File: tutorial.rst

package info (click to toggle)
pybindgen 0.20.0%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,932 kB
  • sloc: python: 15,981; cpp: 1,889; ansic: 617; makefile: 86; sh: 4
file content (785 lines) | stat: -rw-r--r-- 23,346 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

=======================
PyBindGen Tutorial
=======================



What is PyBindGen ?
===================

PyBindGen is a tool which can be used to generate python bindings
for C or C++ APIs. It is similar in scope to tools such as boost::python,
SWIG, and a few others but has a number of specific features which make
it especially useful in a number of cases:

  - PyBindGen is implemented in python and is used and controlled
    through python;
  - PyBindGen error messages do not involve c++ template deciphering
    (as in boost::python);
  - PyBindGen generates highly-readable C or C++ code so it is
    possible to step into and debug the bindings;
  - In simple cases, PyBindGen is really easy to use. In more
    complicated cases, it does offer all the flexibility you need to
    wrap complex C or C++ APIs;
  - PyBindGen also provides an optional tool to parse C and C++
    headers and generate automatically bindings for them, potentially
    using extra inline or out-of-line annotations.  This tool is based
    on gccxml and pygccxml: it can be used to generate the first
    version of the bindings and tweak them by hand later or as a fully
    automated tool to continuously generate bindings for changing
    C/C++ APIs.

This tutorial will show how to build bindings for a couple of common C and C++ API idioms
and, then, will proceed to show how to use the automatic binding generator.


Supported Python versions
=========================

PyBindGen officially supports Python versions 2.6, 2.7, and >= 3.3[*] (tested in 3.3 and 3.4).

PyBindGen does not support Python versions 3.0, 3.1, and 3.2.

Note that C files generated by PyBindGen transparently support
multiple Python versions.  In particular, the generated code can build
in either Python 2.x or Python 3.x.

[*] The automatic header file scanning feature of PyBindGen (submodule
`pybindgen.gccxmlparser`) does not work in any Python 3.x version,
since the pygccxml package has not been ported to Python 3.



Work flows
==========

PyBindGen is only a Python module.  The programmer must write a Python
script that uses the module in order to generate the bindings.  There
are several ways that PyBindGen can be used:

  1. Basic mode, script that directly generates the bindings;

  .. image:: figures/work-flow-basic.*

  2. Automatically scan header files and generate the bindings
  directly (see :ref:`Header file scanning with (py)gccxml<header-file-scanning>`);

  .. image:: figures/work-flow-gccxml.*

  3. Automatically scan header files to generate API defs file, that
  file can later be used to generate the bindings.  See (see
  :ref:`Header file scanning with (py)gccxml: python intermediate
  file<header-file-scanning-apidefs>`);

  .. image:: figures/work-flow-gccxml-apidefs.*


A simple example
================
The best way to get a feel for what PyBindGen looks like is to go through a 
simple example.

Code generation script
----------------------

Let's assume that we have a simple C API as shown below
declared in a header my-module.h:

  .. code-block:: c++

    void MyModuleDoAction (void);

What we want to do is call this C function from python and be able to write 
python code such as::

  import MyModule

  MyModule.MyModuleDoAction ()

Getting there is, hopefully, not very complicated: we just need to write a small
python program whose job is to generate the C code which will act as a bridge
between our user's python program and the underlying C function. First, we import
the pybindgen and the sys modules::

  import pybindgen
  import sys

Then, we create an object to represent the module we want to generate::

  mod = pybindgen.Module('MyModule')

add our C header::

  mod.add_include('"my-module.h"')

and register our function which returns no value (hence, the second
argument 'None'), and, takes no arguments (hence, the third argument,
the empty list '[]')::

  mod.add_function('MyModuleDoAction', None, [])

Finally, we generate code for this binding directed to standard output::

  mod.generate(sys.stdout)

The final program is pretty short::

  import pybindgen
  import sys

  mod = pybindgen.Module('MyModule')
  mod.add_include('"my-module.h"')
  mod.add_function('MyModuleDoAction', None, [])
  mod.generate(sys.stdout)

Building it using Python setup.py (distutils)
---------------------------------------------

This very small example is located in the :download:`first-example
directory <_static/first-example.zip>`, together with a small makefile which
will build our extension module::

  $ cd first-example/
  $ python setup.py build

The `setup.py` is mostly a standard Python distutils driver script.
Please refer to the `Python documentation
<http://docs.python.org/3/extending/building.html>`_ for more
information.

