File: embedding.rst

package info (click to toggle)
pybind11 3.0.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,448 kB
  • sloc: cpp: 27,239; python: 13,512; ansic: 4,244; makefile: 204; sh: 36
file content (495 lines) | stat: -rw-r--r-- 17,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
.. _embedding:

Embedding the interpreter
#########################

While pybind11 is mainly focused on extending Python using C++, it's also
possible to do the reverse: embed the Python interpreter into a C++ program.
All of the other documentation pages still apply here, so refer to them for
general pybind11 usage. This section will cover a few extra things required
for embedding.

Getting started
===============

A basic executable with an embedded interpreter can be created with just a few
lines of CMake and the ``pybind11::embed`` target, as shown below. For more
information, see :doc:`/compiling`.

.. code-block:: cmake

    cmake_minimum_required(VERSION 3.15...4.0)
    project(example)

    find_package(pybind11 REQUIRED)  # or `add_subdirectory(pybind11)`

    add_executable(example main.cpp)
    target_link_libraries(example PRIVATE pybind11::embed)

The essential structure of the ``main.cpp`` file looks like this:

.. code-block:: cpp

    #include <pybind11/embed.h> // everything needed for embedding
    namespace py = pybind11;

    int main() {
        py::scoped_interpreter guard{}; // start the interpreter and keep it alive

        py::print("Hello, World!"); // use the Python API
    }

The interpreter must be initialized before using any Python API, which includes
all the functions and classes in pybind11. The RAII guard class ``scoped_interpreter``
takes care of the interpreter lifetime. After the guard is destroyed, the interpreter
shuts down and clears its memory. No Python functions can be called after this.

Executing Python code
=====================

There are a few different ways to run Python code. One option is to use ``eval``,
``exec`` or ``eval_file``, as explained in :ref:`eval`. Here is a quick example in
the context of an executable with an embedded interpreter:

.. code-block:: cpp

    #include <pybind11/embed.h>
    namespace py = pybind11;

    int main() {
        py::scoped_interpreter guard{};

        py::exec(R"(
            kwargs = dict(name="World", number=42)
            message = "Hello, {name}! The answer is {number}".format(**kwargs)
            print(message)
        )");
    }

Alternatively, similar results can be achieved using pybind11's API (see
:doc:`/advanced/pycpp/index` for more details).

.. code-block:: cpp

    #include <pybind11/embed.h>
    namespace py = pybind11;
    using namespace py::literals;

    int main() {
        py::scoped_interpreter guard{};

        auto kwargs = py::dict("name"_a="World", "number"_a=42);
        auto message = "Hello, {name}! The answer is {number}"_s.format(**kwargs);
        py::print(message);
    }

The two approaches can also be combined:

.. code-block:: cpp

    #include <pybind11/embed.h>
    #include <iostream>

    namespace py = pybind11;
    using namespace py::literals;

    int main() {
        py::scoped_interpreter guard{};

        auto locals = py::dict("name"_a="World", "number"_a=42);
        py::exec(R"(
            message = "Hello, {name}! The answer is {number}".format(**locals())
        )", py::globals(), locals);

        auto message = locals["message"].cast<std::string>();
        std::cout << message;
    }

Importing modules
=================

Python modules can be imported using ``module_::import()``:

.. code-block:: cpp

    py::module_ sys = py::module_::import("sys");
    py::print(sys.attr("path"));

For convenience, the current working directory is included in ``sys.path`` when
embedding the interpreter. This makes it easy to import local Python files:

.. code-block:: python

    """calc.py located in the working directory"""


    def add(i, j):
        return i + j


.. code-block:: cpp

    py::module_ calc = py::module_::import("calc");
    py::object result = calc.attr("add")(1, 2);
    int n = result.cast<int>();
    assert(n == 3);

Modules can be reloaded using ``module_::reload()`` if the source is modified e.g.
by an external process. This can be useful in scenarios where the application
imports a user defined data processing script which needs to be updated after
changes by the user. Note that this function does not reload modules recursively.

