1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
|
from __future__ import annotations
import pytest
import env # noqa: F401
from pybind11_tests import numpy_array as m
np = pytest.importorskip("numpy")
def test_dtypes():
# See issue #1328.
# - Platform-dependent sizes.
for size_check in m.get_platform_dtype_size_checks():
print(size_check)
assert size_check.size_cpp == size_check.size_numpy, size_check
# - Concrete sizes.
for check in m.get_concrete_dtype_checks():
print(check)
assert check.numpy == check.pybind11, check
if check.numpy.num != check.pybind11.num:
print(
f"NOTE: typenum mismatch for {check}: {check.numpy.num} != {check.pybind11.num}"
)
@pytest.fixture
def arr():
return np.array([[1, 2, 3], [4, 5, 6]], "=u2")
def test_array_attributes():
a = np.array(0, "f8")
assert m.ndim(a) == 0
assert all(m.shape(a) == [])
assert all(m.strides(a) == [])
with pytest.raises(IndexError) as excinfo:
m.shape(a, 0)
assert str(excinfo.value) == "invalid axis: 0 (ndim = 0)"
with pytest.raises(IndexError) as excinfo:
m.strides(a, 0)
assert str(excinfo.value) == "invalid axis: 0 (ndim = 0)"
assert m.writeable(a)
assert m.size(a) == 1
assert m.itemsize(a) == 8
assert m.nbytes(a) == 8
assert m.owndata(a)
a = np.array([[1, 2, 3], [4, 5, 6]], "u2").view()
a.flags.writeable = False
assert m.ndim(a) == 2
assert all(m.shape(a) == [2, 3])
assert m.shape(a, 0) == 2
assert m.shape(a, 1) == 3
assert all(m.strides(a) == [6, 2])
assert m.strides(a, 0) == 6
assert m.strides(a, 1) == 2
with pytest.raises(IndexError) as excinfo:
m.shape(a, 2)
assert str(excinfo.value) == "invalid axis: 2 (ndim = 2)"
with pytest.raises(IndexError) as excinfo:
m.strides(a, 2)
assert str(excinfo.value) == "invalid axis: 2 (ndim = 2)"
assert not m.writeable(a)
assert m.size(a) == 6
assert m.itemsize(a) == 2
assert m.nbytes(a) == 12
assert not m.owndata(a)
@pytest.mark.parametrize(
("args", "ret"), [([], 0), ([0], 0), ([1], 3), ([0, 1], 1), ([1, 2], 5)]
)
def test_index_offset(arr, args, ret):
assert m.index_at(arr, *args) == ret
assert m.index_at_t(arr, *args) == ret
assert m.offset_at(arr, *args) == ret * arr.dtype.itemsize
assert m.offset_at_t(arr, *args) == ret * arr.dtype.itemsize
def test_dim_check_fail(arr):
for func in (
m.index_at,
m.index_at_t,
m.offset_at,
m.offset_at_t,
m.data,
m.data_t,
m.mutate_data,
m.mutate_data_t,
):
with pytest.raises(IndexError) as excinfo:
func(arr, 1, 2, 3)
assert str(excinfo.value) == "too many indices for an array: 3 (ndim = 2)"
@pytest.mark.parametrize(
("args", "ret"),
[
([], [1, 2, 3, 4, 5, 6]),
([1], [4, 5, 6]),
([0, 1], [2, 3, 4, 5, 6]),
([1, 2], [6]),
],
)
def test_data(arr, args, ret):
from sys import byteorder
assert all(m.data_t(arr, *args) == ret)
assert all(m.data(arr, *args)[(0 if byteorder == "little" else 1) :: 2] == ret)
assert all(m.data(arr, *args)[(1 if byteorder == "little" else 0) :: 2] == 0)
@pytest.mark.parametrize("dim", [0, 1, 3])
def test_at_fail(arr, dim):
for func in m.at_t, m.mutate_at_t:
with pytest.raises(IndexError) as excinfo:
func(arr, *([0] * dim))
assert str(excinfo.value) == f"index dimension mismatch: {dim} (ndim = 2)"
def test_at(arr):
assert m.at_t(arr, 0, 2) == 3
assert m.at_t(arr, 1, 0) == 4
assert all(m.mutate_at_t(arr, 0, 2).ravel() == [1, 2, 4, 4, 5, 6])
assert all(m.mutate_at_t(arr, 1, 0).ravel() == [1, 2, 4, 5, 5, 6])
def test_mutate_readonly(arr):
arr.flags.writeable = False
for func, args in (
(m.mutate_data, ()),
(m.mutate_data_t, ()),
