdge([vc_down, vp_down], e_down).halfface = halfface_down
# side face
halfface_side = HalfFace(face=Face(type='face', id=he_up.edge.id))
HalfEdge([vp_down, vc_down], e_down).halfface = halfface_side
HalfEdge([vc_down, vc_up], ec_side).halfface = halfface_side
HalfEdge([vc_up, vp_up], he_up.edge).halfface = halfface_side
HalfEdge([vp_up, vp_down], ep_side).halfface = halfface_side
halfface_side.halfcell = cell
# next
vp_up, vp_down = vc_up, vc_down
ep_side = ec_side
he_up = self.ldims[0]
# joining down halfedge
he_down = HalfEdge([v1_down, vp_down], e0_down)
he_down.halfface = halfface_down
halfface_down.rotate_ldims_to(he_down).sort()
# joining side face
halfface_side = HalfFace(face=Face(type='face', id=he_up.edge.id))
HalfEdge([vp_down, v1_down], e0_down).halfface = halfface_side
HalfEdge([v1_down, v1_up], e1_side).halfface = halfface_side
HalfEdge([v1_up, vp_up], he_up.edge).halfface = halfface_side
HalfEdge([vp_up, vp_down], ep_side).halfface = halfface_side
halfface_side.halfcell = cell
halfface_down.halfcell = cell
return cell
def pyramid(self, upy, downy, id=None):
cell = Cell()
self.halfcell = cell
vert_up = Vert((0., upy, 0.))
def change_vert(vert_down, downy):
x1, y1 = vert_down.point
vert_down.point = Vector((-x1, downy, -y1))
return vert_down
vp_down = None
for he in self.halfedges:
# vertices
vc_down = change_vert(he.verts[1], downy)
# edges
ec_side = Edge()
if vp_down is None:
v1_down = vc_down
e1_side = ec_side
else:
# side face
halfface_side = HalfFace(face=Face(type='face', id=he.edge.id))
HalfEdge([vc_down, vp_down], he.edge).halfface = halfface_side
HalfEdge([vp_down, vert_up], ep_side).halfface = halfface_side
HalfEdge([vert_up, vc_down], ec_side).halfface = halfface_side
halfface_side.halfcell = cell
# next
vp_down = vc_down
ep_side = ec_side
he = self.ldims[0]
# joining side face
halfface_side = HalfFace(face=Face(type='face', id=he.edge.id))
HalfEdge([v1_down, vp_down], he.edge).halfface = halfface_side
HalfEdge([vp_down, vert_up], ep_side).halfface = halfface_side
HalfEdge([vert_up, v1_down], e1_side).halfface = halfface_side
halfface_side.halfcell = cell
# down face
if id is not None:
self.face.type = 'face'
self.face.id = id
return cell
class Face (FullGeom):
fields_arg = ()
fields_kwarg = 'type', 'id'
def __init__(self, *, type=None, id=None):
super().__init__()
self.type = type
self.id = id
def assert_valid(self):
super().assert_valid()
assert all(isinstance(f, HalfFace) for f in self.halffaces)
assert all(hf.face is self for hf in self.halffaces)
assert 1 <= len(self.halffaces) <= 2
lenhf0 = len(list(self.halffaces[0].halfedges))
assert all(lenhf0 == len(list(hf.halfedges)) for hf in self.halffaces)
return True
halffaces = FullGeom.halfgeoms
@property
def edges(self):
return self.halffaces[0].edges
@property
def verts(self):
return self.halffaces[0].verts
def split(self, split_verts):
assert len(split_verts) == 2, len(split_verts)
edge = Edge()
newface = Face(type=self.type, id=self.id)
edgef1 = None
for halfface in self.halffaces:
he = halfface.ldims[0]
# make sure to start on the same edge for all halffaces
if edgef1 is None:
edgef1 = he.edge
else:
he = next(_he for _he in edgef1.halfedges if _he.halfface is halfface)
halfface.rotate_ldims_to(he)
hedge2f1 = None
hedge1f2 = None
for he in halfface.halfedges[:]:
if hedge2f1 is None:
if he.verts[1] in split_verts:
# end of the old halfface
hedge2f1 = he
elif hedge1f2 is None:
# start of the new halfface
newhalfface = HalfFace(face=newface)
newhalfface.insert_after(halfface)
he.halfface = newhalfface
hedge1f2 = he
elif he.verts[1] not in split_verts:
# proceed to the end of the new halfface
he.halfface = newhalfface
else:
# end of the new halfface
he.halfface = newhalfface
newhalfface.rotate_ldims_to(hedge1f2)
hedge2f2 = he
break
# insert a new halfedge between the splitted halfface
hedge1 = HalfEdge(split_verts, edge)