.. _embedding_modules:

Adding embedded modules
=======================

Embedded binary modules can be added using the ``PYBIND11_EMBEDDED_MODULE`` macro.
Note that the definition must be placed at global scope. They can be imported
like any other module.

.. code-block:: cpp

    #include <pybind11/embed.h>
    namespace py = pybind11;

    PYBIND11_EMBEDDED_MODULE(fast_calc, m) {
        // `m` is a `py::module_` which is used to bind functions and classes
        m.def("add", [](int i, int j) {
            return i + j;
        });
    }

    int main() {
        py::scoped_interpreter guard{};

        auto fast_calc = py::module_::import("fast_calc");
        auto result = fast_calc.attr("add")(1, 2).cast<int>();
        assert(result == 3);
    }

Unlike extension modules where only a single binary module can be created, on
the embedded side an unlimited number of modules can be added using multiple
``PYBIND11_EMBEDDED_MODULE`` definitions (as long as they have unique names).

These modules are added to Python's list of builtins, so they can also be
imported in pure Python files loaded by the interpreter. Everything interacts
naturally:

.. code-block:: python

    """py_module.py located in the working directory"""
    import cpp_module

    a = cpp_module.a
    b = a + 1


.. code-block:: cpp

    #include <pybind11/embed.h>
    namespace py = pybind11;

    PYBIND11_EMBEDDED_MODULE(cpp_module, m) {
        m.attr("a") = 1;
    }

    int main() {
        py::scoped_interpreter guard{};

        auto py_module = py::module_::import("py_module");

        auto locals = py::dict("fmt"_a="{} + {} = {}", **py_module.attr("__dict__"));
        assert(locals["a"].cast<int>() == 1);
        assert(locals["b"].cast<int>() == 2);

        py::exec(R"(
            c = a + b
            message = fmt.format(a, b, c)
        )", py::globals(), locals);

        assert(locals["c"].cast<int>() == 3);
        assert(locals["message"].cast<std::string>() == "1 + 2 = 3");
    }

``PYBIND11_EMBEDDED_MODULE`` also accepts
:func:`py::mod_gil_not_used()`,
:func:`py::multiple_interpreters::per_interpreter_gil()`, and
:func:`py::multiple_interpreters::shared_gil()` tags just like ``PYBIND11_MODULE``.
See :ref:`misc_subinterp` and :ref:`misc_free_threading` for more information.

Interpreter lifetime
====================

The Python interpreter shuts down when ``scoped_interpreter`` is destroyed. After
this, creating a new instance will restart the interpreter. Alternatively, the
``initialize_interpreter`` / ``finalize_interpreter`` pair of functions can be used
to directly set the state at any time.

Modules created with pybind11 can be safely re-initialized after the interpreter
has been restarted. However, this may not apply to third-party extension modules.
The issue is that Python itself cannot completely unload extension modules and
there are several caveats with regard to interpreter restarting. In short, not
all memory may be freed, either due to Python reference cycles or user-created
global data. All the details can be found in the CPython documentation.

.. warning::

    Creating two concurrent ``scoped_interpreter`` guards is a fatal error. So is
    calling ``initialize_interpreter`` for a second time after the interpreter
    has already been initialized. Use :class:`scoped_subinterpreter` to create
    a sub-interpreter.  See :ref:`subinterp` for important details on sub-interpreters.

    Do not use the raw CPython API functions ``Py_Initialize`` and
    ``Py_Finalize`` as these do not properly handle the lifetime of
    pybind11's internal data.


.. _subinterp:

Embedding Sub-interpreters
==========================

A sub-interpreter is a separate interpreter instance which provides a
separate, isolated interpreter environment within the same process as the main
interpreter.  Sub-interpreters are created and managed with a separate API from
the main interpreter. Beginning in Python 3.12, sub-interpreters each have
their own Global Interpreter Lock (GIL), which means that running a
sub-interpreter in a separate thread from the main interpreter can achieve true
concurrency.

pybind11's sub-interpreter API can be found in ``pybind11/subinterpreter.h``.

pybind11 :class:`subinterpreter` instances can be safely moved and shared between
threads as needed. However, managing multiple threads and the lifetimes of multiple
interpreters and their GILs can be challenging.
Proceed with caution (and lots of testing)!