The unusual part about this `setup.py` is that it imports
`mymodulegen` and calls the generate function, with the
`build/my-module-binding.c` as argument::

 from mymodulegen import generate
 module_fname = os.path.join("build", "my-module-binding.c")
 with open(module_fname, "wt") as file_:
     print("Generating file {}".format(module_fname))
     generate(file_)

After `build/my-module-binding.c` having been generated, with the help
of PyBindGen (as seen in the previous section), we can use it as one
of the source files for our extension module::

 mymodule = Extension('mymodule',
                      sources = [module_fname, 'my-module.c'],
                      include_dirs=['.'])

The rest is standard setup.py code.


Testing it
----------

Once all of that code is built, we obviously want to run it. Setting up
your system to make sure that the python module is found by the python runtime
is outside the scope of this tutorial but, for most people, the following session
should be self-explanatory::

 $ cd first-example/
 $ python setup.py buid
 Generating file build/my-module-binding.c
 running build
 running build_ext
 building 'mymodule' extension
 creating build/temp.linux-x86_64-2.7
 creating build/temp.linux-x86_64-2.7/build
 [...]
 $ export PYTHONPATH=build/lib.linux-x86_64-2.7/
 $ python
 Python 2.7.5+ (default, Sep 19 2013, 13:48:49) 
 [GCC 4.8.1] on linux2
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import mymodule
 >>> mymodule.MyModuleDoAction ()
 You called MyModuleDoAction !
 >>> 


Wrapping types by value
=======================

Primitive types
---------------

The first example showed how to call a function which takes no
arguments and returns no values which, obviously, is not especially
interesting so, let's look at how we can give meaningfull arguments
to our function:

.. code-block:: c++

   int MyModuleDoAction (int v1, int v2);

and the corresponding bit from the code generation script: the second
argument to add_function specifies that our function returns a value of type
'int' and the third argument specifies that our function takes as a
single argument an 'int' of name 'value'::

  mod.add_function('MyModuleDoAction', 
                    pybindgen.retval ('int'), 
                   [pybindgen.param ('int', 'v1'),
                    pybindgen.param ('int', 'v2')])

The above then allows you to write::

  >>> import MyModule
  >>> v = MyModule.MyModuleDoAction (10, -1)
  You called MyModuleDoAction: 10
  >>> print v
  10
  >>> v = MyModule.MyModuleDoAction (v2=5, v1=-2)
  You called MyModuleDoAction: -2
  >>> print v
  -2

Which shows how the argument name can be used to avoid
using positional arguments.


Of course, the above example could be rewritten to the more compact and readable::

  from pybindgen import *
  mod.add_function('MyModuleDoAction', retval ('int'), 
                   [param ('int', 'v1'),
                    param ('int', 'v2')])

In the following examples, this is what we will do to avoid extra typing.


Enum types
----------

Enums are often used to define C and C++ constants as shown below:

.. code-block:: c++

  enum MyEnum_e
  {
    CONSTANT_A,
    CONSTANT_B,
    CONSTANT_C
  };
  void MyModuleDoAction (enum enum_e value);

And wrapping them is also pretty trivial::

  from pybindgen import *
  import sys

  mod = Module('MyModule')
  mod.add_include('"my-module.h"')
  mod.add_enum('MyEnum_e', ['CONSTANT_A', 'CONSTANT_B', 'CONSTANT_C'])
  mod.add_function('MyModuleDoAction', None, [param('MyEnum_e', 'value')])
  mod.generate(sys.stdout)

With the resulting python-visible API::

  >>> import MyModule
  >>> print MyModule.CONSTANT_A
  0
  >>> print MyModule.CONSTANT_B
  1
  >>> print MyModule.CONSTANT_C
  2
  >>> MyModule.MyModuleDoAction (MyModule.CONSTANT_B)
  MyModuleDoAction: 1

Compound types
--------------

Passing a structure to and from C is not really more complicated than
our previous example. The API below:

.. code-block:: c++

  struct MyModuleStruct
  {
    int a;
    int b;
  };
  struct MyModuleStruct MyModuleDoAction (struct MyModuleStruct value);

can be bound to python using the following script::

  from pybindgen import *
  import sys

  mod = Module('MyModule')
  mod.add_include('"my-module.h"')
  struct = mod.add_struct('MyModuleStruct')
  struct.add_instance_attribute('a', 'int')
  struct.add_instance_attribute('b', 'int')
  mod.add_function('MyModuleDoAction', retval ('MyModuleStruct'), [param ('MyModuleStruct', 'value')])
  mod.generate(sys.stdout)

