File: test_scoped_critical_section.cpp

package info (click to toggle)
pybind11 3.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 4,448 kB
  • sloc: cpp: 27,239; python: 13,512; ansic: 4,244; makefile: 204; sh: 36
file content (275 lines) | stat: -rw-r--r-- 11,482 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#include <pybind11/critical_section.h>

#include "pybind11_tests.h"

#include <atomic>
#include <chrono>
#include <thread>
#include <utility>

#if defined(PYBIND11_CPP20) && defined(__has_include) && __has_include(<barrier>)
#    define PYBIND11_HAS_BARRIER 1
#    include <barrier>
#endif

namespace test_scoped_critical_section_ns {

void test_one_nullptr() { py::scoped_critical_section lock{py::handle{}}; }

void test_two_nullptrs() { py::scoped_critical_section lock{py::handle{}, py::handle{}}; }

void test_first_nullptr() {
    py::dict d;
    py::scoped_critical_section lock{py::handle{}, d};
}

void test_second_nullptr() {
    py::dict d;
    py::scoped_critical_section lock{d, py::handle{}};
}

// Referenced test implementation: https://github.com/PyO3/pyo3/blob/v0.25.0/src/sync.rs#L874
class BoolWrapper {
public:
    explicit BoolWrapper(bool value) : value_{value} {}
    bool get() const { return value_.load(std::memory_order_acquire); }
    void set(bool value) { value_.store(value, std::memory_order_release); }

private:
    std::atomic_bool value_{false};
};

#if defined(PYBIND11_HAS_BARRIER)

// Modifying the C/C++ members of a Python object from multiple threads requires a critical section
// to ensure thread safety and data integrity.
// These tests use a scoped critical section to ensure that the Python object is accessed in a
// thread-safe manner.

void test_scoped_critical_section(const py::handle &cls) {
    auto barrier = std::barrier(2);
    auto bool_wrapper = cls(false);
    bool output = false;

    {
        // Release the GIL to allow run threads in parallel.
        py::gil_scoped_release gil_release{};

        std::thread t1([&]() {
            // Use gil_scoped_acquire to ensure we have a valid Python thread state
            // before entering the critical section. Otherwise, the critical section
            // will cause a segmentation fault.
            py::gil_scoped_acquire ensure_tstate{};
            // Enter the critical section with the same object as the second thread.
            py::scoped_critical_section lock{bool_wrapper};
            // At this point, the object is locked by this thread via the scoped_critical_section.
            // This barrier will ensure that the second thread waits until this thread has released
            // the critical section before proceeding.
            barrier.arrive_and_wait();
            // Sleep for a short time to simulate some work in the critical section.
            // This sleep is necessary to test the locking mechanism properly.
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
            auto *bw = bool_wrapper.cast<BoolWrapper *>();
            bw->set(true);
        });

        std::thread t2([&]() {
            // This thread will wait until the first thread has entered the critical section due to
            // the barrier.
            barrier.arrive_and_wait();
            {
                // Use gil_scoped_acquire to ensure we have a valid Python thread state
                // before entering the critical section. Otherwise, the critical section
                // will cause a segmentation fault.
                py::gil_scoped_acquire ensure_tstate{};
                // Enter the critical section with the same object as the first thread.
                py::scoped_critical_section lock{bool_wrapper};
                // At this point, the critical section is released by the first thread, the value
                // is set to true.
                auto *bw = bool_wrapper.cast<BoolWrapper *>();
                output = bw->get();
            }
        });

        t1.join();
        t2.join();
    }

    if (!output) {
        throw std::runtime_error("Scoped critical section test failed: output is false");
    }
}

void test_scoped_critical_section2(const py::handle &cls) {
    auto barrier = std::barrier(3);
    auto bool_wrapper1 = cls(false);
    auto bool_wrapper2 = cls(false);
    std::pair<bool, bool> output{false, false};

    {
        // Release the GIL to allow run threads in parallel.
        py::gil_scoped_release gil_release{};

        std::thread t1([&]() {
            // Use gil_scoped_acquire to ensure we have a valid Python thread state
            // before entering the critical section. Otherwise, the critical section
            // will cause a segmentation fault.
            py::gil_scoped_acquire ensure_tstate{};
            // Enter the critical section with two different objects.
            // This will ensure that the critical section is locked for both objects.
            py::scoped_critical_section lock{bool_wrapper1, bool_wrapper2};
            // At this point, objects are locked by this thread via the scoped_critical_section.
            // This barrier will ensure that other threads wait until this thread has released
            // the critical section before proceeding.
            barrier.arrive_and_wait();
            // Sleep for a short time to simulate some work in the critical section.
            // This sleep is necessary to test the locking mechanism properly.
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
            auto *bw1 = bool_wrapper1.cast<BoolWrapper *>();
            auto *bw2 = bool_wrapper2.cast<BoolWrapper *>();
            bw1->set(true);
            bw2->set(true);
        });