The main interpreter must be initialized before creating a sub-interpreter, and
the main interpreter must outlive all sub-interpreters. Sub-interpreters are
managed through a different API than the main interpreter.

The :class:`subinterpreter` class manages the lifetime of sub-interpreters.
Instances are movable, but not copyable. Default constructing this class does
*not* create a sub-interpreter (it creates an empty holder).  To create a
sub-interpreter, call :func:`subinterpreter::create()`.

.. warning::

    Sub-interpreter creation acquires (and subsequently releases) the main
    interpreter GIL. If another thread holds the main GIL, the function will
    block until the main GIL can be acquired.

    Sub-interpreter destruction temporarily activates the sub-interpreter. The
    sub-interpreter must not be active (on any threads) at the time the
    :class:`subinterpreter` destructor is called.

    Both actions will re-acquire any interpreter's GIL that was held prior to
    the call before returning (or return to no active interpreter if none was
    active at the time of the call).

Each sub-interpreter will import a separate copy of each ``PYBIND11_EMBEDDED_MODULE``
when those modules specify a ``multiple_interpreters`` tag. If a module does not
specify a ``multiple_interpreters`` tag, then Python will report an ``ImportError``
if it is imported in a sub-interpreter.

pybind11 also has a :class:`scoped_subinterpreter` class, which creates and
activates a sub-interpreter when it is constructed, and deactivates and deletes
it when it goes out of scope.

Activating a Sub-interpreter
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Once a sub-interpreter is created, you can "activate" it on a thread (and
acquire its GIL) by creating a :class:`subinterpreter_scoped_activate`
instance and passing it the sub-intepreter to be activated.  The function
will acquire the sub-interpreter's GIL and make the sub-interpreter the
current active interpreter on the current thread for the lifetime of the
instance. When the :class:`subinterpreter_scoped_activate` instance goes out
of scope, the sub-interpreter GIL is released and the prior interpreter that
was active on the thread (if any) is reactivated and it's GIL is re-acquired.

When using ``subinterpreter_scoped_activate``:

1. If the thread holds any interpreter's GIL:
   - That GIL is released
2. The new sub-interpreter's GIL is acquired
3. The new sub-interpreter is made active.
4. When the scope ends:
    - The sub-interpreter's GIL is released
    - If there was a previous interpreter:
        - The old interpreter's GIL is re-acquired
        - The old interpreter is made active
    - Otherwise, no interpreter is currently active and no GIL is held.

Example:

.. code-block:: cpp

    py::initialize_interpreter();
    // Main GIL is held
    {
        py::subinterpreter sub = py::subinterpreter::create();
        // Main interpreter is still active, main GIL re-acquired
        {
            py::subinterpreter_scoped_activate guard(sub);
            // Sub-interpreter active, thread holds sub's GIL
            {
                py::subinterpreter_scoped_activate main_guard(py);
                // Sub's GIL was automatically released
                // Main interpreter active, thread holds main's GIL
            }
            // Back to sub-interpreter, thread holds sub's GIL again
        }
        // Main interpreter is active, main's GIL is held
    }


GIL API for sub-interpreters
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be used to
manage the GIL of a sub-interpreter just as they do for the main interpreter.
They both manage the GIL of the currently active interpreter, without the
programmer having to do anything special or different. There is one important
caveat:

.. note::

    When no interpreter is active through a
    :class:`subinterpreter_scoped_activate` instance (such as on a new thread),
    :class:`gil_scoped_acquire` will acquire the **main** GIL and
    activate the **main** interpreter.