The most obvious change here is that we have to define the new structure type::

  struct = mod.add_struct('MyModuleStruct')

and register the names and types of each of the members we want to make accessible
from python::

  struct.add_instance_attribute('a', 'int')
  struct.add_instance_attribute('b', 'int')

The name of the method called here, 'add_instance_attribute' reflects the fact that
PyBindGen can wrap both C and C++ APIs: in C++, there exist both instance and static
members so, PyBindGen provides two methods: add_instance_attribute and add_static_attribute
to register these two kinds of members.

Our C API then becomes accessible from python::
  >>> import MyModule
  >>> st = MyModule.MyModuleStruct ()
  >>> st.a = 10
  >>> st.b = -20
  >>> st.c = -10
  Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
  AttributeError: 'MyModule.MyModuleStruct' object has no attribute 'c'
  >>> v = MyModule.MyModuleDoAction (st)
  You called MyModuleDoAction: 10
  >>> print v
  <MyModule.MyModuleStruct object at 0x2b5ef522b150>
  >>> print v.a
  10
  >>> print v.b
  -20


C++ classes
-----------

Wrapping C++ classes is very similar to wrapping a C struct with a few functions: we will thus
start by extending our C API with a C++ class declaration:

.. code-block:: c++

  class MyClass
  {
  public:
    void SetInt (int value);
    int GetInt (void) const;
  };

We first need to declare a C++ class::

  mod = Module('MyModule')
  klass = mod.add_class('MyClass')

and, then, specify that it has a constructor::

  klass.add_constructor([])

We can declare the setter method which is really
a straightforward extension from the add_function function::

  klass.add_method('SetInt', None, [param('int', 'value')])

The getter is also pretty straightforward except for the declaration
of constness::

  klass.add_method('GetInt', retval('int'), [], is_const=True)

Using this API is also very similar to the struct example we went through
in the previous section::

  >>> my = MyModule.MyClass()
  >>> my.SetInt(10)
  >>> v = my.GetInt()
  >>> print v
  10

It is also possible to bind inner classes and enums such
as these:

.. code-block:: c++

  class Outer
  {
  public:
    void Do (void);
    // an inner enum
    enum inner_e
    {
      INNER_A,
      INNER_B,
      INNER_C
    };
    // an inner class
    class Inner
    {
    public:
      void Do (enum Outer::inner_e value);
    };
  };

We just need to bind the outer class::

  outer = mod.add_class('Outer')
  outer.add_constructor([])
  outer.add_method('Do', None, [])

Then, bind its inner enum::

  mod.add_enum('inner_e', ['INNER_A', 'INNER_B', 'INNER_C'], outer_class=outer)

and, finally, bind its inner class::

  mod.add_class('Inner', outer_class=outer)
  inner.add_constructor([])

The only slightly tricky part is binding the Do method of the Inner
class since it refers to the enum type defined in the Outer class: we
simply need to carefully use the fully scoped name of the enum.::

  inner.add_method('Do', None, [param('Outer::inner_e', value)])

The resulting python API reflects the underlying C++ API very closely::

  >>> import MyModule
  >>> print MyModule.Outer.INNER_A
  0
  >>> print MyModule.Outer.INNER_B
  1
  >>> outer = MyModule.Outer()
  >>> outer.Do()
  >>> inner = MyModule.Outer.Inner()
  >>> inner.Do(MyModule.Outer.INNER_A)


C++ namespaces
--------------

Wrapping multiple nested namespaces is, of course, possible and represents
no special challenge. Let's look at an example:

.. code-block:: c++

  namespace Outer {
    void Do (void);
    class MyClass 
    {};
    namespace Inner {
      void Do (void);
      class MyClass 
      {};
    } // namespace Inner
  } // namespace Outer

First, we need to define the Outer namespace::

  mod = Module('MyModule')
  outer = mod.add_cpp_namespace('Outer')

Then, register its classes and functions::

  outer.add_class('MyClass')
  outer.add_function('Do', None, [])

and, finally, define the Inner namespace and its associated
functions and methods::

  inner = outer.add_cpp_namespace('Inner')
  inner.add_class('MyClass')
  inner.add_function('Do', None, [])

The resulting API, again, sticks to the underlying C++ API by
defining one python module for each C++ namespace and making
sure that the hierarchy of python modules matches the hierarchy
of C++ namespaces::

  >>> import MyModule
  >>> o = MyModule.Outer.MyClass()
  >>> i = MyModule.Outer.Inner.MyClass()
  >>> from MyModule.Outer.Inner import *
  >>> i = MyClass()


Memory management for pointer types
===================================

Until then, we have shown how to pass back and forth data through C/C++ APIs
only by value but, a large fraction of real-world APIs use raw pointers
(and, in the case of C++, smart pointers) as arguments or return values 
of functions/methods.