(m.mutate_at_t, (0, 0)),
):
with pytest.raises(ValueError) as excinfo:
func(arr, *args)
assert str(excinfo.value) == "array is not writeable"
def test_mutate_data(arr):
assert all(m.mutate_data(arr).ravel() == [2, 4, 6, 8, 10, 12])
assert all(m.mutate_data(arr).ravel() == [4, 8, 12, 16, 20, 24])
assert all(m.mutate_data(arr, 1).ravel() == [4, 8, 12, 32, 40, 48])
assert all(m.mutate_data(arr, 0, 1).ravel() == [4, 16, 24, 64, 80, 96])
assert all(m.mutate_data(arr, 1, 2).ravel() == [4, 16, 24, 64, 80, 192])
assert all(m.mutate_data_t(arr).ravel() == [5, 17, 25, 65, 81, 193])
assert all(m.mutate_data_t(arr).ravel() == [6, 18, 26, 66, 82, 194])
assert all(m.mutate_data_t(arr, 1).ravel() == [6, 18, 26, 67, 83, 195])
assert all(m.mutate_data_t(arr, 0, 1).ravel() == [6, 19, 27, 68, 84, 196])
assert all(m.mutate_data_t(arr, 1, 2).ravel() == [6, 19, 27, 68, 84, 197])
def test_bounds_check(arr):
for func in (
m.index_at,
m.index_at_t,
m.data,
m.data_t,
m.mutate_data,
m.mutate_data_t,
m.at_t,
m.mutate_at_t,
):
with pytest.raises(IndexError) as excinfo:
func(arr, 2, 0)
assert str(excinfo.value) == "index 2 is out of bounds for axis 0 with size 2"
with pytest.raises(IndexError) as excinfo:
func(arr, 0, 4)
assert str(excinfo.value) == "index 4 is out of bounds for axis 1 with size 3"
def test_make_c_f_array():
assert m.make_c_array().flags.c_contiguous
assert not m.make_c_array().flags.f_contiguous
assert m.make_f_array().flags.f_contiguous
assert not m.make_f_array().flags.c_contiguous
def test_make_empty_shaped_array():
m.make_empty_shaped_array()
# empty shape means numpy scalar, PEP 3118
assert m.scalar_int().ndim == 0
assert m.scalar_int().shape == ()
assert m.scalar_int() == 42
def test_wrap():
def assert_references(a, b, base=None):
if base is None:
base = a
assert a is not b
assert a.__array_interface__["data"][0] == b.__array_interface__["data"][0]
assert a.shape == b.shape
assert a.strides == b.strides
assert a.flags.c_contiguous == b.flags.c_contiguous
assert a.flags.f_contiguous == b.flags.f_contiguous
assert a.flags.writeable == b.flags.writeable
assert a.flags.aligned == b.flags.aligned
assert a.flags.writebackifcopy == b.flags.writebackifcopy
assert np.all(a == b)
assert not b.flags.owndata
assert b.base is base
if a.flags.writeable and a.ndim == 2:
a[0, 0] = 1234
assert b[0, 0] == 1234
a1 = np.array([1, 2], dtype=np.int16)
assert a1.flags.owndata
assert a1.base is None
a2 = m.wrap(a1)
assert_references(a1, a2)
a1 = np.array([[1, 2], [3, 4]], dtype=np.float32, order="F")
assert a1.flags.owndata
assert a1.base is None
a2 = m.wrap(a1)
assert_references(a1, a2)
a1 = np.array([[1, 2], [3, 4]], dtype=np.float32, order="C")
a1.flags.writeable = False
a2 = m.wrap(a1)
assert_references(a1, a2)
a1 = np.random.random((4, 4, 4))
a2 = m.wrap(a1)
assert_references(a1, a2)
a1t = a1.transpose()
a2 = m.wrap(a1t)
assert_references(a1t, a2, a1)
a1d = a1.diagonal()
a2 = m.wrap(a1d)
assert_references(a1d, a2, a1)
a1m = a1[::-1, ::-1, ::-1]
a2 = m.wrap(a1m)
assert_references(a1m, a2, a1)
def test_numpy_view(capture):
with capture:
ac = m.ArrayClass()
ac_view_1 = ac.numpy_view()
ac_view_2 = ac.numpy_view()
assert np.all(ac_view_1 == np.array([1, 2], dtype=np.int32))
del ac
pytest.gc_collect()
assert (
capture
== """
ArrayClass()
ArrayClass::numpy_view()
ArrayClass::numpy_view()
"""
)
ac_view_1[0] = 4
ac_view_1[1] = 3
assert ac_view_2[0] == 4
assert ac_view_2[1] == 3
with capture:
del ac_view_1