Full Sub-interpreter example
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Here is an example showing how to create and activate sub-interpreters:

.. code-block:: cpp

    #include <iostream>
    #include <pybind11/embed.h>
    #include <pybind11/subinterpreter.h>

    namespace py = pybind11;

    PYBIND11_EMBEDDED_MODULE(printer, m, py::multiple_interpreters::per_interpreter_gil()) {
        m.def("which", [](const std::string& when) {
            std::cout << when << "; Current Interpreter is "
                    << py::subinterpreter::current().id()
                    << std::endl;
        });
    }

    int main() {
        py::scoped_interpreter main_interp;

        py::module_::import("printer").attr("which")("First init");

        {
            py::subinterpreter sub = py::subinterpreter::create();

            py::module_::import("printer").attr("which")("Created sub");

            {
                py::subinterpreter_scoped_activate guard(sub);
                try {
                    py::module_::import("printer").attr("which")("Activated sub");
                }
                catch (py::error_already_set &e) {
                    std::cerr << "EXCEPTION " << e.what() << std::endl;
                    return 1;
                }
            }

            py::module_::import("printer").attr("which")("Deactivated sub");

            {
                py::gil_scoped_release nogil;
                {
                    py::subinterpreter_scoped_activate guard(sub);
                    try {
                        {
                            py::subinterpreter_scoped_activate main_guard(py::subinterpreter::main());
                            try {
                                py::module_::import("printer").attr("which")("Main within sub");
                            }
                            catch (py::error_already_set &e) {
                                std::cerr << "EXCEPTION " << e.what() << std::endl;
                                return 1;
                            }
                        }
                        py::module_::import("printer").attr("which")("After Main, still within sub");
                    }
                    catch (py::error_already_set &e) {
                        std::cerr << "EXCEPTION " << e.what() << std::endl;
                        return 1;
                    }
                }
            }
        }

        py::module_::import("printer").attr("which")("At end");

        return 0;
    }

Expected output:

.. code-block:: text

    First init; Current Interpreter is 0
    Created sub; Current Interpreter is 0
    Activated sub; Current Interpreter is 1
    Deactivated sub; Current Interpreter is 0
    Main within sub; Current Interpreter is 0
    After Main, still within sub; Current Interpreter is 1
    At end; Current Interpreter is 0

.. warning::

    In Python 3.12 sub-interpreters must be destroyed in the same OS thread
    that created them.  Failure to follow this rule may result in deadlocks
    or crashes when destroying the sub-interpreter on the wrong thread.

    This constraint is not present in Python 3.13+.


Best Practices for sub-interpreter safety
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Never share Python objects across different interpreters.

- :class:`error_already_set` objects contain a reference to the Python exception type,
  and :func:`error_already_set::what()` acquires the GIL. So Python exceptions must
  **never** be allowed to propagate past the enclosing
  :class:`subinterpreter_scoped_activate` instance!
  (So your try/catch should be *just inside* the scope covered by the
  :class:`subinterpreter_scoped_activate`.)

- Avoid global/static state whenever possible. Instead, keep state within each interpreter,
  such as within the interpreter state dict, which can be accessed via
  ``subinterpreter::current().state_dict()``, or within instance members and tied to
  Python objects.

- Avoid trying to "cache" Python objects in C++ variables across function calls (this is an easy
  way to accidentally introduce sub-interpreter bugs). In the code example above, note that we
  did not save the result of :func:`module_::import`, in order to avoid accidentally using the
  resulting Python object when the wrong interpreter was active.

- Avoid moving or disarming RAII objects managing GIL and sub-interpreter lifetimes. Doing so can
  lead to confusion about lifetimes.  (For example, accidentally extending a
  :class:`subinterpreter_scoped_activate` past the lifetime of it's :class:`subinterpreter`.)

- While sub-interpreters each have their own GIL, there can now be multiple independent GILs in one
  program so you need to consider the possibility of deadlocks caused by multiple GILs and/or the
  interactions of the GIL(s) and your C++ code's own locking.

- When using multiple threads to run independent sub-interpreters, the independent GILs allow
  concurrent calls from different interpreters into the same C++ code from different threads.
  So you must still consider the thread safety of your C++ code.  Remember, in Python 3.12
  sub-interpreters must be destroyed on the same thread that they were created on.

- Familiarize yourself with :ref:`misc_concurrency`.