Rather than try to explain the detail of every option offered by PyBindGen
to deal with pointers, we will go through a couple of very classic memory
management schemes and examples.

Function returns pointer
------------------------

The API to bind:

.. code-block:: c++

  class MyClass;
  MyClass *DoSomethingAndReturnClass (void);

First, we declare the MyClass type::

  mod.add_class('MyClass')
  ...

Then, if we assume that the function returns ownership of the pointer to the caller, we
can write::

  mod.add_function('DoSomethingAndReturnClass', retval('MyClass *', caller_owns_return=True), [])

The above will tell PyBindGen that the caller (the python runtime) becomes
responsible for deleting the instance of MyClass returned by the function
DoSomethingAndReturnClass when it is done with it.

Of course, it is possible to not give back ownership of the returned pointer
to the caller::

  mod.add_function('DoSomethingAndReturnClass', retval('MyClass *', caller_owns_return=False), [])

Which would make the python runtime assume that the lifetime of the returned pointer
is longer than the associated python object.

Function takes pointer
----------------------

The API to bind:

.. code-block:: c++

  class MyClass;
  void DoWithClass (MyClass *cls);

If we assume that the callee takes ownership of the input pointer, we can write::

  mod.add_function('DoWithClass', None, [param('MyClass *', 'cls', transfer_ownership=True)])

Which will make python keep a handle on the MyClass instance but never destroy it himself
and rely on the callee to destroy it at the right time. This kind of scheme is obviously
a bit dangerous because python has no way of knowing when the underlying MyClass instance
is really destroyed so, if you try to invoke methods on it _after_ it has been destroyed,
bad things will obviously happen.

If, instead, we assume that the caller keeps ownership of the pointer, we can write
the much safer version::

  mod.add_function('DoWithClass', None, [param('MyClass *', 'cls', transfer_ownership=False)])

Which will allow python to delete the MyClass instance only when the associated python wrapper
disappears.

A reference-counted object
--------------------------

A nice way to avoid some of the ambiguities of the above-mentioned API bindings is to 
use reference-counted C or C++ objects which must provide a pair of functions or methods
to increase or decrease the reference count of the object. For example, a classic
C++ reference-counted class:

.. code-block:: c++

  class MyClass 
  {
  public:
    void Ref (void);
    void Unref (void);
    uint32_t PeekRef (void);
  };

And the associated function which takes a pointer:

.. code-block:: c++

   void DoSomething (MyClass *cls);

To wrap this class, we first need to declare our class::

  from pybindgen import cppclass
  [...]
  mod.add_class('MyClass', memory_policy=cppclass.ReferenceCountingMethodsPolicy( 
                    incref_method='Ref', 
                    decref_method='Unref', 
                    peekref_method='PeekRef'))

The above allows PyBindGen to maintain and track the reference count
of the MyClass object while the code below shows how we can declare
a function taking a pointer as input::

  mod.add_function('DoSomething', None, [param('MyClass *', 'cls', transfer_ownership=False)]

Here, the meaning of transfer_ownership changes slightly.
Whithout reference counting, transfer_ownership refers to the
transfer of the object as a whole, i.e. either the caller or
callee will own the object in the end, but not both.  With
reference counting, transfer_ownership refers to the transfer of a
_reference_.  In this example, transfer_ownership=False means that
the caller will not "steal" our reference, i.e. it will either not
keep a reference to our object for itself, or if it does it
creates its own reference to the object by calling the incref
method.  If transfer_ownership=True it would mean that the caller
would keep the passed in reference to itself, and if the caller
wants to keep the reference it must call the incref method first.