del ac_view_2
pytest.gc_collect()
pytest.gc_collect()
assert (
capture
== """
~ArrayClass()
"""
)
def test_cast_numpy_int64_to_uint64():
m.function_taking_uint64(123)
m.function_taking_uint64(np.uint64(123))
def test_isinstance():
assert m.isinstance_untyped(np.array([1, 2, 3]), "not an array")
assert m.isinstance_typed(np.array([1.0, 2.0, 3.0]))
def test_constructors():
defaults = m.default_constructors()
for a in defaults.values():
assert a.size == 0
assert defaults["array"].dtype == np.array([]).dtype
assert defaults["array_t<int32>"].dtype == np.int32
assert defaults["array_t<double>"].dtype == np.float64
results = m.converting_constructors([1, 2, 3])
for a in results.values():
np.testing.assert_array_equal(a, [1, 2, 3])
assert results["array"].dtype == np.dtype(int)
assert results["array_t<int32>"].dtype == np.int32
assert results["array_t<double>"].dtype == np.float64
def test_overload_resolution(msg):
# Exact overload matches:
assert m.overloaded(np.array([1], dtype="float64")) == "double"
assert m.overloaded(np.array([1], dtype="float32")) == "float"
assert m.overloaded(np.array([1], dtype="ushort")) == "unsigned short"
assert m.overloaded(np.array([1], dtype="intc")) == "int"
assert m.overloaded(np.array([1], dtype="longlong")) == "long long"
assert m.overloaded(np.array([1], dtype="complex")) == "double complex"
assert m.overloaded(np.array([1], dtype="csingle")) == "float complex"
# No exact match, should call first convertible version:
assert m.overloaded(np.array([1], dtype="uint8")) == "double"
with pytest.raises(TypeError) as excinfo:
m.overloaded("not an array")
assert (
msg(excinfo.value)
== """
overloaded(): incompatible function arguments. The following argument types are supported:
1. (arg0: numpy.ndarray[numpy.float64]) -> str
2. (arg0: numpy.ndarray[numpy.float32]) -> str
3. (arg0: numpy.ndarray[numpy.int32]) -> str
4. (arg0: numpy.ndarray[numpy.uint16]) -> str
5. (arg0: numpy.ndarray[numpy.int64]) -> str
6. (arg0: numpy.ndarray[numpy.complex128]) -> str
7. (arg0: numpy.ndarray[numpy.complex64]) -> str
Invoked with: 'not an array'
"""
)
assert m.overloaded2(np.array([1], dtype="float64")) == "double"
assert m.overloaded2(np.array([1], dtype="float32")) == "float"
assert m.overloaded2(np.array([1], dtype="complex64")) == "float complex"
assert m.overloaded2(np.array([1], dtype="complex128")) == "double complex"
assert m.overloaded2(np.array([1], dtype="float32")) == "float"
assert m.overloaded3(np.array([1], dtype="float64")) == "double"
assert m.overloaded3(np.array([1], dtype="intc")) == "int"
expected_exc = """
overloaded3(): incompatible function arguments. The following argument types are supported:
1. (arg0: numpy.ndarray[numpy.int32]) -> str
2. (arg0: numpy.ndarray[numpy.float64]) -> str
Invoked with: """
with pytest.raises(TypeError) as excinfo:
m.overloaded3(np.array([1], dtype="uintc"))
assert msg(excinfo.value) == expected_exc + repr(np.array([1], dtype="uint32"))
with pytest.raises(TypeError) as excinfo:
m.overloaded3(np.array([1], dtype="float32"))
assert msg(excinfo.value) == expected_exc + repr(np.array([1.0], dtype="float32"))
with pytest.raises(TypeError) as excinfo:
m.overloaded3(np.array([1], dtype="complex"))
assert msg(excinfo.value) == expected_exc + repr(np.array([1.0 + 0.0j]))
# Exact matches:
assert m.overloaded4(np.array([1], dtype="double")) == "double"
assert m.overloaded4(np.array([1], dtype="longlong")) == "long long"