hedge2 = HalfEdge([split_verts[1], split_verts[0]], edge)
if hedge2f1.verts[1] is split_verts[1]:
hedge1, hedge2 = hedge2, hedge1
hedge1.insert_after(hedge2f1)
hedge2.insert_after(hedge2f2)
return edge
class HalfCell (HalfGeom):
dim = 3
fields_arg = 'halffaces',
fields_kwarg = 'indices',
def __init__(self, *, halffaces=None):
super().__init__(halffaces or [], None)
self.indices = None
def assert_valid(self):
assert super().assert_valid()
assert list(self.halffaces) == list(self.ldims), (list(self.halffaces), list(self.ldims))
assert all(isinstance(f, HalfFace) for f in self.halffaces)
assert all(hf.assert_valid() for hf in self.halffaces)
assert len(list(self.edges)) > 3
assert len(list(self.verts)) > 3
assert all(he.hdim.hdim is not None for e in self.edges for he in e.halfedges)
return True
halffaces = HalfGeom.ldims
@property
def faces(self):
for hf in self.halffaces:
yield hf.face
@property
def edges(self):
cache = []
for f in self.faces:
for e in f.edges:
if e not in cache:
cache.append(e)
yield e
@property
def verts(self):
cache = []
for hf in self.halffaces:
for v in hf.verts:
if v not in cache:
cache.append(v)
yield v
def split(self, split_edges, id=None):
halffaces, halffaces1, halffaces2 = [self.ldims[0]], [self.ldims[0]], []
# new face
face = Face(type='cut', id=id)
halfface1 = HalfFace(face=face)
halfface2 = HalfFace(face=face)
while halffaces:
for he in halffaces.pop().halfedges:
hf = he.other.halfface
if he.edge in split_edges:
he.create_other().halfface = halfface1
if hf not in halffaces2:
halffaces2.append(hf)
else:
if hf not in halffaces1:
halffaces.append(hf)
halffaces1.append(hf)
halffaces = halffaces2[:]
while halffaces:
for he in halffaces.pop().halfedges:
if he.edge in split_edges:
he.create_other().halfface = halfface2
else:
hf = he.other.halfface
if hf not in halffaces2:
halffaces.append(hf)
halffaces2.append(hf)
# update cell
halfface1.sort()
phf = halfface1
for hf in halffaces1:
phf = hf
#XXX: just to reorder ldims to the order of halfface1, try to remove this line:
hf.hdim = self
halfface1.hdim = self
# new cell
halfface2.sort()
halffaces2.append(halfface2)
return Cell(halffaces=halffaces2)
@classmethod
def dodecahedron(cls, ids=None):
#rfi = sqrt(25 + 10*sqrt(5)) / 10
rfu = sqrt(50 + 10*sqrt(5)) / 10
ri = sqrt((25 + 11*sqrt(5))/10) / 2
#ru = sqrt(3) * (1 + sqrt(5)) / 4
#1: h01² + (r1u-rfu)² = 1²
#2: (ri-h01)² + r1u² = ru²
# h01 = rfu
# r1u² = sqrt(45 + 20*sqrt(5)) / 5
r1u = sqrt(sqrt(45 + 20*sqrt(5)) / 5)
ids = itertools.repeat(None) if ids is None else iter(ids)
cell = cls()
hf_down = HalfFace.polygon((0.,-rfu), 5)
hf_down.halfcell = cell
hf_down.face.type = 'face'
hf_down.face.id = next(ids)
for v in hf_down.verts:
x,z = v.point
v.point = Vector((x, -ri, z))
hfs1 = [he.close_hole(5, id=fid) for he, fid in zip(hf_down.halfedges, ids)]
hfs2 = [hf.halfedges[2].close_hole(5, id=fid) for hf, fid in zip(hfs1, ids)]
hf_up = hfs2[0].halfedges[3].close_hole(5, id=next(ids))
hes01 = [he for e in cell.edges for he in e.halfedges if he.verts[0].point is not None and he.verts[1].point is None]
for he in hes01:
v0 = he.verts[0]
v1 = he.verts[1]
x,y,z = v0.point
v1.point = Vector((x/rfu*r1u, rfu-ri, z/rfu*r1u))
hes12 = [he for e in cell.edges for he in e.halfedges if he.verts[0].point is not None and he.verts[1].point is None]
for he in hes12:
he.verts[1].point = True #XXX: marker, any value not None would do it
hes23 = [he for e in cell.edges for he in e.halfedges if he.verts[0].point is not None and he.verts[1].point is None]
for i, he in enumerate(hes23):
he.verts[0].point = -hes01[(i+2)%5].verts[1].point
he.verts[1].point = -hes01[(i+2)%5].verts[0].point
return cell
Cell = HalfCell
class Polyhedron:
def __init__(self):
self._cells = []
def clone(self):
clone_data = {}
obj = self.__class__()