A more interesting case is that of returning such a reference counted 
object from a function:

.. code-block:: c++

  MyClass *DoSomething (void);

While classic reference counting rules require that the callee returns
a reference to the caller (i.e., it calls Ref on behalf of the caller
before returning the pointer), some APIs will undoubtedly return a pointer
and expect the caller to acquire a reference to the returned object by
calling Ref himself. PyBindGen hopefully can be made to support this
case too::

  mod.add_function('DoSomething', retval('MyClass *', caller_owns_return=False), [])

Which instructs PyBindGen that DoSomething is not to be trusted and that it should
acquire ownership of the returned pointer if it needs to keep track of it.


A STL container
---------------

If you have a function that takes a STL container, you have to
tell PyBindGen to wrap the container first:

.. code-block:: c++

    void DoSomething (std::list<std::string> const &listOfStrings);

Is wrapped by::

    module.add_container('std::list<std::string>', 'std::string', 'list') # declare a container only once
    [...]
    mod.add_function('DoSomething', None, [param('std::list<std::string> const &', 'listOfStrings')])


.. Subclassing a C++ class from python
.. ===================================

.. Extending a C++ class or namespace from python
.. ==============================================


Advanced usage
==============


Basic interface with error handling
-----------------------------------

It is also possible to declare a error handler.  The error handler
will be invoked for API definitions that cannot be wrapped for some
reason::

  #! /usr/bin/env python

  import sys

  import pybindgen
  from pybindgen import Module, FileCodeSink, retval, param

  import pybindgen.settings
  import warnings

  class ErrorHandler(pybindgen.settings.ErrorHandler):
      def handle_error(self, wrapper, exception, traceback_):
          warnings.warn("exception %r in wrapper %s" % (exception, wrapper))
          return True
  pybindgen.settings.error_handler = ErrorHandler()


  def my_module_gen(out_file):
      pybindgen.write_preamble(FileCodeSink(out_file))

      mod = Module('a')
      mod.add_include('"a.h"')

      mod.add_function('ADoA', None, [])
      mod.add_function('ADoB', None, [param('uint32_t', 'b')])
      mod.add_function('ADoC', retval('uint32_t'), [])

      mod.generate(FileCodeSink(out_file) )

  if __name__ == '__main__':
      my_module_gen(sys.stdout)

In this example, we register a error handler that allows PyBindGen
to simply ignore API definitions with errors, and not wrap them, but
move on.

The difference between is Parameter.new(...) and param(...), as well
as between ReturnValue.new(...) and retval(...) is to be noted here.
The main difference is not that param(...) and retval(...) are
shorter, it is that they allow delayed error handling.  For example,
when you put Parameter.new("type that does not exist", "foo") in
your python script, a TypeLookupError exception is raised and it is
not possible for the error handler to catch it.  However, param(...)
does not try to lookup the type handler immediately and instead lets
Module.add_function() do that in a way that the error handler can be
invoked and the function is simply not wrapped if the error handler
says so.

.. _header-file-scanning:

Header file scanning with (py)gccxml
------------------------------------

If you have gccxml and pygccxml installed, PyBindGen can use them to
scan the API definitions directly from the header files::

  #! /usr/bin/env python

  import sys

  import pybindgen
  from pybindgen import FileCodeSink
  from pybindgen.gccxmlparser import ModuleParser

  def my_module_gen():
      module_parser = ModuleParser('a1', '::')
      module = module_parser.parse([sys.argv[1]])
      module.add_include('"a.h"')

      pybindgen.write_preamble(FileCodeSink(sys.stdout))
      module.generate(FileCodeSink(sys.stdout))

  if __name__ == '__main__':
      my_module_gen()

The above script will generate the bindings for the module directly.
It expects the input header file, a.h, as first command line
argument.

.. _header-file-scanning-apidefs:

Header file scanning with (py)gccxml: python intermediate file
--------------------------------------------------------------

The final code generation flow supported by PyBindGen is a hybrid of
the previous ones.  One script scans C/C++ header files, but instead
of generating C/C++ binding code directly it instead generates a
PyBindGen based Python script::

  #! /usr/bin/env python

  import sys

  from pybindgen import FileCodeSink
  from pybindgen.gccxmlparser import ModuleParser

  def my_module_gen():
      module_parser = ModuleParser('a2', '::')
      module_parser.parse([sys.argv[1]], includes=['"a.h"'], pygen_sink=FileCodeSink(sys.stdout))

  if __name__ == '__main__':
      my_module_gen()

The above script produces a Python program on stdout.  Running the
generated Python program will, in turn, generate the C++ code
binding our interface.