        std::thread t2([&]() {
            // This thread will wait until the first thread has entered the critical section due to
            // the barrier.
            barrier.arrive_and_wait();
            {
                // Use gil_scoped_acquire to ensure we have a valid Python thread state
                // before entering the critical section. Otherwise, the critical section
                // will cause a segmentation fault.
                py::gil_scoped_acquire ensure_tstate{};
                // Enter the critical section with the same object as the first thread.
                py::scoped_critical_section lock{bool_wrapper1};
                // At this point, the critical section is released by the first thread, the value
                // is set to true.
                auto *bw1 = bool_wrapper1.cast<BoolWrapper *>();
                output.first = bw1->get();
            }
        });

        std::thread t3([&]() {
            // This thread will wait until the first thread has entered the critical section due to
            // the barrier.
            barrier.arrive_and_wait();
            {
                // Use gil_scoped_acquire to ensure we have a valid Python thread state
                // before entering the critical section. Otherwise, the critical section
                // will cause a segmentation fault.
                py::gil_scoped_acquire ensure_tstate{};
                // Enter the critical section with the same object as the first thread.
                py::scoped_critical_section lock{bool_wrapper2};
                // At this point, the critical section is released by the first thread, the value
                // is set to true.
                auto *bw2 = bool_wrapper2.cast<BoolWrapper *>();
                output.second = bw2->get();
            }
        });

        t1.join();
        t2.join();
        t3.join();
    }

    if (!output.first || !output.second) {
        throw std::runtime_error(
            "Scoped critical section test with two objects failed: output is false");
    }
}

void test_scoped_critical_section2_same_object_no_deadlock(const py::handle &cls) {
    auto barrier = std::barrier(2);
    auto bool_wrapper = cls(false);
    bool output = false;

    {
        // Release the GIL to allow run threads in parallel.
        py::gil_scoped_release gil_release{};

        std::thread t1([&]() {
            // Use gil_scoped_acquire to ensure we have a valid Python thread state
            // before entering the critical section. Otherwise, the critical section
            // will cause a segmentation fault.
            py::gil_scoped_acquire ensure_tstate{};
            // Enter the critical section with the same object as the second thread.
            py::scoped_critical_section lock{bool_wrapper, bool_wrapper}; // same object used here
            // At this point, the object is locked by this thread via the scoped_critical_section.
            // This barrier will ensure that the second thread waits until this thread has released
            // the critical section before proceeding.
            barrier.arrive_and_wait();
            // Sleep for a short time to simulate some work in the critical section.
            // This sleep is necessary to test the locking mechanism properly.
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
            auto *bw = bool_wrapper.cast<BoolWrapper *>();
            bw->set(true);
        });

        std::thread t2([&]() {
            // This thread will wait until the first thread has entered the critical section due to
            // the barrier.
            barrier.arrive_and_wait();
            {
                // Use gil_scoped_acquire to ensure we have a valid Python thread state
                // before entering the critical section. Otherwise, the critical section
                // will cause a segmentation fault.
                py::gil_scoped_acquire ensure_tstate{};
                // Enter the critical section with the same object as the first thread.
                py::scoped_critical_section lock{bool_wrapper};
                // At this point, the critical section is released by the first thread, the value
                // is set to true.
                auto *bw = bool_wrapper.cast<BoolWrapper *>();
                output = bw->get();
            }
        });

        t1.join();
        t2.join();
    }

    if (!output) {
        throw std::runtime_error(
            "Scoped critical section test with same object failed: output is false");
    }
}

#else

void test_scoped_critical_section(const py::handle &) {}
void test_scoped_critical_section2(const py::handle &) {}
void test_scoped_critical_section2_same_object_no_deadlock(const py::handle &) {}

#endif

} // namespace test_scoped_critical_section_ns

TEST_SUBMODULE(scoped_critical_section, m) {
    using namespace test_scoped_critical_section_ns;

    m.def("test_one_nullptr", test_one_nullptr);
    m.def("test_two_nullptrs", test_two_nullptrs);
    m.def("test_first_nullptr", test_first_nullptr);
    m.def("test_second_nullptr", test_second_nullptr);

    auto BoolWrapperClass = py::class_<BoolWrapper>(m, "BoolWrapper")
                                .def(py::init<bool>())
                                .def("get", &BoolWrapper::get)
                                .def("set", &BoolWrapper::set);
    auto BoolWrapperHandle = py::handle(BoolWrapperClass);
    (void) BoolWrapperHandle.ptr(); // suppress unused variable warning

    m.attr("has_barrier") =
#ifdef PYBIND11_HAS_BARRIER
        true;
#else
        false;
#endif

    m.def("test_scoped_critical_section",
          [BoolWrapperHandle]() -> void { test_scoped_critical_section(BoolWrapperHandle); });
    m.def("test_scoped_critical_section2",
          [BoolWrapperHandle]() -> void { test_scoped_critical_section2(BoolWrapperHandle); });
    m.def("test_scoped_critical_section2_same_object_no_deadlock", [BoolWrapperHandle]() -> void {
        test_scoped_critical_section2_same_object_no_deadlock(BoolWrapperHandle);
    });
}