funcs = deque(f for o in self._cells for f in o.clone(clone_data))
obj._cells = [clone_data[id(o)] for o in self._cells]
while funcs:
f = funcs.popleft()
r = f(clone_data)
if r is not None:
funcs.extendleft(reversed(list(r)))
return obj
def assert_valid(self):
import itertools
assert all(isinstance(c, Cell) and c.assert_valid() for c in self.cells)
assert all(isinstance(f, Face) and f.assert_valid() for f in self.faces)
assert all(isinstance(e, Edge) and e.assert_valid() for e in self.edges)
assert all(isinstance(v, Vert) and v.assert_valid() for v in self.verts)
assert all(not v1.point.equalfuzzy(v2.point) for v1, v2 in itertools.combinations(self.verts, 2)), self.verts
return True
@property
def cells(self):
return self._cells
@cells.setter
def cells(self, cells):
self._cells = cells
@property
def faces(self):
cache = []
for c in self.cells:
for f in c.faces:
if f not in cache:
cache.append(f)
return cache
@property
def edges(self):
cache = []
for f in self.faces:
for e in f.edges:
if e not in cache:
cache.append(e)
return cache
@property
def verts(self):
cache = []
for f in self.faces:
for v in f.verts:
if v not in cache:
cache.append(v)
return cache
def set_verts(self, *args):
self._polytopes = [Vert(arg) for arg in args]
def set_edges(self, *args):
halfedges = []
for arg in args:
verts = [self._polytopes[i] for i in arg]
halfedges.append(HalfEdge(verts=verts, edge=Edge()))
self._polytopes = halfedges
def set_faces(self, *args, ids=None):
halffaces = []
if ids is None:
faces = [Face() for unused in args]
else:
assert len(args) == len(ids)
faces = [Face(type='face', id=fid) for fid in ids]
for arg, face in zip(args, faces):
halfface = HalfFace(face=face)
for i in arg:
# this only works if args describe one closed cell
if i > 0:
self._polytopes[i-1].halfface = halfface
elif i < 0:
self._polytopes[-i-1].create_other().halfface = halfface
else:
raise ValueError()
halffaces.append(halfface)
del self._polytopes
self._cells = [Cell(halffaces=halffaces)]
def split_plane(self, plane, indexpos=None, split_id=None):
# split intersected edges
new_verts = []
for edge in self.edges[:]:
pos, vert = plane.intersect_segment(*edge.halfedges[0].verts)
if pos > 0:
edge.split(vert)
new_verts.append(vert)
elif pos == 0 and vert not in new_verts:
new_verts.append(vert)
# split intersected faces
new_edges = []
for face in self.faces[:]:
split_verts = [v for v in face.verts for nv in new_verts if nv is v]
assert 0 <= len(split_verts) <= 2, split_verts
if len(split_verts) == 2:
for he in face.halffaces[0].halfedges:
if set(he.verts) == set(split_verts):
new_edges.append(he.edge)
break
else:
new_edge = face.split(split_verts)
new_edges.append(new_edge)
# split cells
for cell in self.cells[:]:
split_edges = [e for e in cell.edges if e in new_edges]
if len(split_edges) > 2:
new_cell = cell.split(split_edges, split_id)
self.cells.append(new_cell)
else:
new_cell = None
if indexpos is not None:
for hf in cell.halffaces:
for he in hf.halfedges:
if he.edge not in split_edges:
sd1 = -plane.signed_distance(he.verts[0].point)
# the verts of the edge e cannot be both in range epsilon to the plane,
# otherwise e would be in split_edges, so only test one vert for epsilon
if sd1 > epsilon or sd1 >= -epsilon and plane.signed_distance(he.verts[1].point) < 0:
if new_cell is not None:
new_cell.indices = cell.indices
new_cell = cell
elif new_cell is None:
break
indices = list(cell.indices)
indices[indexpos] += 1
new_cell.indices = tuple(indices)
break
else:
continue
break
def distances(self, plane):
ddict = {}
for v in self.verts:
dist = plane.signed_distance(v.point)
ddict.setdefault(roundeps(dist), []).append(dist)
return sorted(sum(dists)/len(dists) for dists in ddict.values())
def scale(self, value):
for v in self.verts:
v.point = v.point.scaled(value)
def remove_cells(self, func):
self._cells = [c for c in self._cells if not func(c)]
|