# Non-exact matches requiring conversion. Since float to integer isn't a
# save conversion, it should go to the double overload, but short can go to
# either (and so should end up on the first-registered, the long long).
assert m.overloaded4(np.array([1], dtype="float32")) == "double"
assert m.overloaded4(np.array([1], dtype="short")) == "long long"
assert m.overloaded5(np.array([1], dtype="double")) == "double"
assert m.overloaded5(np.array([1], dtype="uintc")) == "unsigned int"
assert m.overloaded5(np.array([1], dtype="float32")) == "unsigned int"
def test_greedy_string_overload():
"""Tests fix for #685 - ndarray shouldn't go to std::string overload"""
assert m.issue685("abc") == "string"
assert m.issue685(np.array([97, 98, 99], dtype="b")) == "array"
assert m.issue685(123) == "other"
def test_array_unchecked_fixed_dims(msg):
z1 = np.array([[1, 2], [3, 4]], dtype="float64")
m.proxy_add2(z1, 10)
assert np.all(z1 == [[11, 12], [13, 14]])
with pytest.raises(ValueError) as excinfo:
m.proxy_add2(np.array([1.0, 2, 3]), 5.0)
assert (
msg(excinfo.value) == "array has incorrect number of dimensions: 1; expected 2"
)
expect_c = np.ndarray(shape=(3, 3, 3), buffer=np.array(range(3, 30)), dtype="int")
assert np.all(m.proxy_init3(3.0) == expect_c)
expect_f = np.transpose(expect_c)
assert np.all(m.proxy_init3F(3.0) == expect_f)
assert m.proxy_squared_L2_norm(np.array(range(6))) == 55
assert m.proxy_squared_L2_norm(np.array(range(6), dtype="float64")) == 55
assert m.proxy_auxiliaries2(z1) == [11, 11, True, 2, 8, 2, 2, 4, 32]
assert m.proxy_auxiliaries2(z1) == m.array_auxiliaries2(z1)
assert m.proxy_auxiliaries1_const_ref(z1[0, :])
assert m.proxy_auxiliaries2_const_ref(z1)
def test_array_unchecked_dyn_dims():
z1 = np.array([[1, 2], [3, 4]], dtype="float64")
m.proxy_add2_dyn(z1, 10)
assert np.all(z1 == [[11, 12], [13, 14]])
expect_c = np.ndarray(shape=(3, 3, 3), buffer=np.array(range(3, 30)), dtype="int")
assert np.all(m.proxy_init3_dyn(3.0) == expect_c)
assert m.proxy_auxiliaries2_dyn(z1) == [11, 11, True, 2, 8, 2, 2, 4, 32]
assert m.proxy_auxiliaries2_dyn(z1) == m.array_auxiliaries2(z1)
def test_array_failure():
with pytest.raises(ValueError) as excinfo:
m.array_fail_test()
assert str(excinfo.value) == "cannot create a pybind11::array from a nullptr"
with pytest.raises(ValueError) as excinfo:
m.array_t_fail_test()
assert str(excinfo.value) == "cannot create a pybind11::array_t from a nullptr"
with pytest.raises(ValueError) as excinfo:
m.array_fail_test_negative_size()
assert str(excinfo.value) == "negative dimensions are not allowed"
def test_initializer_list():
assert m.array_initializer_list1().shape == (1,)
assert m.array_initializer_list2().shape == (1, 2)
assert m.array_initializer_list3().shape == (1, 2, 3)
assert m.array_initializer_list4().shape == (1, 2, 3, 4)
def test_array_resize():
a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype="float64")
m.array_reshape2(a)
assert a.size == 9
assert np.all(a == [[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# total size change should succced with refcheck off
m.array_resize3(a, 4, False)
assert a.size == 64
# ... and fail with refcheck on
try:
m.array_resize3(a, 3, True)
except ValueError as e:
assert str(e).startswith("cannot resize an array") # noqa: PT017
# transposed array doesn't own data
b = a.transpose()
try:
m.array_resize3(b, 3, False)
except ValueError as e:
assert str(e).startswith( # noqa: PT017
"cannot resize this array: it does not own its data"
)
# ... but reshape should be fine
m.array_reshape2(b)
assert b.shape == (8, 8)
@pytest.mark.xfail("env.PYPY")
def test_array_create_and_resize():
a = m.create_and_resize(2)
assert a.size == 4
assert np.all(a == 42.0)
def test_array_view():
a = np.ones(100 * 4).astype("uint8")
a_float_view = m.array_view(a, "float32")
assert a_float_view.shape == (100 * 1,) # 1 / 4 bytes = 8 / 32
a_int16_view = m.array_view(a, "int16") # 1 / 2 bytes = 16 / 32
assert a_int16_view.shape == (100 * 2,)
def test_array_view_invalid():
a = np.ones(100 * 4).astype("uint8")
with pytest.raises(TypeError):
m.array_view(a, "deadly_dtype")
def test_reshape_initializer_list():
a = np.arange(2 * 7 * 3) + 1
x = m.reshape_initializer_list(a, 2, 7, 3)
assert x.shape == (2, 7, 3)
assert list(x[1][4]) == [34, 35, 36]
with pytest.raises(ValueError) as excinfo:
m.reshape_initializer_list(a, 1, 7, 3)
assert str(excinfo.value) == "cannot reshape array of size 42 into shape (1,7,3)"
def test_reshape_tuple():
a = np.arange(3 * 7 * 2) + 1
x = m.reshape_tuple(a, (3, 7, 2))
assert x.shape == (3, 7, 2)
assert list(x[1][4]) == [23, 24]
y = m.reshape_tuple(x, (x.size,))
assert y.shape == (42,)
with pytest.raises(ValueError) as excinfo:
m.reshape_tuple(a, (3, 7, 1))
assert str(excinfo.value) == "cannot reshape array of size 42 into shape (3,7,1)"
with pytest.raises(ValueError) as excinfo:
m.reshape_tuple(a, ())
assert str(excinfo.value) == "cannot reshape array of size 42 into shape ()"
def test_index_using_ellipsis():
a = m.index_using_ellipsis(np.zeros((5, 6, 7)))
assert a.shape == (6,)
@pytest.mark.parametrize(
"test_func",
[
m.test_fmt_desc_float,
m.test_fmt_desc_double,
m.test_fmt_desc_const_float,
m.test_fmt_desc_const_double,
],
)
def test_format_descriptors_for_floating_point_types(test_func):
assert "numpy.ndarray[numpy.float" in test_func.__doc__
@pytest.mark.parametrize("forcecast", [False, True])
@pytest.mark.parametrize("contiguity", [None, "C", "F"])
@pytest.mark.parametrize("noconvert", [False, True])
@pytest.mark.filterwarnings(
"ignore:Casting complex values to real discards the imaginary part:"
+ (
"numpy.exceptions.ComplexWarning"
if hasattr(np, "exceptions")
else "numpy.ComplexWarning"
)
)
def test_argument_conversions(forcecast, contiguity, noconvert):
function_name = "accept_double"
if contiguity == "C":
function_name += "_c_style"
elif contiguity == "F":
function_name += "_f_style"
if forcecast:
function_name += "_forcecast"
if noconvert:
function_name += "_noconvert"
function = getattr(m, function_name)
for dtype in [np.dtype("float32"), np.dtype("float64"), np.dtype("complex128")]:
for order in ["C", "F"]:
for shape in [(2, 2), (1, 3, 1, 1), (1, 1, 1), (0,)]:
if not noconvert:
# If noconvert is not passed, only complex128 needs to be truncated and
# "cannot be safely obtained". So without `forcecast`, the argument shouldn't
# be accepted.
should_raise = dtype.name == "complex128" and not forcecast
else:
# If noconvert is passed, only float64 and the matching order is accepted.
# If at most one dimension has a size greater than 1, the array is also
# trivially contiguous.
trivially_contiguous = sum(1 for d in shape if d > 1) <= 1
should_raise = dtype.name != "float64" or (
contiguity is not None
and contiguity != order
and not trivially_contiguous
)
array = np.zeros(shape, dtype=dtype, order=order)
if not should_raise:
function(array)
else:
with pytest.raises(
TypeError, match="incompatible function arguments"
):
function(array)
@pytest.mark.xfail("env.PYPY")
def test_dtype_refcount_leak():
from sys import getrefcount
# Was np.float_ but that alias for float64 was removed in NumPy 2.
dtype = np.dtype(np.float64)
a = np.array([1], dtype=dtype)
before = getrefcount(dtype)
m.ndim(a)
after = getrefcount(dtype)
assert after == before
def test_round_trip_float():
arr = np.zeros((), np.float64)
arr[()] = 37.2
assert m.round_trip_float(arr) == 37.2
# HINT: An easy and robust way (although only manual unfortunately) to check for
# ref-count leaks in the test_.*pyobject_ptr.* functions below is to
# * temporarily insert `while True:` (one-by-one),
# * run this test, and
# * run the Linux `top` command in another shell to visually monitor
# `RES` for a minute or two.
# If there is a leak, it is usually evident in seconds because the `RES`
# value increases without bounds. (Don't forget to Ctrl-C the test!)
# For use as a temporary user-defined object, to maximize sensitivity of the tests below:
# * Ref-count leaks will be immediately evident.
# * Sanitizers are much more likely to detect heap-use-after-free due to
# other ref-count bugs.
class PyValueHolder:
def __init__(self, value):
self.value = value
def WrapWithPyValueHolder(*values):
return [PyValueHolder(v) for v in values]
def UnwrapPyValueHolder(vhs):
return [vh.value for vh in vhs]
def test_pass_array_pyobject_ptr_return_sum_str_values_ndarray():
# Intentionally all temporaries, do not change.
assert (
m.pass_array_pyobject_ptr_return_sum_str_values(
np.array(WrapWithPyValueHolder(-3, "four", 5.0), dtype=object)
)
== "-3four5.0"
)
def test_pass_array_pyobject_ptr_return_sum_str_values_list():
# Intentionally all temporaries, do not change.
assert (
m.pass_array_pyobject_ptr_return_sum_str_values(
WrapWithPyValueHolder(2, "three", -4.0)
)
== "2three-4.0"
)
def test_pass_array_pyobject_ptr_return_as_list():
# Intentionally all temporaries, do not change.
assert UnwrapPyValueHolder(
m.pass_array_pyobject_ptr_return_as_list(
np.array(WrapWithPyValueHolder(-1, "two", 3.0), dtype=object)
)
) == [-1, "two", 3.0]
@pytest.mark.parametrize(
("return_array_pyobject_ptr", "unwrap"),
[
(m.return_array_pyobject_ptr_cpp_loop, list),
(m.return_array_pyobject_ptr_from_list, UnwrapPyValueHolder),
],
)
def test_return_array_pyobject_ptr_cpp_loop(return_array_pyobject_ptr, unwrap):
# Intentionally all temporaries, do not change.
arr_from_list = return_array_pyobject_ptr(WrapWithPyValueHolder(6, "seven", -8.0))
assert isinstance(arr_from_list, np.ndarray)
assert arr_from_list.dtype == np.dtype("O")
assert unwrap(arr_from_list) == [6, "seven", -8.0]
|